forked from artidoro/qlora
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lora.py
1165 lines (1026 loc) · 48.3 KB
/
lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import re
import warnings
from dataclasses import asdict, dataclass, field, replace
from enum import Enum
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.pytorch_utils import Conv1D
from ..import_utils import is_bnb_4bit_available, is_bnb_available
from ..utils import (
CLAMP_QUANTILE,
COMMON_LAYERS_PATTERN,
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING,
ModulesToSaveWrapper,
PeftConfig,
PeftType,
_freeze_adapter,
_get_submodules,
transpose,
)
if is_bnb_available():
import bitsandbytes as bnb
@dataclass
class LoraConfig(PeftConfig):
"""
This is the configuration class to store the configuration of a [`LoraModel`].
Args:
r (`int`): Lora attention dimension.
target_modules (`Union[List[str],str]`): The names of the modules to apply Lora to.
lora_alpha (`int`): The alpha parameter for Lora scaling.
lora_dropout (`float`): The dropout probability for Lora layers.
fan_in_fan_out (`bool`): Set this to True if the layer to replace stores weight like (fan_in, fan_out).
For example, gpt-2 uses `Conv1D` which stores weights like (fan_in, fan_out) and hence this should be set to `True`.:
bias (`str`): Bias type for Lora. Can be 'none', 'all' or 'lora_only'
modules_to_save (`List[str]`):List of modules apart from LoRA layers to be set as trainable
and saved in the final checkpoint.
layers_to_transform (`Union[List[int],int]`):
The layer indexes to transform, if this argument is specified, it will apply the LoRA transformations on
the layer indexes that are specified in this list. If a single integer is passed, it will apply the LoRA
transformations on the layer at this index.
layers_pattern (`str`):
The layer pattern name, used only if `layers_to_transform` is different from `None` and if the layer
pattern is not in the common layers pattern.
"""
r: int = field(default=8, metadata={"help": "Lora attention dimension"})
target_modules: Optional[Union[List[str], str]] = field(
default=None,
metadata={
"help": "List of module names or regex expression of the module names to replace with Lora."
"For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' "
},
)
lora_alpha: int = field(default=8, metadata={"help": "Lora alpha"})
lora_dropout: float = field(default=0.0, metadata={"help": "Lora dropout"})
fan_in_fan_out: bool = field(
default=False,
metadata={"help": "Set this to True if the layer to replace stores weight like (fan_in, fan_out)"},
)
bias: str = field(default="none", metadata={"help": "Bias type for Lora. Can be 'none', 'all' or 'lora_only'"})
modules_to_save: Optional[List[str]] = field(
default=None,
metadata={
"help": "List of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint. "
"For example, in Sequence Classification or Token Classification tasks, "
"the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved."
},
)
init_lora_weights: bool = field(
default=True,
metadata={
"help": (
"Whether to initialize the weights of the Lora layers with their default initialization. Don't change "
"this setting, except if you know exactly what you're doing."
),
},
)
layers_to_transform: Optional[Union[List, int]] = field(
default=None,
metadata={
"help": "The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index."
},
)
layers_pattern: Optional[str] = field(
default=None,
metadata={
"help": "The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern."
},
)
def __post_init__(self):
self.peft_type = PeftType.LORA
class LoraModel(torch.nn.Module):
"""
Creates Low Rank Adapter (Lora) model from a pretrained transformers model.
Args:
model ([`~transformers.PreTrainedModel`]): The model to be adapted.
config ([`LoraConfig`]): The configuration of the Lora model.
Returns:
`torch.nn.Module`: The Lora model.
Example:
```py
>>> from transformers import AutoModelForSeq2SeqLM, LoraConfig
>>> from peft import LoraModel, LoraConfig
>>> config = LoraConfig(
... peft_type="LORA",
... task_type="SEQ_2_SEQ_LM",
... r=8,
... lora_alpha=32,
... target_modules=["q", "v"],
... lora_dropout=0.01,
... )
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
>>> lora_model = LoraModel(config, model)
```
```py
>>> import transformers
>>> from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_int8_training
>>> target_modules = ["q_proj", "k_proj", "v_proj", "out_proj", "fc_in", "fc_out", "wte"]
>>> config = LoraConfig(
... r=4, lora_alpha=16, target_modules=target_modules, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM"
... )
>>> model = transformers.GPTJForCausalLM.from_pretrained(
... "kakaobrain/kogpt",
... revision="KoGPT6B-ryan1.5b-float16", # or float32 version: revision=KoGPT6B-ryan1.5b
... pad_token_id=tokenizer.eos_token_id,
... use_cache=False,
... device_map={"": rank},
... torch_dtype=torch.float16,
... load_in_8bit=True,
... )
>>> model = prepare_model_for_int8_training(model)
>>> lora_model = get_peft_model(model, config)
```
**Attributes**:
- **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted.
- **peft_config** ([`LoraConfig`]): The configuration of the Lora model.
"""
def __init__(self, model, config, adapter_name):
super().__init__()
self.model = model
self.forward = self.model.forward
self.peft_config = config
self.add_adapter(adapter_name, self.peft_config[adapter_name])
# transformers models have a .config attribute, whose presence is assumed later on
if not hasattr(self, "config"):
self.config = {"model_type": "custom"}
def add_adapter(self, adapter_name, config=None):
if config is not None:
model_config = getattr(self.model, "config", {"model_type": "custom"})
if hasattr(model_config, "to_dict"):
model_config = model_config.to_dict()
config = self._prepare_lora_config(config, model_config)
self.peft_config[adapter_name] = config
self._find_and_replace(adapter_name)
if len(self.peft_config) > 1 and self.peft_config[adapter_name].bias != "none":
raise ValueError(
"LoraModel supports only 1 adapter with bias. When using multiple adapters, set bias to 'none' for all adapters."
)
mark_only_lora_as_trainable(self.model, self.peft_config[adapter_name].bias)
if self.peft_config[adapter_name].inference_mode:
_freeze_adapter(self.model, adapter_name)
def _check_quantization_dependency(self):
loaded_in_4bit = getattr(self.model, "is_loaded_in_4bit", False)
loaded_in_8bit = getattr(self.model, "is_loaded_in_8bit", False)
if (loaded_in_4bit or loaded_in_8bit) and not is_bnb_available():
raise ImportError(
"To use Lora with 8-bit or 4-bit quantization, please install the `bitsandbytes` package. "
"You can install it with `pip install bitsandbytes`."
)
def _check_target_module_exists(self, lora_config, key):
if isinstance(lora_config.target_modules, str):
target_module_found = re.fullmatch(lora_config.target_modules, key)
else:
target_module_found = any(key.endswith(target_key) for target_key in lora_config.target_modules)
is_using_layer_indexes = getattr(lora_config, "layers_to_transform", None) is not None
layer_indexing_pattern = getattr(lora_config, "layers_pattern", None)
if is_using_layer_indexes and target_module_found:
layers_pattern = COMMON_LAYERS_PATTERN if layer_indexing_pattern is None else layer_indexing_pattern
layers_pattern = [layers_pattern] if isinstance(layers_pattern, str) else layers_pattern
for pattern in layers_pattern:
layer_index = re.match(f".*.{pattern}\.(\d+)\.*", key)
if layer_index is not None:
layer_index = int(layer_index.group(1))
if isinstance(lora_config.layers_to_transform, int):
target_module_found = layer_index == lora_config.layers_to_transform
else:
target_module_found = layer_index in lora_config.layers_to_transform
break
else:
target_module_found = False
return target_module_found
def _create_new_module(self, lora_config, adapter_name, target):
bias = hasattr(target, "bias") and target.bias is not None
kwargs = {
"r": lora_config.r,
"lora_alpha": lora_config.lora_alpha,
"lora_dropout": lora_config.lora_dropout,
"fan_in_fan_out": lora_config.fan_in_fan_out,
"init_lora_weights": lora_config.init_lora_weights,
}
loaded_in_4bit = getattr(self.model, "is_loaded_in_4bit", False)
loaded_in_8bit = getattr(self.model, "is_loaded_in_8bit", False)
if loaded_in_8bit and isinstance(target, bnb.nn.Linear8bitLt):
eightbit_kwargs = kwargs.copy()
eightbit_kwargs.update(
{
"has_fp16_weights": target.state.has_fp16_weights,
"memory_efficient_backward": target.state.memory_efficient_backward,
"threshold": target.state.threshold,
"index": target.index,
}
)
new_module = Linear8bitLt(
adapter_name, target.in_features, target.out_features, bias=bias, **eightbit_kwargs
)
elif loaded_in_4bit and is_bnb_4bit_available() and isinstance(target, bnb.nn.Linear4bit):
fourbit_kwargs = kwargs.copy()
fourbit_kwargs.update(
{
"compute_dtype": target.compute_dtype,
"compress_statistics": target.weight.compress_statistics,
"quant_type": target.weight.quant_type,
}
)
new_module = Linear4bit(adapter_name, target.in_features, target.out_features, bias=bias, **fourbit_kwargs)
elif isinstance(target, torch.nn.Embedding):
embedding_kwargs = kwargs.copy()
embedding_kwargs.pop("fan_in_fan_out", None)
in_features, out_features = target.num_embeddings, target.embedding_dim
new_module = Embedding(adapter_name, in_features, out_features, **embedding_kwargs)
elif isinstance(target, torch.nn.Conv2d):
out_channels, in_channels = target.weight.size()[:2]
kernel_size = target.weight.size()[2:]
stride = target.stride
padding = target.padding
new_module = Conv2d(adapter_name, in_channels, out_channels, kernel_size, stride, padding, **kwargs)
else:
if isinstance(target, torch.nn.Linear):
in_features, out_features = target.in_features, target.out_features
if kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
"Setting fan_in_fan_out to False."
)
kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False
elif isinstance(target, Conv1D):
in_features, out_features = (
target.weight.ds_shape if hasattr(target.weight, "ds_shape") else target.weight.shape
)
kwargs["is_target_conv_1d_layer"] = True
if not kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to False but the target module is `Conv1D`. "
"Setting fan_in_fan_out to True."
)
kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = True
else:
raise ValueError(
f"Target module {target} is not supported. "
f"Currently, only `torch.nn.Linear` and `Conv1D` are supported."
)
new_module = Linear(adapter_name, in_features, out_features, bias=bias, **kwargs)
return new_module
def _find_and_replace(self, adapter_name):
lora_config = self.peft_config[adapter_name]
self._check_quantization_dependency()
is_target_modules_in_base_model = False
key_list = [key for key, _ in self.model.named_modules()]
for key in key_list:
if not self._check_target_module_exists(lora_config, key):
continue
is_target_modules_in_base_model = True
parent, target, target_name = _get_submodules(self.model, key)
if isinstance(target, LoraLayer) and isinstance(target, torch.nn.Conv2d):
target.update_layer_conv2d(
adapter_name,
lora_config.r,
lora_config.lora_alpha,
lora_config.lora_dropout,
lora_config.init_lora_weights,
)
elif isinstance(target, LoraLayer) and isinstance(target, torch.nn.Embedding):
target.update_layer_embedding(
adapter_name,
lora_config.r,
lora_config.lora_alpha,
lora_config.lora_dropout,
lora_config.init_lora_weights,
)
elif isinstance(target, LoraLayer):
target.update_layer(
adapter_name,
lora_config.r,
lora_config.lora_alpha,
lora_config.lora_dropout,
lora_config.init_lora_weights,
)
else:
new_module = self._create_new_module(lora_config, adapter_name, target)
self._replace_module(parent, target_name, new_module, target)
if not is_target_modules_in_base_model:
raise ValueError(
f"Target modules {lora_config.target_modules} not found in the base model. "
f"Please check the target modules and try again."
)
def _replace_module(self, parent_module, child_name, new_module, old_module):
setattr(parent_module, child_name, new_module)
new_module.weight = old_module.weight
if hasattr(old_module, "bias"):
if old_module.bias is not None:
new_module.bias = old_module.bias
if getattr(old_module, "state", None) is not None:
new_module.state = old_module.state
new_module.to(old_module.weight.device)
# dispatch to correct device
for name, module in new_module.named_modules():
if "lora_" in name:
module.to(old_module.weight.device)
if "ranknum" in name:
module.to(old_module.weight.device)
def __getattr__(self, name: str):
"""Forward missing attributes to the wrapped module."""
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
return getattr(self.model, name)
def get_peft_config_as_dict(self, inference: bool = False):
config_dict = {}
for key, value in self.peft_config.items():
config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()}
if inference:
config["inference_mode"] = True
config_dict[key] = config
return config
def _set_adapter_layers(self, enabled=True):
for module in self.model.modules():
if isinstance(module, LoraLayer):
module.disable_adapters = False if enabled else True
def enable_adapter_layers(self):
self._set_adapter_layers(enabled=True)
def disable_adapter_layers(self):
self._set_adapter_layers(enabled=False)
def set_adapter(self, adapter_name):
for module in self.model.modules():
if isinstance(module, LoraLayer):
if module.merged:
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.")
module.unmerge()
module.active_adapter = adapter_name
def merge_adapter(self):
"""
This method merges the LoRa layers into the base model.
"""
for module in self.model.modules():
if isinstance(module, LoraLayer):
module.merge()
def unmerge_adapter(self):
"""
This method unmerges the LoRa layers from the base model.
"""
for module in self.model.modules():
if isinstance(module, LoraLayer):
module.unmerge()
@staticmethod
def _prepare_lora_config(peft_config, model_config):
if peft_config.target_modules is None:
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING:
raise ValueError("Please specify `target_modules` in `peft_config`")
peft_config.target_modules = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING[model_config["model_type"]]
return peft_config
def _unload_and_optionally_merge(self, merge=True):
if getattr(self.model, "is_loaded_in_8bit", False) or getattr(self.model, "is_loaded_in_4bit", False):
raise ValueError("Cannot merge LORA layers when the model is loaded in 8-bit mode")
key_list = [key for key, _ in self.model.named_modules() if "lora" not in key]
for key in key_list:
try:
parent, target, target_name = _get_submodules(self.model, key)
except AttributeError:
continue
if isinstance(target, LoraLayer):
if isinstance(target, nn.Embedding):
new_module = torch.nn.Embedding(target.in_features, target.out_features)
elif isinstance(target, nn.Conv2d):
new_module = torch.nn.Conv2d(
target.in_channels,
target.out_channels,
kernel_size=target.kernel_size,
stride=target.stride,
padding=target.padding,
dilation=target.dilation,
)
else:
bias = target.bias is not None
if getattr(target, "is_target_conv_1d_layer", False):
new_module = Conv1D(target.out_features, target.in_features)
else:
new_module = torch.nn.Linear(target.in_features, target.out_features, bias=bias)
if merge:
target.merge()
self._replace_module(parent, target_name, new_module, target)
# save any additional trainable modules part of `modules_to_save`
if isinstance(target, ModulesToSaveWrapper):
setattr(parent, target_name, target.modules_to_save[target.active_adapter])
return self.model
def add_weighted_adapter(self, adapters, weights, adapter_name, combination_type="svd"):
"""
This method adds a new adapter by merging the given adapters with the given weights.
Args:
adapters (list): List of adapter names to be merged.
weights (list): List of weights for each adapter.
adapter_name (str): Name of the new adapter.
combination_type (str): Type of merging. Can be one of [`svd`, `linear`]
"""
if adapter_name in list(self.peft_config.keys()):
return
for adapter in adapters:
if adapter not in list(self.peft_config.keys()):
raise ValueError(f"Adapter {adapter} does not exist")
# if there is only one adapter, we can only use linear merging
combination_type = "linear" if len(adapters) == 1 else combination_type
# new rank is the max of all ranks of the adapters
unique_ranks = list({self.peft_config[adapter].r for adapter in adapters})
if combination_type == "linear":
if len(unique_ranks) != 1:
raise ValueError("All adapters must have the same r value when using `linear` combination_type")
new_rank = unique_ranks[0]
elif combination_type == "svd":
new_rank = max(unique_ranks)
else:
raise ValueError(f"Invalid combination_type: {combination_type}")
self.peft_config[adapter_name] = replace(self.peft_config[adapters[0]], r=new_rank, lora_alpha=new_rank)
self._find_and_replace(adapter_name)
mark_only_lora_as_trainable(self.model, self.peft_config[adapter_name].bias)
_freeze_adapter(self.model, adapter_name)
key_list = [key for key, _ in self.model.named_modules() if "lora" not in key]
for key in key_list:
_, target, _ = _get_submodules(self.model, key)
if isinstance(target, LoraLayer):
if adapter_name in target.lora_A:
target_lora_A = target.lora_A[adapter_name].weight
target_lora_B = target.lora_B[adapter_name].weight
elif adapter_name in target.lora_embedding_A:
target_lora_A = target.lora_embedding_A[adapter_name]
target_lora_B = target.lora_embedding_B[adapter_name]
target_lora_A.data = target_lora_A.data * 0.0
target_lora_B.data = target_lora_B.data * 0.0
if combination_type == "linear":
for adapter, weight in zip(adapters, weights):
if adapter in target.lora_A:
current_adapter_lora_A = target.lora_A[adapter].weight
current_adapter_lora_B = target.lora_B[adapter].weight
elif adapter in target.lora_embedding_A:
current_adapter_lora_A = target.lora_embedding_A[adapter]
current_adapter_lora_B = target.lora_embedding_B[adapter]
target_lora_A.data += current_adapter_lora_A.data * weight * target.scaling[adapter]
target_lora_B.data += current_adapter_lora_B.data
elif combination_type == "svd":
target_lora_A.data, target_lora_B.data = self._svd_weighted_adapter(
adapters, weights, new_rank, target, target_lora_A, target_lora_B
)
def _svd_weighted_adapter(self, adapters, weights, new_rank, target, target_lora_A, target_lora_B):
delta_weight = weights[0] * target.get_delta_weight(adapters[0])
for adapter, weight in zip(adapters[1:], weights[1:]):
delta_weight += weight * target.get_delta_weight(adapter)
conv2d = isinstance(target, Conv2d)
if conv2d:
conv2d_1x1 = target.weight.size()[2:4] == (1, 1)
if not conv2d_1x1:
delta_weight = delta_weight.flatten(start_dim=1)
else:
delta_weight = delta_weight.squeeze()
if target.fan_in_fan_out:
delta_weight = delta_weight.T
# based on https://github.com/kohya-ss/sd-scripts/blob/main/networks/svd_merge_lora.py#L114-L131
U, S, Vh = torch.linalg.svd(delta_weight)
U = U[:, :new_rank]
S = S[:new_rank]
U = U @ torch.diag(S)
Vh = Vh[:new_rank, :]
dist = torch.cat([U.flatten(), Vh.flatten()])
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
low_val = -hi_val
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
if conv2d:
U = U.reshape(target_lora_B.data.shape)
Vh = Vh.reshape(target_lora_A.data.shape)
return Vh, U
def delete_adapter(self, adapter_name):
"""
Deletes an existing adapter.
Args:
adapter_name (str): Name of the adapter to be deleted.
"""
if adapter_name not in list(self.peft_config.keys()):
raise ValueError(f"Adapter {adapter_name} does not exist")
del self.peft_config[adapter_name]
key_list = [key for key, _ in self.model.named_modules() if "lora" not in key]
for key in key_list:
_, target, _ = _get_submodules(self.model, key)
if isinstance(target, LoraLayer):
for attr in [
"r",
"lora_alpha",
"scaling",
"lora_A",
"lora_B",
"lora_embedding_A",
"lora_embedding_B",
"lora_dropout",
]:
if adapter_name in getattr(target, attr):
getattr(target, attr).pop(adapter_name)
if target.active_adapter == adapter_name:
resetting_active_adapter = list(self.peft_config.keys())[0]
warnings.warn(
f"Adapter {adapter_name} was active which is now deleted. Setting active adapter to {resetting_active_adapter}. "
)
target.active_adapter = resetting_active_adapter
def merge_and_unload(self):
r"""
This method merges the LoRa layers into the base model. This is needed if someone wants to use the base model
as a standalone model.
Example:
```py
>>> from transformers import AutoModelForCausalLM
>>> from peft import PeftModel
>>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b")
>>> peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample"
>>> model = PeftModel.from_pretrained(base_model, peft_model_id)
>>> merged_model = model.merge_and_unload()
```
"""
return self._unload_and_optionally_merge()
def unload(self):
"""
Gets back the base model by removing all the lora modules without merging. This gives back the original base
model.
"""
return self._unload_and_optionally_merge(merge=False)
# Below code is based on https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
# and modified to work with PyTorch FSDP
# ------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
# ------------------------------------------------------------------------------------------
# had to adapt it for `lora_only` to work
def mark_only_lora_as_trainable(model: nn.Module, bias: str = "none") -> None:
for n, p in model.named_parameters():
if "lora_" not in n:
p.requires_grad = False
if bias == "none":
return
elif bias == "all":
for n, p in model.named_parameters():
if "bias" in n:
p.requires_grad = True
elif bias == "lora_only":
for m in model.modules():
if isinstance(m, LoraLayer) and hasattr(m, "bias") and m.bias is not None:
m.bias.requires_grad = True
else:
raise NotImplementedError
class LoraLayer:
counter = 0
weights_A_64 = torch.load(REPLACE_THIS, map_location=torch.device('cpu'))
keys_A_64 = [key for key in weights_A_64 if "lora_A" in key]
def __init__(self, in_features: int, out_features: int, **kwargs):
self.r = {}
self.lora_alpha = {}
self.scaling = {}
self.lora_dropout = nn.ModuleDict({})
self.lora_A = nn.ModuleDict({})
self.lora_B = nn.ModuleDict({})
# For Embedding layer
self.lora_embedding_A = nn.ParameterDict({})
self.lora_embedding_B = nn.ParameterDict({})
# Mark the weight as unmerged
self.merged = False
self.disable_adapters = False
self.in_features = in_features
self.out_features = out_features
self.kwargs = kwargs
def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights):
self.r[adapter_name] = r
self.lora_alpha[adapter_name] = lora_alpha
if lora_dropout > 0.0:
lora_dropout_layer = nn.Dropout(p=lora_dropout)
else:
lora_dropout_layer = nn.Identity()
self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer}))
# Actual trainable parameters
if r > 0:
self.lora_A.update(nn.ModuleDict({adapter_name: nn.Linear(self.in_features, r, bias=False)}))
self.lora_B.update(nn.ModuleDict({adapter_name: nn.Linear(r, self.out_features, bias=False)}))
self.scaling[adapter_name] = lora_alpha / r
if init_lora_weights:
self.reset_lora_parameters(adapter_name)
self.to(self.weight.device)
def update_layer_conv2d(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights):
self.r[adapter_name] = r
self.lora_alpha[adapter_name] = lora_alpha
if lora_dropout > 0.0:
lora_dropout_layer = nn.Dropout(p=lora_dropout)
else:
lora_dropout_layer = nn.Identity()
self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer}))
# Actual trainable parameters
if r > 0:
kernel_size = self.kwargs["kernel_size"]
stride = self.kwargs["stride"]
padding = self.kwargs["padding"]
self.lora_A.update(
nn.ModuleDict({adapter_name: nn.Conv2d(self.in_features, r, kernel_size, stride, padding, bias=False)})
)
self.lora_B.update(
nn.ModuleDict({adapter_name: nn.Conv2d(r, self.out_features, (1, 1), (1, 1), bias=False)})
)
self.scaling[adapter_name] = lora_alpha / r
if init_lora_weights:
self.reset_lora_parameters(adapter_name)
self.to(self.weight.device)
def update_layer_embedding(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights):
self.r[adapter_name] = r
self.lora_alpha[adapter_name] = lora_alpha
if lora_dropout > 0.0:
lora_dropout_layer = nn.Dropout(p=lora_dropout)
else:
lora_dropout_layer = nn.Identity()
self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer}))
# Actual trainable parameters
if r > 0:
weight_A = torch.randn((r, self.in_features), dtype=self.weight.dtype, device=self.weight.device)
weight_B = torch.randn((self.out_features, r), dtype=self.weight.dtype, device=self.weight.device)
self.lora_embedding_A.update(nn.ParameterDict({adapter_name: nn.Parameter(weight_A)}))
self.lora_embedding_B.update(nn.ParameterDict({adapter_name: nn.Parameter(weight_B)}))
self.scaling[adapter_name] = lora_alpha / r
if init_lora_weights:
self.reset_lora_parameters(adapter_name)
self.to(self.weight.device)
def reset_lora_parameters(self, adapter_name):
if adapter_name in self.lora_A.keys():
r = self.lora_A[adapter_name].weight.size(dim=0)
#print(LoraLayer.counter)
if r != 64:
# Below doesn't create identical tensor
#weight_A_64 = torch.empty((64, self.in_features), dtype=self.weight.dtype, device=self.weight.device)
#nn.init.kaiming_uniform_(weight_A_64, a=math.sqrt(5))
weight_A_64 = LoraLayer.weights_A_64[LoraLayer.keys_A_64[LoraLayer.counter]]
random_indices = torch.randperm(64)[:r]
self.lora_A[adapter_name].weight = torch.nn.parameter.Parameter(weight_A_64[random_indices])
else:
# initialize A the same way as the default for nn.Linear and B to zero
nn.init.kaiming_uniform_(self.lora_A[adapter_name].weight, a=math.sqrt(5))
nn.init.zeros_(self.lora_B[adapter_name].weight)
if adapter_name in self.lora_embedding_A.keys():
# initialize a the same way as the default for nn.linear and b to zero
nn.init.zeros_(self.lora_embedding_A[adapter_name])
nn.init.normal_(self.lora_embedding_B[adapter_name])
LoraLayer.counter += 1
class Linear(nn.Linear, LoraLayer):
# Lora implemented in a dense layer
def __init__(
self,
adapter_name: str,
in_features: int,
out_features: int,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
is_target_conv_1d_layer: bool = False,
**kwargs,
):
init_lora_weights = kwargs.pop("init_lora_weights", True)
nn.Linear.__init__(self, in_features, out_features, **kwargs)
LoraLayer.__init__(self, in_features=in_features, out_features=out_features)
# Freezing the pre-trained weight matrix
self.weight.requires_grad = False
self.fan_in_fan_out = fan_in_fan_out
if fan_in_fan_out:
self.weight.data = self.weight.data.T
nn.Linear.reset_parameters(self)
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
self.active_adapter = adapter_name
self.is_target_conv_1d_layer = is_target_conv_1d_layer
def merge(self):
if self.active_adapter not in self.lora_A.keys():
return
if self.merged:
warnings.warn("Already merged. Nothing to do.")
return
if self.r[self.active_adapter] > 0:
self.weight.data += self.get_delta_weight(self.active_adapter)
self.merged = True
def unmerge(self):
if self.active_adapter not in self.lora_A.keys():
return
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
if self.r[self.active_adapter] > 0:
self.weight.data -= self.get_delta_weight(self.active_adapter)
self.merged = False
def get_delta_weight(self, adapter):
return (
transpose(
self.lora_B[adapter].weight @ self.lora_A[adapter].weight,
self.fan_in_fan_out,
)
* self.scaling[adapter]
)
def forward(self, x: torch.Tensor):
previous_dtype = x.dtype
if self.active_adapter not in self.lora_A.keys():
return F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias)
if self.disable_adapters:
if self.r[self.active_adapter] > 0 and self.merged:
self.unmerge()
result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias)
elif self.r[self.active_adapter] > 0 and not self.merged:
result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias)
x = x.to(self.lora_A[self.active_adapter].weight.dtype)
result += (
self.lora_B[self.active_adapter](
self.lora_A[self.active_adapter](self.lora_dropout[self.active_adapter](x))
)
* self.scaling[self.active_adapter]
)
else:
result = F.linear(x, transpose(self.weight, self.fan_in_fan_out), bias=self.bias)
result = result.to(previous_dtype)
return result
class Embedding(nn.Embedding, LoraLayer):
# LoRA implemented in a Embedding layer
def __init__(
self,
adapter_name: str,
num_embeddings: int,
embedding_dim: int,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
**kwargs,
):
init_lora_weights = kwargs.pop("init_lora_weights", True)
nn.Embedding.__init__(self, num_embeddings, embedding_dim, **kwargs)
LoraLayer.__init__(self, in_features=num_embeddings, out_features=embedding_dim)
self.weight.requires_grad = False
nn.Embedding.reset_parameters(self)
self.update_layer_embedding(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
self.active_adapter = adapter_name
def unmerge(self):
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
if self.r[self.active_adapter] > 0:
self.weight.data -= self.get_delta_weight(self.active_adapter)
self.merged = False
def merge(self):
if self.merged:
warnings.warn("Already merged. Nothing to do.")
return
if self.r[self.active_adapter] > 0:
self.weight.data += self.get_delta_weight(self.active_adapter)
self.merged = True
def get_delta_weight(self, adapter):
return transpose(self.lora_embedding_B[adapter] @ self.lora_embedding_A[adapter], True) * self.scaling[adapter]
def forward(self, x: torch.Tensor):
if self.disable_adapters:
if self.r[self.active_adapter] > 0 and self.merged:
self.unmerge()
return nn.Embedding.forward(self, x)
elif self.r[self.active_adapter] > 0 and not self.merged:
result = nn.Embedding.forward(self, x)
if self.r[self.active_adapter] > 0:
after_A = F.embedding(
x,
self.lora_embedding_A[self.active_adapter].T,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
result += (after_A @ self.lora_embedding_B[self.active_adapter].T) * self.scaling[self.active_adapter]
return result
else:
return nn.Embedding.forward(self, x)
class Conv2d(nn.Conv2d, LoraLayer):
# Lora implemented in a conv2d layer
def __init__(
self,
adapter_name: str,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int]],
stride: Union[int, Tuple[int]] = 1,
padding: Union[int, Tuple[int]] = 0,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
**kwargs,
):
init_lora_weights = kwargs.pop("init_lora_weights", True)
nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, stride, padding)
LoraLayer.__init__(
self,
in_features=in_channels,
out_features=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
)
# Freezing the pre-trained weight matrix
self.weight.requires_grad = False
nn.Conv2d.reset_parameters(self)
self.update_layer_conv2d(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
self.active_adapter = adapter_name
def merge(self):
if self.active_adapter not in self.lora_A.keys():
return
if self.merged:
warnings.warn("Already merged. Nothing to do.")
return
if self.r[self.active_adapter] > 0:
self.weight.data += self.get_delta_weight(self.active_adapter)
self.merged = True
def unmerge(self):
if self.active_adapter not in self.lora_A.keys():
return
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
if self.r[self.active_adapter] > 0:
self.weight.data -= self.get_delta_weight(self.active_adapter)
self.merged = False
def get_delta_weight(self, adapter):
# https://github.com/bmaltais/kohya_ss/blob/feb6728762a8f463d15ba936d189d4c3abfaa1ab/networks/lora.py#L117
if self.weight.size()[2:4] == (1, 1):
# conv2d 1x1
return (
self.lora_B[adapter].weight.squeeze(3).squeeze(2) @ self.lora_A[adapter].weight.squeeze(3).squeeze(2)
).unsqueeze(2).unsqueeze(3) * self.scaling[adapter]
else:
# conv2d 3x3
return (
F.conv2d(
self.lora_A[adapter].weight.permute(1, 0, 2, 3),
self.lora_B[adapter].weight,
).permute(1, 0, 2, 3)
* self.scaling[adapter]
)
def forward(self, x: torch.Tensor):
previous_dtype = x.dtype
if self.active_adapter not in self.lora_A.keys():
return F.conv2d(
x,
self.weight,
bias=self.bias,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,