forked from zhangkai0425/mipnerf360
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
283 lines (245 loc) · 11.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import torch
import torch.nn as nn
from intern.utils import to8b
from intern.parameterization import t_to_s
from intern.ray import sample_along_rays,resample_along_rays,volumetric_rendering,namedtuple_map
from intern.encoding import PositionalEncoding,ViewdirectionEncoding
def _kaiming_init(model):
"""perform kaiming initialization to the model"""
for module in model.modules():
if isinstance(module,nn.Linear):
nn.init.kaiming_uniform_(module.weight)
class prop_net(nn.Module):
def __init__(self,
randomized=False,
num_samples=128,
hidden_proposal=256,
density_bias=-1,
viewdir_min_deg=0,
viewdir_max_deg=4,
device=torch.device("cuda"),
):
super().__init__()
# parameters initialize
self.randomized = randomized
self.num_samples = num_samples
self.hidden_proposal = hidden_proposal
self.density_bias = density_bias
self.viewdir_min_deg = viewdir_min_deg
self.viewdir_max_deg = viewdir_max_deg
self.device = device
# IPE module
self.positional_encoding = PositionalEncoding()
self.viewdirs_encoding = ViewdirectionEncoding(self.viewdir_min_deg,self.viewdir_max_deg)
self.input_size = 21 * 2 + (self.viewdir_max_deg-self.viewdir_min_deg) * 2 * 2 #TODO: self.input
self.density_activation = nn.Softplus()
# proposal network: depth = 4 width = 256
self.model = nn.Sequential(
nn.Linear(self.input_size,self.hidden_proposal),
nn.ReLU(True),
nn.Linear(self.hidden_proposal,self.hidden_proposal),
nn.ReLU(True),
nn.Linear(self.hidden_proposal,self.hidden_proposal),
nn.ReLU(True),
nn.Linear(self.hidden_proposal,self.hidden_proposal),
nn.Sigmoid(),
nn.Linear(self.hidden_proposal,1) # output only density
)
# initialize the model ang put the model to device
_kaiming_init(self)
self.to(device)
def density_to_weight(self,t_vals,density,dirs):
"""Transform density to weights
Arguments:
t_vals:torch.tensor(float32), [batch_size, num_samples].
density:torch.tensor(float32), density, [batch_size, num_samples, 1].
dirs:torch.tensor(float32), [batch_size, 3].
Returns:
weights:torch.tensor(float32),[batch_size,num_samples],weights along the rays.
"""
t_dists = t_vals[..., 1:] - t_vals[..., :-1]
delta = t_dists * torch.linalg.norm(dirs[..., None, :], dim=-1)
density_delta = density[..., 0] * delta
alpha = 1 - torch.exp(-density_delta)
trans = torch.exp(-torch.cat([torch.zeros_like(density_delta[..., :1]),
torch.cumsum(density_delta[..., :-1], dim=-1)], dim=-1))
weights = alpha * trans
return weights
def forward(self,rays):
# sample
t_vals, (mean, var) = sample_along_rays(origins=rays.origins,directions=rays.directions,radii=rays.radii,num_samples=self.num_samples,
near=rays.near,far=rays.far,randomized=self.randomized)
# integrated postional encoding(IPE) of samples
samples_enc = self.positional_encoding(mean,var)
viewdirs_enc = self.viewdirs_encoding(rays.viewdirs.to(self.device))
viewdirs_enc = viewdirs_enc[:,None,:].repeat(1,samples_enc.shape[1],1)
input_enc = torch.cat((samples_enc,viewdirs_enc),-1)
# predict density and return weights
raw_density = self.model(input_enc)
density = self.density_activation(raw_density + self.density_bias)
weights = self.density_to_weight(t_vals=t_vals,density=density,dirs=rays.directions.to(density.device))
return t_vals,weights
class nerf_net(nn.Module):
def __init__(self,
randomized=False,
num_samples=128,
hidden_nerf=1024,
density_bias=-1,
rgb_padding=0.001,
resample_padding=0.01,
white_bkgd=False,
viewdir_min_deg=0,
viewdir_max_deg=4,
device=torch.device("cuda"),
):
super().__init__()
# parameters initialize
self.randomized = randomized
self.num_samples = num_samples
self.hidden_nerf = hidden_nerf
self.density_bias = density_bias
self.rgb_padding = rgb_padding
self.resample_padding = resample_padding
self.white_bkgd = white_bkgd
self.viewdir_min_deg = viewdir_min_deg
self.viewdir_max_deg = viewdir_max_deg
self.device = device
# IPE module
self.positional_encoding = PositionalEncoding()
self.viewdirs_encoding = ViewdirectionEncoding(self.viewdir_min_deg,self.viewdir_max_deg)
self.input_size = 21 * 2 + (self.viewdir_max_deg-self.viewdir_min_deg) * 2 * 2
self.density_activation = nn.Softplus()
# nerf network: depth = 8 width = 1024
self.model = nn.Sequential(
nn.Linear(self.input_size,self.hidden_nerf),
nn.ReLU(True),
nn.Linear(self.hidden_nerf,self.hidden_nerf),
nn.ReLU(True),
nn.Linear(self.hidden_nerf,self.hidden_nerf),
nn.ReLU(True),
nn.Linear(self.hidden_nerf,self.hidden_nerf),
nn.ReLU(True),
nn.Linear(self.hidden_nerf,self.hidden_nerf),
nn.ReLU(True),
nn.Linear(self.hidden_nerf,self.hidden_nerf),
nn.ReLU(True),
nn.Linear(self.hidden_nerf,self.hidden_nerf),
nn.ReLU(True),
nn.Linear(self.hidden_nerf,self.hidden_nerf),
nn.Sigmoid()
)
# output the final density of nerf network
self.final_density = nn.Sequential(
nn.Linear(self.hidden_nerf,1),
nn.Sigmoid()
)
# output the final color of nerf network
self.final_color = nn.Sequential(
nn.Linear(self.hidden_nerf,3),
nn.Sigmoid()
)
# initialize the model ang put the model to device
_kaiming_init(self)
self.to(device)
def forward(self,rays,t_vals,coarse_weights):
final_rgbs = []
final_dist = []
final_accs = []
# resample
t_vals,(mean,cov) = resample_along_rays(origins=rays.origins,directions=rays.directions,radii=rays.radii,
t_vals=t_vals.to(rays.origins.device),weights=coarse_weights,randomized=self.randomized,resample_padding=self.resample_padding)
# integrated postional encoding(IPE) of samples
samples_enc = self.positional_encoding(mean=mean,cov=cov)
viewdirs_enc = self.viewdirs_encoding(rays.viewdirs.to(self.device))
viewdirs_enc = viewdirs_enc[:,None,:].repeat(1,samples_enc.shape[1],1)
input_enc = torch.cat((samples_enc,viewdirs_enc),-1)
# predict density and color
feature = self.model(input_enc)
raw_density = self.final_density(feature)
raw_rgb = self.final_color(feature)
# volumetric rendering
rgb = raw_rgb * (1 + 2 * self.rgb_padding) - self.rgb_padding
density = self.density_activation(raw_density + self.density_bias)
comp_rgb,distance,acc,weights = volumetric_rendering(rgb=rgb, density=density, t_vals=t_vals, dirs=rays.directions.to(rgb.device),white_bkgd=self.white_bkgd)
final_rgbs = comp_rgb
final_dist = distance
final_accs = acc
# save the weights and t_vals of nerf_net,used in the distillation section
self.fine_weights = weights
self.t_vals = t_vals
# save the s_vals of nerf_net,used in the regularization section
self.s_vals = t_to_s(t_vals=t_vals,near=rays.near,far=rays.far)
# return everything
# Predicted RGB values for rays, Disparity map (inverse of depth), Accumulated opacity (alpha) along a ray,Fine weights,S vals
return final_rgbs, final_dist, final_accs, self.t_vals, self.fine_weights, self.s_vals
class mipNeRF360(nn.Module):
def __init__(self,
randomized=False,
num_samples=128,
hidden_proposal=256,
hidden_nerf=1024,
density_bias=-1,
rgb_padding=0.001,
resample_padding=0.01,
white_bkgd = False,
viewdir_min_deg=0,
viewdir_max_deg=4,
device=torch.device("cuda"),
):
super().__init__()
# parameters initialize
self.randomized = randomized
self.num_samples = num_samples
self.hidden_proposal = hidden_proposal
self.hidden_nerf = hidden_nerf
self.density_bias = density_bias
self.rgb_padding = rgb_padding
self.resample_padding = resample_padding
self.white_bkgd = white_bkgd
self.viewdir_min_deg = viewdir_min_deg
self.viewdir_max_deg = viewdir_max_deg
self.device = device
self.init_randomized = randomized
# proposal network: depth = 4 width = 256
self.prop_net = prop_net(randomized=self.randomized,num_samples=self.num_samples,
hidden_proposal=self.hidden_proposal,density_bias=self.density_bias,
viewdir_min_deg=self.viewdir_min_deg,viewdir_max_deg=self.viewdir_max_deg,
device=self.device)
# nerf network: depth = 8 width = 1024
self.nerf_net = nerf_net(randomized=self.randomized,num_samples=self.num_samples,
hidden_nerf=self.hidden_nerf,density_bias=self.density_bias,rgb_padding=self.rgb_padding,
resample_padding=self.resample_padding,white_bkgd=self.white_bkgd,viewdir_min_deg=self.viewdir_min_deg,viewdir_max_deg=self.viewdir_max_deg,
device=self.device)
self.to(device)
def forward(self,rays):
"""return everything that can render an image"""
t_hat,w_hat = self.prop_net.forward(rays)
final_rgbs, final_dist, final_accs,_,_,_ = self.nerf_net.forward(rays,t_vals=t_hat,coarse_weights=w_hat)
return final_rgbs, final_dist, final_accs
def render_image(self,rays,height,width,chunks=4096):
"""return image,disparity map,accumulated opacity """
# batch_size
length = rays[0].shape[0]
rgbs = []
dists = []
accs = []
with torch.no_grad():
for i in range(0, length, chunks):
# put chunk of rays on device
chunk_rays = namedtuple_map(lambda r: r[i:i+chunks].to(self.device), rays)
rgb, distance, acc = self(chunk_rays)
print("rendering,schedule:%s / %s"%(i//chunks,length//chunks))
rgbs.append(rgb.cpu())
dists.append(distance.cpu())
accs.append(acc.cpu())
rgbs = to8b(torch.cat(rgbs, dim=0).reshape(height, width, 3).numpy())
dists = torch.cat(dists, dim=0).reshape(height, width).numpy()
accs = torch.cat(accs, dim=0).reshape(height, width).numpy()
return rgbs, dists, accs
def train(self, mode=True):
self.randomized = self.init_randomized
super().train(mode)
return self
def eval(self):
self.randomized = False
return super().eval()