-
Notifications
You must be signed in to change notification settings - Fork 41
/
inference.py
409 lines (344 loc) · 13.3 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import os
import time
import shutil
import torch
import cv2
import numpy as np
from models.anime_gan import GeneratorV1
from models.anime_gan_v2 import GeneratorV2
from models.anime_gan_v3 import GeneratorV3
from utils.common import load_checkpoint, RELEASED_WEIGHTS
from utils.image_processing import resize_image, normalize_input, denormalize_input
from utils import read_image, is_image_file, is_video_file
from tqdm import tqdm
from color_transfer import color_transfer_pytorch
try:
import matplotlib.pyplot as plt
except ImportError:
plt = None
try:
import moviepy.video.io.ffmpeg_writer as ffmpeg_writer
from moviepy.video.io.VideoFileClip import VideoFileClip
except ImportError:
ffmpeg_writer = None
VideoFileClip = None
def profile(func):
def wrap(*args, **kwargs):
started_at = time.time()
result = func(*args, **kwargs)
elapsed = time.time() - started_at
print(f"Processed in {elapsed:.3f}s")
return result
return wrap
def auto_load_weight(weight, version=None, map_location=None):
"""Auto load Generator version from weight."""
weight_name = os.path.basename(weight).lower()
if version is not None:
version = version.lower()
assert version in {"v1", "v2", "v3"}, f"Version {version} does not exist"
# If version is provided, use it.
cls = {
"v1": GeneratorV1,
"v2": GeneratorV2,
"v3": GeneratorV3
}[version]
else:
# Try to get class by name of weight file
# For convenenice, weight should start with classname
# e.g: Generatorv2_{anything}.pt
if weight_name in RELEASED_WEIGHTS:
version = RELEASED_WEIGHTS[weight_name][0]
return auto_load_weight(weight, version=version, map_location=map_location)
elif weight_name.startswith("generatorv2"):
cls = GeneratorV2
elif weight_name.startswith("generatorv3"):
cls = GeneratorV3
elif weight_name.startswith("generator"):
cls = GeneratorV1
else:
raise ValueError((f"Can not get Model from {weight_name}, "
"you might need to explicitly specify version"))
model = cls()
load_checkpoint(model, weight, strip_optimizer=True, map_location=map_location)
model.eval()
return model
class Predictor:
"""
Generic class for transfering Image to anime like image.
"""
def __init__(
self,
weight='hayao',
device='cuda',
amp=True,
retain_color=False,
imgsz=None,
):
if not torch.cuda.is_available():
device = 'cpu'
# Amp not working on cpu
amp = False
print("Use CPU device")
else:
print(f"Use GPU {torch.cuda.get_device_name()}")
self.imgsz = imgsz
self.retain_color = retain_color
self.amp = amp # Automatic Mixed Precision
self.device_type = 'cuda' if device.startswith('cuda') else 'cpu'
self.device = torch.device(device)
self.G = auto_load_weight(weight, map_location=device)
self.G.to(self.device)
def transform_and_show(
self,
image_path,
figsize=(18, 10),
save_path=None
):
image = resize_image(read_image(image_path))
anime_img = self.transform(image)
anime_img = anime_img.astype('uint8')
fig = plt.figure(figsize=figsize)
fig.add_subplot(1, 2, 1)
# plt.title("Input")
plt.imshow(image)
plt.axis('off')
fig.add_subplot(1, 2, 2)
# plt.title("Anime style")
plt.imshow(anime_img[0])
plt.axis('off')
plt.tight_layout()
plt.show()
if save_path is not None:
plt.savefig(save_path)
def transform(self, image, denorm=True):
'''
Transform a image to animation
@Arguments:
- image: np.array, shape = (Batch, width, height, channels)
@Returns:
- anime version of image: np.array
'''
with torch.no_grad():
image = self.preprocess_images(image)
# image = image.to(self.device)
# with autocast(self.device_type, enabled=self.amp):
# print(image.dtype, self.G)
fake = self.G(image)
# Transfer color of fake image look similiar color as image
if self.retain_color:
fake = color_transfer_pytorch(fake, image)
fake = (fake / 0.5) - 1.0 # remap to [-1. 1]
fake = fake.detach().cpu().numpy()
# Channel last
fake = fake.transpose(0, 2, 3, 1)
if denorm:
fake = denormalize_input(fake, dtype=np.uint8)
return fake
def read_and_resize(self, path, max_size=1536):
image = read_image(path)
_, ext = os.path.splitext(path)
h, w = image.shape[:2]
if self.imgsz is not None:
image = resize_image(image, width=self.imgsz)
elif max(h, w) > max_size:
print(f"Image {os.path.basename(path)} is too big ({h}x{w}), resize to max size {max_size}")
image = resize_image(
image,
width=max_size if w > h else None,
height=max_size if w < h else None,
)
cv2.imwrite(path.replace(ext, ".jpg"), image[:,:,::-1])
else:
image = resize_image(image)
# image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# image = np.stack([image, image, image], -1)
# cv2.imwrite(path.replace(ext, ".jpg"), image[:,:,::-1])
return image
@profile
def transform_file(self, file_path, save_path):
if not is_image_file(save_path):
raise ValueError(f"{save_path} is not valid")
image = self.read_and_resize(file_path)
anime_img = self.transform(image)[0]
cv2.imwrite(save_path, anime_img[..., ::-1])
print(f"Anime image saved to {save_path}")
@profile
def transform_gif(self, file_path, save_path, batch_size=4):
import imageio
def _preprocess_gif(img):
if img.shape[-1] == 4:
img = cv2.cvtColor(img, cv2.COLOR_RGBA2RGB)
return resize_image(img)
images = imageio.mimread(file_path)
images = np.stack([
_preprocess_gif(img)
for img in images
])
print(images.shape)
anime_gif = np.zeros_like(images)
for i in tqdm(range(0, len(images), batch_size)):
end = i + batch_size
anime_gif[i: end] = self.transform(
images[i: end]
)
if end < len(images) - 1:
# transform last frame
print("LAST", images[end: ].shape)
anime_gif[end:] = self.transform(images[end:])
print(anime_gif.shape)
imageio.mimsave(
save_path,
anime_gif,
)
print(f"Anime image saved to {save_path}")
@profile
def transform_in_dir(self, img_dir, dest_dir, max_images=0, img_size=(512, 512)):
'''
Read all images from img_dir, transform and write the result
to dest_dir
'''
os.makedirs(dest_dir, exist_ok=True)
files = os.listdir(img_dir)
files = [f for f in files if is_image_file(f)]
print(f'Found {len(files)} images in {img_dir}')
if max_images:
files = files[:max_images]
bar = tqdm(files)
for fname in bar:
path = os.path.join(img_dir, fname)
image = self.read_and_resize(path)
anime_img = self.transform(image)[0]
# anime_img = resize_image(anime_img, width=320)
ext = fname.split('.')[-1]
fname = fname.replace(f'.{ext}', '')
cv2.imwrite(os.path.join(dest_dir, f'{fname}.jpg'), anime_img[..., ::-1])
bar.set_description(f"{fname} {image.shape}")
def transform_video(self, input_path, output_path, batch_size=4, start=0, end=0):
'''
Transform a video to animation version
https://github.com/lengstrom/fast-style-transfer/blob/master/evaluate.py#L21
'''
if VideoFileClip is None:
raise ImportError("moviepy is not installed, please install with `pip install moviepy>=1.0.3`")
# Force to None
end = end or None
if not os.path.isfile(input_path):
raise FileNotFoundError(f'{input_path} does not exist')
output_dir = os.path.dirname(output_path)
if output_dir:
os.makedirs(output_dir, exist_ok=True)
is_gg_drive = '/drive/' in output_path
temp_file = ''
if is_gg_drive:
# Writing directly into google drive can be inefficient
temp_file = f'tmp_anime.{output_path.split(".")[-1]}'
def transform_and_write(frames, count, writer):
anime_images = self.transform(frames)
for i in range(0, count):
img = np.clip(anime_images[i], 0, 255)
writer.write_frame(img)
video_clip = VideoFileClip(input_path, audio=False)
if start or end:
video_clip = video_clip.subclip(start, end)
video_writer = ffmpeg_writer.FFMPEG_VideoWriter(
temp_file or output_path,
video_clip.size, video_clip.fps,
codec="libx264",
# preset="medium", bitrate="2000k",
ffmpeg_params=None)
total_frames = round(video_clip.fps * video_clip.duration)
print(f'Transfroming video {input_path}, {total_frames} frames, size: {video_clip.size}')
batch_shape = (batch_size, video_clip.size[1], video_clip.size[0], 3)
frame_count = 0
frames = np.zeros(batch_shape, dtype=np.float32)
for frame in tqdm(video_clip.iter_frames(), total=total_frames):
try:
frames[frame_count] = frame
frame_count += 1
if frame_count == batch_size:
transform_and_write(frames, frame_count, video_writer)
frame_count = 0
except Exception as e:
print(e)
break
# The last frames
if frame_count != 0:
transform_and_write(frames, frame_count, video_writer)
if temp_file:
# move to output path
shutil.move(temp_file, output_path)
print(f'Animation video saved to {output_path}')
video_writer.close()
def preprocess_images(self, images):
'''
Preprocess image for inference
@Arguments:
- images: np.ndarray
@Returns
- images: torch.tensor
'''
images = images.astype(np.float32)
# Normalize to [-1, 1]
images = normalize_input(images)
images = torch.from_numpy(images)
images = images.to(self.device)
# Add batch dim
if len(images.shape) == 3:
images = images.unsqueeze(0)
# channel first
images = images.permute(0, 3, 1, 2)
return images
def parse_args():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
'--weight',
type=str,
default="hayao:v2",
help=f'Model weight, can be path or pretrained {tuple(RELEASED_WEIGHTS.keys())}'
)
parser.add_argument('--src', type=str, help='Source, can be directory contains images, image file or video file.')
parser.add_argument('--device', type=str, default='cuda', help='Device, cuda or cpu')
parser.add_argument('--imgsz', type=int, default=None, help='Resize image to specified size if provided')
parser.add_argument('--out', type=str, default='inference_images', help='Output, can be directory or file')
parser.add_argument(
'--retain-color',
action='store_true',
help='If provided the generated image will retain original color of input image')
# Video params
parser.add_argument('--batch-size', type=int, default=4, help='Batch size when inference video')
parser.add_argument('--start', type=int, default=0, help='Start time of video (second)')
parser.add_argument('--end', type=int, default=0, help='End time of video (second), 0 if not set')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
predictor = Predictor(
args.weight,
args.device,
retain_color=args.retain_color,
imgsz=args.imgsz,
)
if not os.path.exists(args.src):
raise FileNotFoundError(args.src)
if is_video_file(args.src):
predictor.transform_video(
args.src,
args.out,
args.batch_size,
start=args.start,
end=args.end
)
elif os.path.isdir(args.src):
predictor.transform_in_dir(args.src, args.out)
elif os.path.isfile(args.src):
save_path = args.out
if not is_image_file(args.out):
os.makedirs(args.out, exist_ok=True)
save_path = os.path.join(args.out, os.path.basename(args.src))
if args.src.endswith('.gif'):
# GIF file
predictor.transform_gif(args.src, save_path, args.batch_size)
else:
predictor.transform_file(args.src, save_path)
else:
raise NotImplementedError(f"{args.src} is not supported")