forked from pannous/tensorflow-speech-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
spectro_gan.py
executable file
·108 lines (89 loc) · 3.75 KB
/
spectro_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#!/usr/bin/env python
#!/usr/local/bin/python
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import speech_data
sess = tf.InteractiveSession()
batch_size=100
width=height=64
dim=width*height
# # Create the classifier model
x2 = tf.placeholder("float", [batch_size, width, height], name='image_batch') # None~batch_size
x = tf.reshape(x2, [batch_size, dim]) # flatten
W = tf.Variable(tf.zeros([dim,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W) + b)
# # Define loss and optimizer
y_ = tf.placeholder("float", [batch_size,10],name='label_batch')
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
# GAN generative adversarial network:
# Create the generator model
y0 = y_ # share tf.placeholder("float", [10],name="seed")
Wg = tf.Variable(tf.zeros([10,dim]),name='W_generator')
xg=generated_x = tf.matmul(y0, Wg)
# Create the discriminator model
x0 = tf.Variable(tf.zeros([batch_size,dim]))
discriminate = tf.assign(x0,x) # feed real data batch
generate = tf.assign(x0,generated_x) # feed generated data batch
Wd = tf.Variable(tf.zeros([dim,1]))
bd = tf.Variable(tf.zeros([1]))
verdict = tf.sigmoid( tf.matmul(x, Wd) + bd)
# Define loss and optimizer
verdict_ = tf.placeholder("float", [batch_size], name='verdict') # is this sample artificial '0' or real '1' ?
lam=0.0000001
# lam=0.01
# discriminator_entropy = -tf.reduce_sum(verdict_ * tf.log(verdict))
discriminator_entropy = tf.reduce_mean(tf.square(verdict_-verdict))
generator_entropy = tf.reduce_mean(tf.square(x-generated_x))
# cross_entropy = tf.reduce_sum(abs(y_-y))
gan_entropy = discriminator_entropy + lam*generator_entropy
gan_step = tf.train.AdamOptimizer(learning_rate=0.04).minimize(gan_entropy) # 0.04=good #ANY VALUE WORKS!! WOW
negative=[0]*batch_size # input was fake
positive=[1]*batch_size # input was real
def check_accuracy():
# Test trained model
prediction=tf.argmax(y,1)
probability=(y) #tf.div(y,tf.reduce_sum(y,0))
correct_prediction = tf.equal(prediction, tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
batch_xs, batch_ys = next(batch)
feed_dict = {x2: batch_xs, y_: batch_ys}
best,p,a,verdict1= sess.run([prediction,probability,accuracy,verdict],feed_dict)
# print(best,a,list(map(lambda x:round(x,3),p[0])))
print("overal accuracy ",a)
batch=speech_data.spectro_batch(batch_size)
draw=0
# Train
tf.global_variables_initializer().run()
steps=30000
e=0
for i in range(steps):
batch_xs, batch_ys = next(batch)
# use x2 for matrix, x for flattened data
train_step.run({x2: batch_xs, y_: batch_ys}) # classical classifier
_, _, verdict1 = sess.run([discriminate, gan_step, verdict],
{x2: batch_xs, y_: batch_ys, verdict_: positive}) # true examples
sampled, _, loss, verdict0 = sess.run([generate, gan_step, generator_entropy, verdict],
{x2: batch_xs, y_: batch_ys, verdict_: negative}) # generated samples
e+=loss
if(i%10==0):
print("loss ",e)
e=0
if (i % 100 == 0):
# print("Fool factor 0: how often has it been fooled: %d %%"%(sum(verdict0)))
# print("Fool factor 1: how often did it identify true samples %d %%"%(sum(verdict1)))
print("identified true samples %d%% fooled: %d%%" % (sum(verdict1),sum(verdict0)))
# imgs=np.reshape(batch_xs,(batch_size,28,28))[0]
check_accuracy()
if(draw):
imgs=np.reshape(sampled,(batch_size,64,64))[0]
plt.matshow(imgs,fignum=1)
# plt.matshow(sampled,fignum=1)
plt.draw()
plt.pause(0.01)
sampled = sess.run(generated_x,{y_: [[0,0,0,3,0,0,0,0,0,0]]*batch_size}) # generated samples
imgs = np.reshape(sampled, (batch_size, 64, 64))[0]
plt.matshow(imgs, fignum=2)
plt.show()