forked from nmwalsh/HLTV-Scraper
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhelper.py
128 lines (106 loc) · 3.97 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from multiprocessing.dummy import Pool as ThreadPool
from htmls import getHTML
import csv
import sys
import numpy
def scrape(array, function, threads):
# Define the number of threads
pool = ThreadPool(threads)
# Tell the user what is happening
print("Scraping %s items using %s on %s threads." % (len(array), function, threads))
# Calls get() and adds the filesize returned each call to an array called filesizes
result = list(map(function, array))
# print("start")
# print(list(result))
# print("end")
pool.close()
pool.join()
return result
# Handle an error where data is not added to the end of the CSV file.
def addNewLine(file):
# Add a newline to the end of the file if there is not one already
with open(file, "r+") as f:
f.seek(0, 2)
if(f.read() != '\n'):
f.seek(0, 2)
f.write('\n')
def tabulate(csvFile, array):
# Files must be in the csv directory inside the project folder
# Opens the CSV file
with open("csv/%s.csv" % (csvFile), 'a', newline='' ,encoding='utf-8') as f:
writer = csv.writer(f, delimiter=',')
# Adds a new line if there is not one present
# addNewLine("csv/%s.csv" % (csvFile))
# Add the array passed in to the CSV file
for i in range(0, len(array)):
if len(array[i]) > 0:
writer.writerow(array[i])
print("Succesfully tabulated %s rows to %s.csv." % (len(array), csvFile))
return True
def getExistingData(csvFile, colNum):
# Add the values in colNum in csvFile to an array
array = []
print("Reading data from %s.csv." % (csvFile))
with open("csv/%s.csv" % (csvFile), encoding='utf-8') as csvfile:
readCSV = csv.reader(csvfile, delimiter=',')
for row in readCSV:
array.append(row[colNum])
return array
def findMax(csvFile, colNum):
# Find the maximum value in a column in an array
array = []
print("Reading data from %s.csv." % (csvFile))
with open("csv/%s.csv" % (csvFile), encoding='utf-8') as csvfile:
next(csvfile)
readCSV = csv.reader(csvfile, delimiter=',')
for row in readCSV:
array.append(int(row[colNum]))
return max(array)
def removeExistingData(existing, new):
# Remove data we already have from the list of new data to parse
for i in new[:]:
if i in existing:
new.remove(i)
# Convert new values to a set to remove duplicates, then back to a list
new = list(set(new))
print("%s new items to add." % (len(new)))
return new
def unDimension(array, item):
# Pulls specific items from an multi-dimensional array and returns them to one array
result = []
for i in range(0, len(array)):
result.append(array[i][item])
return result
def fixArray(array):
# Used to clean match info results for matches with more than one map
newArray = []
for i in array:
if len(numpy.array(i).shape) == 2:
for temp in i:
newArray.append(temp)
else:
newArray.append(i)
return newArray
def fixPlayerStats(array):
# Used to clean match info results for matches with more than one map
newArray = []
for i in range(0, len(array)):
for b in range(0, len(array[i])):
newArray.append(array[i][b])
return newArray
def getNewIterableItems(page, startID):
# Iterate through unique IDs until we get the last one, then return them to a list
print("Checking for new %ss. This may take awhile." % (page))
check = True
array = []
while check:
startID += 1
html = getHTML("https://www.hltv.org/%s/%s/a" % (page, startID))
if html is None:
check = False
else:
sys.stdout.write('\r'+"New %s found: %s" % (page, startID))
sys.stdout.flush()
array.append(startID)
print("\nFound %s new %ss." % (len(array), page))
return array