Skip to content

pulp-bio/incremental_hyser

Repository files navigation

sEMG-driven Hand Dynamics Estimation with Incremental Online Learning on a Parallel Ultra-Low-Power Microcontroller

Introduction

This repository contains the code developed for our paper M. Zanghieri et al., “sEMG-driven Hand Dynamics Estimation with Incremental Online Learning on a Parallel Ultra-Low-Power Microcontroller” [1]. The paper is an extension of our previous work M. Zanghieri et al., “Online unsupervised arm posture adaptation for sEMG-based gesture recognition on a parallel ultra-low-power microcontroller” [2] (public repo).

Usage

  1. Run experiment.py, e.g. as per the example current_experiment.sh.
  2. Run read_results.ipynb to get the results statistics.

Authors

This work was realized mainly at the Energy-Efficient Embedded Systems Laboratory (EEES Lab) of University of Bologna (Italy) by:

Citation

When using of referencing this project, please cite our work [1]:

@article{zanghieri2024semg_incremental_online_learning,
  author={Zanghieri, Marcello and Rapa, Pierangelo Maria and Orlandi, Mattia and Donati, Elisa and Benini, Luca and Benatti, Simone},
  journal={IEEE Transactions on Biomedical Circuits and Systems}, 
  title={{sEMG}-driven Hand Dynamics Estimation with Incremental Online Learning on a Parallel Ultra-Low-Power Microcontroller}, 
  year={2024},
  volume={},
  number={},
  pages={1-11},
  doi={10.1109/TBCAS.2024.3415392}}

References

[1] M. Zanghieri, P. M. Rapa, M. Orlandi, E. Donati, L. Benini, S. Benatti “sEMG-driven Hand Dynamics Estimation with Incremental Online Learning on a Parallel Ultra-Low-Power Microcontroller,” IEEE Transactions on Biomedical Circuits and Systems, DOI: 10.1109/TBCAS.2024.3415392).

[2] M. Zanghieri, M. Orlandi, E. Donati, E. Gruppioni, L. Benini, S. Benatti, “Online unsupervised arm posture adaptation for sEMG-based gesture recognition on a parallel ultra-low-power microcontroller,” in 2023 IEEE International Conference on Biomedical Circuits and Systems (BioCAS), 2023, pp. 1-5. DOI: 10.1109/BioCAS58349.2023.10388902.

License

All files are released under the LGPL-2.1 license (LGPL-2.1) (see LICENSE).