sEMG-driven Hand Dynamics Estimation with Incremental Online Learning on a Parallel Ultra-Low-Power Microcontroller
This repository contains the code developed for our paper M. Zanghieri et al., “sEMG-driven Hand Dynamics Estimation with Incremental Online Learning on a Parallel Ultra-Low-Power Microcontroller” [1]. The paper is an extension of our previous work M. Zanghieri et al., “Online unsupervised arm posture adaptation for sEMG-based gesture recognition on a parallel ultra-low-power microcontroller” [2] (public repo).
- Run
experiment.py
, e.g. as per the examplecurrent_experiment.sh
. - Run
read_results.ipynb
to get the results statistics.
This work was realized mainly at the Energy-Efficient Embedded Systems Laboratory (EEES Lab) of University of Bologna (Italy) by:
- Marcello Zanghieri - University of Bologna
- Pierangelo M. Rapa - University of Bologna
- Mattia Orlandi - University of Bologna
- Dr. Elisa Donati - Institute of Neuroinformatics (INI) of University of Zürich and ETH Zürich
- Prof. Luca Benini - University of Bologna, ETH Zürich
- Prof. Simone Benatti - University of Modena & Reggio Emilia, University of Bologna
When using of referencing this project, please cite our work [1]:
@article{zanghieri2024semg_incremental_online_learning,
author={Zanghieri, Marcello and Rapa, Pierangelo Maria and Orlandi, Mattia and Donati, Elisa and Benini, Luca and Benatti, Simone},
journal={IEEE Transactions on Biomedical Circuits and Systems},
title={{sEMG}-driven Hand Dynamics Estimation with Incremental Online Learning on a Parallel Ultra-Low-Power Microcontroller},
year={2024},
volume={},
number={},
pages={1-11},
doi={10.1109/TBCAS.2024.3415392}}
[1] M. Zanghieri, P. M. Rapa, M. Orlandi, E. Donati, L. Benini, S. Benatti “sEMG-driven Hand Dynamics Estimation with Incremental Online Learning on a Parallel Ultra-Low-Power Microcontroller,” IEEE Transactions on Biomedical Circuits and Systems, DOI: 10.1109/TBCAS.2024.3415392).
[2] M. Zanghieri, M. Orlandi, E. Donati, E. Gruppioni, L. Benini, S. Benatti, “Online unsupervised arm posture adaptation for sEMG-based gesture recognition on a parallel ultra-low-power microcontroller,” in 2023 IEEE International Conference on Biomedical Circuits and Systems (BioCAS), 2023, pp. 1-5. DOI: 10.1109/BioCAS58349.2023.10388902.
All files are released under the LGPL-2.1 license (LGPL-2.1
) (see LICENSE
).