You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
If we try and quantile a DataFrame with string entries which are not convertible, there is a ValueError. Should this behave like mean (and ignore these entries)? (taken from this StackOverflow question).
In [1]: df = DataFrame({'col1':['A','A','B','B'], 'col2':[1,2,3,4]})
In [2]: df
Out[2]:
col1 col2
0 A 1
1 A 2
2 B 3
3 B 4
In [3]: g = df.groupby('col1')
In [4]: g.mean()
Out[4]:
col2
col1
A 1.5
B 3.5
In [5]: g.quantile()
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
/home/andy/<ipython-input-70-8b0757805794> in <module>()
----> 1 g.quantile()
/usr/lib/pymodules/python2.7/pandas/core/groupby.pyc in wrapper(*args, **kwargs)
258 return self.apply(curried_with_axis)
259 except Exception:
--> 260 return self.apply(curried)
261
262 return wrapper
/usr/lib/pymodules/python2.7/pandas/core/groupby.pyc in apply(self, func, *args, **kwargs)
319 func = _intercept_function(func)
320 f = lambda g: func(g, *args, **kwargs)
--> 321 return self._python_apply_general(f)
322
323 def _python_apply_general(self, f):
/usr/lib/pymodules/python2.7/pandas/core/groupby.pyc in _python_apply_general(self, f)
322
323 def _python_apply_general(self, f):
--> 324 keys, values, mutated = self.grouper.apply(f, self.obj, self.axis)
325
326 return self._wrap_applied_output(keys, values,
/usr/lib/pymodules/python2.7/pandas/core/groupby.pyc in apply(self, f, data, axis, keep_internal)
594 # group might be modified
595 group_axes = _get_axes(group)
--> 596 res = f(group)
597 if not _is_indexed_like(res, group_axes):
598 mutated = True
/usr/lib/pymodules/python2.7/pandas/core/groupby.pyc in <lambda>(g)
318 """
319 func = _intercept_function(func)
--> 320 f = lambda g: func(g, *args, **kwargs)
321 return self._python_apply_general(f)
322
/usr/lib/pymodules/python2.7/pandas/core/groupby.pyc in curried(x)
253
254 def curried(x):
--> 255 return f(x, *args, **kwargs)
256
257 try:
/usr/lib/pymodules/python2.7/pandas/core/frame.pyc in quantile(self, q, axis)
4946 return _quantile(arr, per)
4947
-> 4948 return self.apply(f, axis=axis)
4949
4950 def clip(self, upper=None, lower=None):
/usr/lib/pymodules/python2.7/pandas/core/frame.pyc in apply(self, func, axis, broadcast, raw, args, **kwds)
4079 return self._apply_raw(f, axis)
4080 else:
-> 4081 return self._apply_standard(f, axis)
4082 else:
4083 return self._apply_broadcast(f, axis)
/usr/lib/pymodules/python2.7/pandas/core/frame.pyc in _apply_standard(self, func, axis, ignore_failures)
4154 # no k defined yet
4155 pass
-> 4156 raise e
4157
4158 if len(results) > 0 and _is_sequence(results[0]):
ValueError: ('could not convert string to float: A', u'occurred at index col1')
The text was updated successfully, but these errors were encountered:
If we try and
quantile
a DataFrame with string entries which are not convertible, there is a ValueError. Should this behave like mean (and ignore these entries)? (taken from this StackOverflow question).The text was updated successfully, but these errors were encountered: