Regression: "TypeError: Vectorized indexing is not supported" with xarray 2024.10.0 + sparse #9694
Open
5 tasks done
Labels
array API standard
Support for the Python array API standard
bug
regression
topic-arrays
related to flexible array support
What happened?
Code that worked with xarray 2024.9.0 has begun to fail with xarray 2024.10.0, even though no breaking changes were advertised.
What did you expect to happen?
The below MCVE runs with xarray 2024.9.0, giving the output below.
I'd expect it runs the same way with xarray 2024.10.0.
Minimal Complete Verifiable Example
MVCE confirmation
Relevant log output
With xarray 2024.9.0:
With xarray 2024.10.0:
Anything else we need to know?
No response
Environment
INSTALLED VERSIONS
commit: None
python: 3.12.7 (main, Oct 3 2024, 15:15:22) [GCC 14.2.0]
python-bits: 64
OS: Linux
OS-release: 6.11.0-9-generic
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_CA.UTF-8
LOCALE: ('en_CA', 'UTF-8')
libhdf5: None
libnetcdf: None
xarray: 2024.10.0
pandas: 2.2.2
numpy: 1.26.4
scipy: 1.13.1
netCDF4: None
pydap: None
h5netcdf: None
h5py: None
zarr: None
cftime: None
nc_time_axis: None
iris: None
bottleneck: 1.4.0
dask: 2024.5.1
distributed: None
matplotlib: 3.9.0
cartopy: None
seaborn: 0.13.1
numbagg: None
fsspec: 2023.12.2
cupy: None
pint: 0.24.1
sparse: 0.15.4
flox: None
numpy_groupies: None
setuptools: 69.0.3
pip: 24.2
conda: None
pytest: 8.3.3
mypy: 1.11.2
IPython: 8.17.1
sphinx: 8.1.3
The text was updated successfully, but these errors were encountered: