-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
hierarchical_sage.py
146 lines (114 loc) · 4.14 KB
/
hierarchical_sage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import torch
import torch.nn.functional as F
from tqdm import tqdm
import torch_geometric
import torch_geometric.transforms as T
from torch_geometric.datasets import OGB_MAG
from torch_geometric.loader import NeighborLoader
from torch_geometric.nn import HeteroConv, Linear, SAGEConv
from torch_geometric.utils import trim_to_layer
parser = argparse.ArgumentParser()
parser.add_argument('--use-sparse-tensor', action='store_true')
args = parser.parse_args()
if torch.cuda.is_available():
device = torch.device('cuda')
elif torch_geometric.is_xpu_available():
device = torch.device('xpu')
else:
device = torch.device('cpu')
transforms = [T.ToUndirected(merge=True)]
if args.use_sparse_tensor:
transforms.append(T.ToSparseTensor())
dataset = OGB_MAG(root='../../data', preprocess='metapath2vec',
transform=T.Compose(transforms))
data = dataset[0].to(device, 'x', 'y')
class HierarchicalHeteroGraphSage(torch.nn.Module):
def __init__(self, edge_types, hidden_channels, out_channels, num_layers):
super().__init__()
self.convs = torch.nn.ModuleList()
for _ in range(num_layers):
conv = HeteroConv(
{
edge_type: SAGEConv((-1, -1), hidden_channels)
for edge_type in edge_types
}, aggr='sum')
self.convs.append(conv)
self.lin = Linear(hidden_channels, out_channels)
def forward(self, x_dict, edge_index_dict, num_sampled_edges_dict,
num_sampled_nodes_dict):
for i, conv in enumerate(self.convs):
x_dict, edge_index_dict, _ = trim_to_layer(
layer=i,
num_sampled_nodes_per_hop=num_sampled_nodes_dict,
num_sampled_edges_per_hop=num_sampled_edges_dict,
x=x_dict,
edge_index=edge_index_dict,
)
x_dict = conv(x_dict, edge_index_dict)
x_dict = {key: x.relu() for key, x in x_dict.items()}
return self.lin(x_dict['paper'])
model = HierarchicalHeteroGraphSage(
edge_types=data.edge_types,
hidden_channels=64,
out_channels=dataset.num_classes,
num_layers=2,
).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
kwargs = {'batch_size': 1024, 'num_workers': 0}
train_loader = NeighborLoader(
data,
num_neighbors=[10] * 2,
shuffle=True,
input_nodes=('paper', data['paper'].train_mask),
**kwargs,
)
val_loader = NeighborLoader(
data,
num_neighbors=[10] * 2,
shuffle=False,
input_nodes=('paper', data['paper'].val_mask),
**kwargs,
)
def train():
model.train()
total_examples = total_loss = 0
for batch in tqdm(train_loader):
batch = batch.to(device)
optimizer.zero_grad()
out = model(
batch.x_dict,
batch.adj_t_dict
if args.use_sparse_tensor else batch.edge_index_dict,
num_sampled_nodes_dict=batch.num_sampled_nodes_dict,
num_sampled_edges_dict=batch.num_sampled_edges_dict,
)
batch_size = batch['paper'].batch_size
loss = F.cross_entropy(out[:batch_size], batch['paper'].y[:batch_size])
loss.backward()
optimizer.step()
total_examples += batch_size
total_loss += float(loss) * batch_size
return total_loss / total_examples
@torch.no_grad()
def test(loader):
model.eval()
total_examples = total_correct = 0
for batch in tqdm(loader):
batch = batch.to(device)
out = model(
batch.x_dict,
batch.adj_t_dict
if args.use_sparse_tensor else batch.edge_index_dict,
num_sampled_nodes_dict=batch.num_sampled_nodes_dict,
num_sampled_edges_dict=batch.num_sampled_edges_dict,
)
batch_size = batch['paper'].batch_size
pred = out[:batch_size].argmax(dim=-1)
total_examples += batch_size
total_correct += int((pred == batch['paper'].y[:batch_size]).sum())
return total_correct / total_examples
for epoch in range(1, 6):
loss = train()
val_acc = test(val_loader)
print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}, Val: {val_acc:.4f}')