-
Notifications
You must be signed in to change notification settings - Fork 486
/
cmsis_pack.py
726 lines (607 loc) · 30.5 KB
/
cmsis_pack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
# -*- coding: utf-8 -*-
# pyOCD debugger
# Copyright (c) 2019-2020 Arm Limited
# Copyright (c) 2020 Men Shiyun
# Copyright (c) 2020 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
# Copyright (c) 2021 Chris Reed
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from xml.etree.ElementTree import (ElementTree, Element)
import zipfile
import logging
import io
from typing import (Any, Callable, Dict, List, IO, Iterator, Optional, Tuple, TypeVar, Union)
from .flash_algo import PackFlashAlgo
from ...core import exceptions
from ...core.target import Target
from ...core.memory_map import (MemoryMap, MemoryRegion, MemoryType, MEMORY_TYPE_CLASS_MAP, FlashRegion, RamRegion)
LOG = logging.getLogger(__name__)
class MalformedCmsisPackError(exceptions.TargetSupportError):
"""@brief Exception raised for errors parsing a CMSIS-Pack."""
pass
class _DeviceInfo:
"""@brief Simple container class to hold XML elements describing a device."""
def __init__(self, element: Element, **kwargs):
self.element: Element = element
self.families: List[str] = kwargs.get('families', [])
self.memories: List[Element] = kwargs.get('memories', [])
self.algos: List[Element] = kwargs.get('algos', [])
self.debugs: List[Element] = kwargs.get('debugs', [])
def _get_part_number_from_element(element: Element) -> str:
"""@brief Extract the part number from a device or variant XML element."""
assert element.tag in ("device", "variant")
# Both device and variant may have 'Dname' according to the latest spec.
if 'Dname' in element.attrib:
return element.attrib['Dname']
elif element.tag == "variant":
return element.attrib['Dvariant']
else:
raise ValueError("element is neither device nor variant")
class CmsisPack:
"""@brief Wraps a CMSIS Device Family Pack.
This class provides a top-level interface for extracting device information from CMSIS-Packs.
After an instance is constructed, a list of the devices described within the pack is available
from the `devices` property. Each item in the list is a CmsisPackDevice object.
The XML element hierarchy that defines devices is as follows.
```
family [-> subFamily] -> device [-> variant]
```
Internally, this class is responsible for collecting the device-related XML elements from each
of the levels of the hierarchy described above. It determines which elements belong to each
defined device and passes those to CmsisPackDevice. It is then CmsisPackDevice that performs
the parsing of each element type into pyOCD-compatible data.
"""
def __init__(self, file_or_path: Union[str, zipfile.ZipFile, IO[bytes]]) -> None:
"""@brief Constructor.
Opens the CMSIS-Pack and builds instances of CmsisPackDevice for all the devices
and variants defined within the pack.
@param self
@param file_or_path The .pack file to open. May be a string that is the path to the pack,
or may be a ZipFile, or a file-like object that is already opened.
@exception MalformedCmsisPackError The pack is not a zip file, or the .pdsc file is missing
from within the pack.
"""
if isinstance(file_or_path, zipfile.ZipFile):
self._pack_file = file_or_path
else:
try:
self._pack_file = zipfile.ZipFile(file_or_path, 'r')
except zipfile.BadZipFile as err:
raise MalformedCmsisPackError(f"Failed to open CMSIS-Pack '{file_or_path}': {err}") from err
# Find the .pdsc file.
for name in self._pack_file.namelist():
if name.endswith('.pdsc'):
self._pdscName = name
break
else:
raise MalformedCmsisPackError(f"CMSIS-Pack '{file_or_path}' is missing a .pdsc file")
with self._pack_file.open(self._pdscName) as pdscFile:
self._pdsc = CmsisPackDescription(self, pdscFile)
@property
def filename(self) -> Optional[str]:
"""@brief Accessor for the filename or path of the .pack file."""
return self._pack_file.filename
@property
def pdsc(self) -> "CmsisPackDescription":
"""@brief Accessor for the CmsisPackDescription instance for the pack's PDSC file."""
return self._pdsc
@property
def devices(self) -> List["CmsisPackDevice"]:
"""@brief A list of CmsisPackDevice objects for every part number defined in the pack."""
return self._pdsc.devices
def get_file(self, filename) -> IO[bytes]:
"""@brief Return file-like object for a file within the pack.
@param self
@param filename Relative path within the pack. May use forward or back slashes.
@return A BytesIO object is returned that contains all of the data from the file
in the pack. This is done to isolate the returned file from how the pack was
opened (due to particularities of the ZipFile implementation).
"""
filename = filename.replace('\\', '/')
return io.BytesIO(self._pack_file.read(filename))
class CmsisPackDescription:
"""@brief Parser for the PDSC XML file describing a CMSIS-Pack.
"""
def __init__(self, pack: CmsisPack, pdsc_file: IO) -> None:
"""@brief Constructor.
@param self This object.
@param pack Reference to the CmsisPack instance.
@param pdsc_file A file-like object for the .pdsc contained in _pack_.
"""
self._pack = pack
# Convert PDSC into an ElementTree.
self._pdsc = ElementTree(file=pdsc_file)
self._state_stack: List[_DeviceInfo] = []
self._devices: List["CmsisPackDevice"] = []
# Remember if we have already warned about overlapping memory regions
# so we can limit these to one warning per DFP
self._warned_overlapping_memory_regions = False
# Extract devices.
for family in self._pdsc.iter('family'):
self._parse_devices(family)
@property
def pack(self) -> CmsisPack:
"""@brief Reference to the containing CmsisPack object."""
return self._pack
@property
def devices(self) -> List["CmsisPackDevice"]:
"""@brief A list of CmsisPackDevice objects for every part number defined in the pack."""
return self._devices
def _parse_devices(self, parent: Element) -> None:
# Extract device description elements we care about.
newState = _DeviceInfo(element=parent)
children: List[Element] = []
for elem in parent:
if elem.tag == 'memory':
newState.memories.append(elem)
elif elem.tag == 'algorithm':
newState.algos.append(elem)
elif elem.tag == 'debug':
newState.debugs.append(elem)
# Save any elements that we will recurse into.
elif elem.tag in ('subFamily', 'device', 'variant'):
children.append(elem)
# Push the new device description state onto the stack.
self._state_stack.append(newState)
# Create a device object if this element defines one.
if parent.tag in ('device', 'variant'):
# Build device info from elements applying to this device.
deviceInfo = _DeviceInfo(element=parent,
families=self._extract_families(),
memories=self._extract_memories(),
algos=self._extract_algos(),
debugs=self._extract_debugs()
)
dev = CmsisPackDevice(self.pack, deviceInfo)
self._devices.append(dev)
# Recursively process subelements.
for elem in children:
self._parse_devices(elem)
self._state_stack.pop()
def _extract_families(self) -> List[str]:
"""@brief Generate list of family names for a device."""
families = []
for state in self._state_stack:
elem = state.element
if elem.tag == 'family':
families += [elem.attrib['Dvendor'], elem.attrib['Dfamily']]
elif elem.tag == 'subFamily':
families += [elem.attrib['DsubFamily']]
return families
## Typevar used for _extract_items().
V = TypeVar('V')
def _extract_items(self, state_info_name: str, filter: Callable[[Dict[Any, V], Element], None]) -> List[V]:
"""@brief Generic extractor utility.
Iterates over saved elements for the specified device state info for each level of the
device state stack, from outer to inner, calling the provided filter callback each
iteration. A dictionary object is created and repeatedly passed to the filter callback, so
state can be stored across calls to the filter.
The general idea is that the filter callback extracts some identifying information from the
element it is given and uses that as a key in the dictionary. When the filter is called for
more deeply nested elements, those elements will override the any previously examined
elements with the same identifier.
@return All values from the dictionary.
"""
map = {}
for state in self._state_stack:
for elem in getattr(state, state_info_name):
try:
filter(map, elem)
except (KeyError, ValueError) as err:
LOG.debug("error parsing CMSIS-Pack: " + str(err))
return list(map.values())
def _extract_memories(self) -> List[Element]:
"""@brief Extract memory elements.
The unique identifier is a bi-tuple of the memory's name, which is either the 'name' or 'id' attribute,
in that order, plus the pname. If neither attribute exists, the region base and size are turned into
a string.
In addition to the name based filtering, memory regions are checked to prevent overlaps.
"""
def get_start_and_size(elem: Element) -> Tuple[int, int]:
try:
start = int(elem.attrib['start'], base=0)
size = int(elem.attrib['size'], base=0)
except (KeyError, ValueError):
LOG.warning("memory region missing address")
raise
return (start, size)
def filter(map: Dict, elem: Element) -> None:
# Inner memory regions are allowed to override outer memory
# regions. If this is not done properly via name/id, we must make
# sure not to report overlapping memory regions to gdb since it
# will ignore those completely, see:
# https://github.com/pyocd/pyOCD/issues/980
start, size = get_start_and_size(elem)
if 'name' in elem.attrib: # 'name' takes precedence over 'id'.
name = elem.attrib['name']
elif 'id' in elem.attrib:
name = elem.attrib['id']
else:
# Neither option for memory name was specified, so use the address range.
# Use the start and size for a name.
name = "%08x:%08x" % (start, size)
pname = elem.attrib.get('Pname', None)
info = (name, pname)
if info in map:
del map[info]
for k in list(map.keys()):
prev_pname = k[1]
# Previously, we would not check for overlaps if the pname was different. But because pyocd
# currently only supports one memory map for the whole device, we have to ignore the pname for
# now.
prev_elem = map[k]
prev_start, prev_size = get_start_and_size(prev_elem)
# Overlap: start or end between previous start and previous end
end = start + size - 1
prev_end = prev_start + prev_size - 1
if (prev_start <= start < prev_end) or (prev_start <= end < prev_end):
# Only report warnings for overlapping regions from the same processor. Allow regions for different
# processors to override each other, since we don't yet support maps for each processor.
if (pname == prev_pname) and not self._warned_overlapping_memory_regions:
filename = self.pack.filename if self.pack else "unknown"
LOG.warning("Overlapping memory regions in file %s (%s); deleting outer region. "
"Further warnings will be suppressed for this file.",
filename, _get_part_number_from_element(self._state_stack[-1].element))
self._warned_overlapping_memory_regions = True
del map[k]
map[info] = elem
return self._extract_items('memories', filter)
def _extract_algos(self) -> List[Element]:
"""@brief Extract algorithm elements.
The unique identifier is the algorithm's memory address range.
Any algorithm elements with a 'style' attribuet not set to 'Keil' (case-insensitive) are
skipped.
"""
def filter(map: Dict, elem: Element) -> None:
# We only support Keil FLM style flash algorithms (for now).
if ('style' in elem.attrib) and (elem.attrib['style'].lower() != 'keil'):
LOG.debug("skipping non-Keil flash algorithm")
return
# Both start and size are required.
start = int(elem.attrib['start'], base=0)
size = int(elem.attrib['size'], base=0)
memrange = (start, size)
# An algo with the same range as an existing algo will override the previous.
map[memrange] = elem
return self._extract_items('algos', filter)
def _extract_debugs(self) -> List[Element]:
"""@brief Extract debug elements.
If the debug element does not have a 'Pname' element, its identifier is set to "*" to
represent that it applies to all processors.
Otherwise, the identifier is the element's 'Pname' attribute combined with 'Punit' if
present. When 'Pname' is detected and a "*" key is in the map, the map is cleared before
adding the current element.
"""
def filter(map: Dict, elem: Element) -> None:
if 'Pname' in elem.attrib:
name = elem.attrib['Pname']
unit = elem.attrib.get('Punit', 0)
name += str(unit)
if '*' in map:
map.clear()
map[name] = elem
else:
# No processor name was provided, so this debug element applies to
# all processors.
map.clear()
map['*'] = elem
return self._extract_items('debugs', filter)
def _get_bool_attribute(elem: Element, name: str, default: bool = False) -> bool:
"""@brief Extract an XML attribute with a boolean value.
Supports "true"/"false" or "1"/"0" as the attribute values. Leading and trailing whitespace
is stripped, and the comparison is case-insensitive.
@param elem ElementTree.Element object.
@param name String for the attribute name.
@param default An optional default value if the attribute is missing. If not provided,
the default is False.
"""
if name not in elem.attrib:
return default
else:
value = elem.attrib[name].strip().lower()
if value in ("true", "1"):
return True
elif value in ("false", "0"):
return False
else:
return default
class CmsisPackDevice:
"""@brief Wraps a device defined in a CMSIS Device Family Pack.
Responsible for converting the XML elements that describe the device into objects
usable by pyOCD. This includes the memory map and flash algorithms.
An instance of this class can represent either a `<device>` or `<variant>` XML element from
the PDSC.
"""
def __init__(self, pack: CmsisPack, device_info: _DeviceInfo):
"""@brief Constructor.
@param self
@param pack The CmsisPack object that contains this device.
@param device_info A _DeviceInfo object with the XML elements that describe this device.
"""
self._pack: CmsisPack = pack
self._info: _DeviceInfo = device_info
self._part: str = _get_part_number_from_element(device_info.element)
self._regions: List[MemoryRegion] = []
self._saw_startup: bool = False
self._default_ram: Optional[MemoryRegion] = None
self._memory_map: Optional[MemoryMap] = None
def _build_memory_regions(self) -> None:
"""@brief Creates memory region instances for the device.
For each `<memory>` element in the device info, a memory region object is created and
added to the `_regions` attribute. IROM or non-writable memories are created as RomRegions
by this method. They will be converted to FlashRegions by _build_flash_regions().
"""
for elem in self._info.memories:
try:
# Get the region name, type, and access permissions.
if 'name' in elem.attrib:
name = elem.attrib['name']
access = elem.attrib['access']
if ('p' in access):
type = MemoryType.DEVICE
elif ('w' in access):
type = MemoryType.RAM
else:
type = MemoryType.ROM
elif 'id' in elem.attrib:
name = elem.attrib['id']
if 'RAM' in name:
access = 'rwx'
type = MemoryType.RAM
else:
access = 'rx'
type = MemoryType.ROM
else:
continue
# Both start and size are required attributes.
start = int(elem.attrib['start'], base=0)
size = int(elem.attrib['size'], base=0)
isDefault = _get_bool_attribute(elem, 'default')
isStartup = _get_bool_attribute(elem, 'startup')
if isStartup:
self._saw_startup = True
attrs = {
'name': name,
'start': start,
'length': size,
'access': access,
'is_default': isDefault,
'is_boot_memory': isStartup,
'is_testable': isDefault,
'alias': elem.attrib.get('alias', None),
}
# Create the memory region and add to map.
region = MEMORY_TYPE_CLASS_MAP[type](**attrs)
self._regions.append(region)
# Record the first default ram for use in flash algos.
if self._default_ram is None and type == MemoryType.RAM and isDefault:
self._default_ram = region
except (KeyError, ValueError) as err:
# Ignore errors.
LOG.debug("ignoring error parsing memories for CMSIS-Pack devices %s: %s",
self.part_number, str(err))
def _get_containing_region(self, addr: int) -> Optional[MemoryRegion]:
"""@brief Return the memory region containing the given address."""
for region in self._regions:
if region.contains_address(addr):
return region
return None
def _build_flash_regions(self) -> None:
"""@brief Converts ROM memory regions to flash regions.
Each ROM region in the `_regions` attribute is converted to a flash region if a matching
flash algo can be found. If the flash has multiple sector sizes, then separate flash
regions will be created for each sector size range. The flash algo is converted to a
pyOCD-compatible flash algo dict by calling _get_pyocd_flash_algo().
"""
# Must have a default ram.
if self._default_ram is None:
LOG.warning("CMSIS-Pack device %s has no default RAM defined, cannot program flash" % self.part_number)
return
# Can't import at top level due to import loops.
from ...core.session import Session
regions_to_delete = [] # List of regions to delete.
regions_to_add = [] # List of FlashRegion objects to add.
# Create flash algo dicts once we have the full memory map.
for i, region in enumerate(self._regions):
# We're only interested in ROM regions here.
if region.type != MemoryType.ROM:
continue
# Look for matching flash algo.
try:
algo_element = self._find_matching_algo(region)
except KeyError:
# Must be a mask ROM or non-programmable flash.
continue
# Load flash algo from .FLM file.
packAlgo = self._load_flash_algo(algo_element.attrib['name'])
if packAlgo is None:
LOG.warning("Failed to convert ROM region to flash region because flash algorithm '%s' could not be "
" found (%s)", algo_element.attrib['name'], self.part_number)
continue
# The ROM region will be replaced with one or more flash regions.
regions_to_delete.append(region)
# Log details of this flash algo if the debug option is enabled.
current_session = Session.get_current()
if current_session and current_session.options.get("debug.log_flm_info"):
LOG.debug("Flash algo info: %s", packAlgo.flash_info)
# Choose the page size. The check for <=32 is to handle some flash algos with incorrect
# page sizes that are too small and probably represent the phrase size.
page_size = packAlgo.page_size
if page_size <= 32:
page_size = min(s[1] for s in packAlgo.sector_sizes)
# Select the RAM to use for the algo.
try:
# See if an explicit RAM range was specified for the algo.
ram_start = int(algo_element.attrib['RAMstart'], base=0)
# The region size comes either from the RAMsize attribute, the containing region's bounds, or
# a large, arbitrary value.
if 'RAMsize' in algo_element.attrib:
ram_size = int(algo_element.attrib['RAMsize'], base=0)
else:
containing_region = self._get_containing_region(ram_start)
if containing_region is not None:
ram_size = containing_region.length - (ram_start - containing_region.start)
else:
# No size specified, and the RAMstart attribute is outside of a known region,
# so just use a relatively large arbitrary size. Because the algo is packed at the
# start of the provided region, this won't be a problem unless the DFP is
# actually erroneous.
ram_size = 128 * 1024
ram_for_algo = RamRegion(start=ram_start, length=ram_size)
except KeyError:
# No RAM addresses were given, so go with the RAM marked default.
ram_for_algo = self._default_ram
# Construct the pyOCD algo using the largest sector size. We can share the same
# algo for all sector sizes.
algo = packAlgo.get_pyocd_flash_algo(page_size, ram_for_algo)
# Create a separate flash region for each sector size range.
regions_to_add += list(self._split_flash_region_by_sector_size(
region, page_size, algo, packAlgo)) # type: ignore
# Now update the regions list.
for region in regions_to_delete:
self._regions.remove(region)
for region in regions_to_add:
self._regions.append(region)
def _split_flash_region_by_sector_size(self,
region: MemoryRegion,
page_size: int,
algo: Dict[str, Any],
pack_algo: PackFlashAlgo) -> Iterator[FlashRegion]:
"""@brief Yield separate flash regions for each sector size range."""
# The sector_sizes attribute is a list of bi-tuples of (start-address, sector-size), sorted by start address.
for j, (offset, sector_size) in enumerate(pack_algo.sector_sizes):
start = region.start + offset
# Determine the end address of the this sector range. For the last range, the end
# is just the end of the entire region. Otherwise it's the start of the next
# range - 1.
if j + 1 >= len(pack_algo.sector_sizes):
end = region.end
else:
end = region.start + pack_algo.sector_sizes[j + 1][0] - 1
# Skip wrong start and end addresses
if end < start:
continue
# Limit page size.
if page_size > sector_size:
region_page_size = sector_size
LOG.warning("Page size (%d) is larger than sector size (%d) for flash region %s; "
"reducing page size to %d", page_size, sector_size, region.name,
region_page_size)
else:
region_page_size = page_size
# If we don't have a boot memory yet, pick the first flash.
if not self._saw_startup:
is_boot = True
self._saw_startup = True
else:
is_boot = region.is_boot_memory
# Construct region name. If there is more than one sector size, we need to make the region's name unique.
region_name = region.name
if len(pack_algo.sector_sizes) > 1:
region_name += f"_{sector_size:#x}"
# Construct the flash region.
yield FlashRegion(name=region_name,
access=region.access,
start=start,
end=end,
sector_size=sector_size,
page_size=region_page_size,
flm=pack_algo,
algo=algo,
erased_byte_value=pack_algo.flash_info.value_empty,
is_default=region.is_default,
is_boot_memory=is_boot,
is_testable=region.is_testable,
alias=region.alias)
def _find_matching_algo(self, region: MemoryRegion) -> Element:
"""@brief Searches for a flash algo covering the regions's address range.'"""
for algo in self._info.algos:
# Both start and size are required attributes.
algoStart = int(algo.attrib['start'], base=0)
algoSize = int(algo.attrib['size'], base=0)
algoEnd = algoStart + algoSize - 1
# Check if the region indicated by start..size fits within the algo.
if (algoStart <= region.start <= algoEnd) and (algoStart <= region.end <= algoEnd):
return algo
raise KeyError("no matching flash algorithm")
def _load_flash_algo(self, filename: str) -> Optional[PackFlashAlgo]:
"""@brief Return the PackFlashAlgo instance for the given flash algo filename."""
if self.pack is not None:
try:
algo_data = self.pack.get_file(filename)
return PackFlashAlgo(algo_data)
except FileNotFoundError:
pass
# Return default value.
return None
@property
def pack(self) -> CmsisPack:
"""@brief The CmsisPack object that defines this device."""
return self._pack
@property
def part_number(self) -> str:
"""@brief Part number for this device.
This value comes from either the `Dname` or `Dvariant` attribute, depending on whether the
device was created from a `<device>` or `<variant>` element.
"""
return self._part
@property
def vendor(self) -> str:
"""@brief Vendor or manufacturer name."""
return self._info.families[0].split(':')[0]
@property
def families(self) -> List[str]:
"""@brief List of families the device belongs to, ordered most generic to least."""
return [f for f in self._info.families[1:]]
@property
def memory_map(self) -> MemoryMap:
"""@brief MemoryMap object."""
# Lazily construct the memory map.
if self._memory_map is None:
self._build_memory_regions()
self._build_flash_regions()
# Warn if there was no boot memory.
if not self._saw_startup:
LOG.warning("CMSIS-Pack device %s has no identifiable boot memory", self.part_number)
self._memory_map = MemoryMap(self._regions)
return self._memory_map
@property
def svd(self) -> Optional[IO[bytes]]:
"""@brief File-like object for the device's SVD file.
@todo Support multiple cores.
"""
try:
svdPath = self._info.debugs[0].attrib['svd']
return self._pack.get_file(svdPath)
except (KeyError, IndexError):
return None
@property
def default_reset_type(self) -> Target.ResetType:
"""@brief One of the Target.ResetType enums.
@todo Support multiple cores.
"""
try:
resetSequence = self._info.debugs[0].attrib['defaultResetSequence']
if resetSequence == 'ResetHardware':
return Target.ResetType.HW
elif resetSequence == 'ResetSystem':
return Target.ResetType.SW_SYSRESETREQ
elif resetSequence == 'ResetProcessor':
return Target.ResetType.SW_VECTRESET
else:
return Target.ResetType.SW
except (KeyError, IndexError):
return Target.ResetType.SW
def __repr__(self):
return "<%s@%x %s>" % (self.__class__.__name__, id(self), self.part_number)