diff --git a/notebooks/facloc-lscpb-real-world.ipynb b/notebooks/facloc-lscpb-real-world.ipynb
new file mode 100644
index 00000000..e9ff42b2
--- /dev/null
+++ b/notebooks/facloc-lscpb-real-world.ipynb
@@ -0,0 +1,1367 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Real World Facility Backup Coverage Location Problem\n",
+ "\n",
+ "*Authors:* [Erin Olson](https://github.com/erinrolson), [Germano Barcelos](https://github.com/gegen07), [James Gaboardi](https://github.com/jGaboardi), [Levi J. Wolf](https://github.com/ljwolf), [Qunshan Zhao](https://github.com/qszhao)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 174,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import geopandas\n",
+ "import pandas\n",
+ "import pulp\n",
+ "from shapely.geometry import Point\n",
+ "import matplotlib.pyplot as plt\n",
+ "import time"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The problem is composed by 4 datafiles\n",
+ "- network distances were calculated using the ArcGIS Network Analyst Extension and contains the calculated distance between facility candidate sites to each demand node\n",
+ "- demand_points represents the demand nodes with important features for facility location modeling such as population metrics\n",
+ "- facility_points represents the stores that are candidate facility sites\n",
+ "- tract is the polygon of census tract 205.\n",
+ "\n",
+ "All datasets are available online in this [repository](https://github.com/huanfachen/Open_source_location_cover_models/tree/master/Data/San_Francisco_store)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 175,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "DIRPATH = \"../spopt/tests/data/\"\n",
+ "\n",
+ "network_distance = pandas.read_csv(DIRPATH+\"SF_network_distance_candidateStore_16_censusTract_205_new.csv\")\n",
+ "demand_points = pandas.read_csv(DIRPATH+ \"SF_demand_205_centroid_uniform_weight.csv\", index_col=0)\n",
+ "facility_points = pandas.read_csv(DIRPATH + \"SF_store_site_16_longlat.csv\", index_col=0)\n",
+ "study_area = geopandas.read_file(DIRPATH + \"ServiceAreas_4.shp\").dissolve()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Display network_distance dataframe"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 176,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " distance | \n",
+ " name | \n",
+ " DestinationName | \n",
+ " demand | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 671.573346 | \n",
+ " Store_1 | \n",
+ " 60750479.01 | \n",
+ " 6540 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1333.708063 | \n",
+ " Store_1 | \n",
+ " 60750479.02 | \n",
+ " 3539 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 1656.188884 | \n",
+ " Store_1 | \n",
+ " 60750352.02 | \n",
+ " 4436 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 1783.006047 | \n",
+ " Store_1 | \n",
+ " 60750602.00 | \n",
+ " 231 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 1790.950612 | \n",
+ " Store_1 | \n",
+ " 60750478.00 | \n",
+ " 7787 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 3275 | \n",
+ " 19643.307257 | \n",
+ " Store_19 | \n",
+ " 60816023.00 | \n",
+ " 3204 | \n",
+ "
\n",
+ " \n",
+ " 3276 | \n",
+ " 20245.369594 | \n",
+ " Store_19 | \n",
+ " 60816029.00 | \n",
+ " 4135 | \n",
+ "
\n",
+ " \n",
+ " 3277 | \n",
+ " 20290.986235 | \n",
+ " Store_19 | \n",
+ " 60816026.00 | \n",
+ " 7887 | \n",
+ "
\n",
+ " \n",
+ " 3278 | \n",
+ " 20875.680521 | \n",
+ " Store_19 | \n",
+ " 60816025.00 | \n",
+ " 5146 | \n",
+ "
\n",
+ " \n",
+ " 3279 | \n",
+ " 20958.530406 | \n",
+ " Store_19 | \n",
+ " 60816024.00 | \n",
+ " 6511 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
3280 rows × 4 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " distance name DestinationName demand\n",
+ "0 671.573346 Store_1 60750479.01 6540\n",
+ "1 1333.708063 Store_1 60750479.02 3539\n",
+ "2 1656.188884 Store_1 60750352.02 4436\n",
+ "3 1783.006047 Store_1 60750602.00 231\n",
+ "4 1790.950612 Store_1 60750478.00 7787\n",
+ "... ... ... ... ...\n",
+ "3275 19643.307257 Store_19 60816023.00 3204\n",
+ "3276 20245.369594 Store_19 60816029.00 4135\n",
+ "3277 20290.986235 Store_19 60816026.00 7887\n",
+ "3278 20875.680521 Store_19 60816025.00 5146\n",
+ "3279 20958.530406 Store_19 60816024.00 6511\n",
+ "\n",
+ "[3280 rows x 4 columns]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "display(network_distance)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Display demand points dataframe"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 177,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " OBJECTID | \n",
+ " ID | \n",
+ " NAME | \n",
+ " STATE_NAME | \n",
+ " AREA | \n",
+ " POP2000 | \n",
+ " HOUSEHOLDS | \n",
+ " HSE_UNITS | \n",
+ " BUS_COUNT | \n",
+ " long | \n",
+ " lat | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 6081602900 | \n",
+ " 60816029.00 | \n",
+ " California | \n",
+ " 0.48627 | \n",
+ " 4135 | \n",
+ " 1679 | \n",
+ " 1715 | \n",
+ " 112 | \n",
+ " -122.488653 | \n",
+ " 37.650807 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2 | \n",
+ " 6081602800 | \n",
+ " 60816028.00 | \n",
+ " California | \n",
+ " 0.47478 | \n",
+ " 4831 | \n",
+ " 1484 | \n",
+ " 1506 | \n",
+ " 59 | \n",
+ " -122.483550 | \n",
+ " 37.659998 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 3 | \n",
+ " 6081601700 | \n",
+ " 60816017.00 | \n",
+ " California | \n",
+ " 0.46393 | \n",
+ " 4155 | \n",
+ " 1294 | \n",
+ " 1313 | \n",
+ " 55 | \n",
+ " -122.456484 | \n",
+ " 37.663272 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4 | \n",
+ " 6081601900 | \n",
+ " 60816019.00 | \n",
+ " California | \n",
+ " 0.81907 | \n",
+ " 9041 | \n",
+ " 3273 | \n",
+ " 3330 | \n",
+ " 118 | \n",
+ " -122.434247 | \n",
+ " 37.662385 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 5 | \n",
+ " 6081602500 | \n",
+ " 60816025.00 | \n",
+ " California | \n",
+ " 0.46603 | \n",
+ " 5146 | \n",
+ " 1459 | \n",
+ " 1467 | \n",
+ " 44 | \n",
+ " -122.451187 | \n",
+ " 37.640219 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 201 | \n",
+ " 204 | \n",
+ " 6075011100 | \n",
+ " 60750111.00 | \n",
+ " California | \n",
+ " 0.09466 | \n",
+ " 5559 | \n",
+ " 2930 | \n",
+ " 3037 | \n",
+ " 362 | \n",
+ " -122.418479 | \n",
+ " 37.791082 | \n",
+ "
\n",
+ " \n",
+ " 202 | \n",
+ " 205 | \n",
+ " 6075012200 | \n",
+ " 60750122.00 | \n",
+ " California | \n",
+ " 0.07211 | \n",
+ " 7035 | \n",
+ " 3862 | \n",
+ " 4074 | \n",
+ " 272 | \n",
+ " -122.417237 | \n",
+ " 37.785728 | \n",
+ "
\n",
+ " \n",
+ " 203 | \n",
+ " 206 | \n",
+ " 6075017601 | \n",
+ " 60750176.01 | \n",
+ " California | \n",
+ " 0.24306 | \n",
+ " 5756 | \n",
+ " 2437 | \n",
+ " 2556 | \n",
+ " 943 | \n",
+ " -122.410115 | \n",
+ " 37.779459 | \n",
+ "
\n",
+ " \n",
+ " 204 | \n",
+ " 207 | \n",
+ " 6075017800 | \n",
+ " 60750178.00 | \n",
+ " California | \n",
+ " 0.27882 | \n",
+ " 5829 | \n",
+ " 3115 | \n",
+ " 3231 | \n",
+ " 807 | \n",
+ " -122.405411 | \n",
+ " 37.778934 | \n",
+ "
\n",
+ " \n",
+ " 205 | \n",
+ " 208 | \n",
+ " 6075012400 | \n",
+ " 60750124.00 | \n",
+ " California | \n",
+ " 0.17496 | \n",
+ " 8188 | \n",
+ " 4328 | \n",
+ " 4609 | \n",
+ " 549 | \n",
+ " -122.416455 | \n",
+ " 37.782289 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
205 rows × 11 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " OBJECTID ID NAME STATE_NAME AREA POP2000 \\\n",
+ "1 1 6081602900 60816029.00 California 0.48627 4135 \n",
+ "2 2 6081602800 60816028.00 California 0.47478 4831 \n",
+ "3 3 6081601700 60816017.00 California 0.46393 4155 \n",
+ "4 4 6081601900 60816019.00 California 0.81907 9041 \n",
+ "5 5 6081602500 60816025.00 California 0.46603 5146 \n",
+ ".. ... ... ... ... ... ... \n",
+ "201 204 6075011100 60750111.00 California 0.09466 5559 \n",
+ "202 205 6075012200 60750122.00 California 0.07211 7035 \n",
+ "203 206 6075017601 60750176.01 California 0.24306 5756 \n",
+ "204 207 6075017800 60750178.00 California 0.27882 5829 \n",
+ "205 208 6075012400 60750124.00 California 0.17496 8188 \n",
+ "\n",
+ " HOUSEHOLDS HSE_UNITS BUS_COUNT long lat \n",
+ "1 1679 1715 112 -122.488653 37.650807 \n",
+ "2 1484 1506 59 -122.483550 37.659998 \n",
+ "3 1294 1313 55 -122.456484 37.663272 \n",
+ "4 3273 3330 118 -122.434247 37.662385 \n",
+ "5 1459 1467 44 -122.451187 37.640219 \n",
+ ".. ... ... ... ... ... \n",
+ "201 2930 3037 362 -122.418479 37.791082 \n",
+ "202 3862 4074 272 -122.417237 37.785728 \n",
+ "203 2437 2556 943 -122.410115 37.779459 \n",
+ "204 3115 3231 807 -122.405411 37.778934 \n",
+ "205 4328 4609 549 -122.416455 37.782289 \n",
+ "\n",
+ "[205 rows x 11 columns]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "display(demand_points)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Display facility_points dataframe"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 178,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " OBJECTID | \n",
+ " NAME | \n",
+ " long | \n",
+ " lat | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " Store_1 | \n",
+ " -122.510018 | \n",
+ " 37.772364 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2 | \n",
+ " Store_2 | \n",
+ " -122.488873 | \n",
+ " 37.753764 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 3 | \n",
+ " Store_3 | \n",
+ " -122.464927 | \n",
+ " 37.774727 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4 | \n",
+ " Store_4 | \n",
+ " -122.473945 | \n",
+ " 37.743164 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 5 | \n",
+ " Store_5 | \n",
+ " -122.449291 | \n",
+ " 37.731545 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 6 | \n",
+ " Store_6 | \n",
+ " -122.491745 | \n",
+ " 37.649309 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 7 | \n",
+ " Store_7 | \n",
+ " -122.483182 | \n",
+ " 37.701109 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 8 | \n",
+ " Store_11 | \n",
+ " -122.433782 | \n",
+ " 37.655364 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 9 | \n",
+ " Store_12 | \n",
+ " -122.438982 | \n",
+ " 37.719236 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 10 | \n",
+ " Store_13 | \n",
+ " -122.440218 | \n",
+ " 37.745382 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 11 | \n",
+ " Store_14 | \n",
+ " -122.421636 | \n",
+ " 37.742964 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 12 | \n",
+ " Store_15 | \n",
+ " -122.430982 | \n",
+ " 37.782964 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 13 | \n",
+ " Store_16 | \n",
+ " -122.426873 | \n",
+ " 37.769291 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 14 | \n",
+ " Store_17 | \n",
+ " -122.432345 | \n",
+ " 37.805218 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 15 | \n",
+ " Store_18 | \n",
+ " -122.412818 | \n",
+ " 37.805745 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 16 | \n",
+ " Store_19 | \n",
+ " -122.398909 | \n",
+ " 37.797073 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " OBJECTID NAME long lat\n",
+ "1 1 Store_1 -122.510018 37.772364\n",
+ "2 2 Store_2 -122.488873 37.753764\n",
+ "3 3 Store_3 -122.464927 37.774727\n",
+ "4 4 Store_4 -122.473945 37.743164\n",
+ "5 5 Store_5 -122.449291 37.731545\n",
+ "6 6 Store_6 -122.491745 37.649309\n",
+ "7 7 Store_7 -122.483182 37.701109\n",
+ "8 8 Store_11 -122.433782 37.655364\n",
+ "9 9 Store_12 -122.438982 37.719236\n",
+ "10 10 Store_13 -122.440218 37.745382\n",
+ "11 11 Store_14 -122.421636 37.742964\n",
+ "12 12 Store_15 -122.430982 37.782964\n",
+ "13 13 Store_16 -122.426873 37.769291\n",
+ "14 14 Store_17 -122.432345 37.805218\n",
+ "15 15 Store_18 -122.412818 37.805745\n",
+ "16 16 Store_19 -122.398909 37.797073"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "display(facility_points)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Plot tract"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 179,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 179,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAAD4CAYAAAAXdPFuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2deZwcVbn3v8/0dM++L8ksmcySTEL2QDaCYQ8QkE0FuW4giuKCihtyfVHwXj/igoryigIu8CKboILcKwgIhCWL2UlIQpLJvs6Syez7ef/omtiZ6Z6e6Znuqu5+vp9Pf9JddU7Vc9L9mzp16pznJ8YYFEVxHgl2B6Aoin9UnIriUFSciuJQVJyK4lBUnIriUBLtDmAsyM/PN+Xl5XaHoSghsXbt2jpjTMHA7TEhzvLyctasWWN3GIoSEiKy19927dYqikNRcSqKQ1FxKopDUXEqikNRcSqKQ1FxKopDUXEqikNRcSqKQ1FxOoCe3j72N7TZHYbiMFScDsAADyyvsTsMxWHExPS9WODJNfu55fxJFGYmj6jewcZ26ls6mVGcRUKCDNq/9XATL245QnpSIlkpbrJTPda/brJS3Bw50cGKmnreOXiC2qZO6ls7SXa7yEn1kJ3qJifVQ06qt15OWv9n65XmJiPZHVJ7+/oM7xw8wRs7aslMcdPdayjMSGJWaRZluamIDG5LvKHidAhdPX089OZu/vPS04Zd5/lNh7j9z+/Q3NFDYUYS508t5ILTxnHWpDz21rfxi1d28PfNR8IYNUwuTOfs6gLOqS5gQUUuyW5XwLL1LZ0s31HL69trWb6jjobWLr/lpozL4PLZRUwdn0lVYToTclJIdMVfJ09iIYfQvHnzTDRPfO/u7WPyt/9OsjuBH31oNpfNLMLlcxVs6uhm7Z7jTMxLpbIgnWNNHdzzj/d4cs1+v8fzJCbQ1dMXqfBPkpSYwKLKPM6pLiAv3cOB4+3Wq42Dx9vZXd9KKD83t0uYmJdGZX4alQXpVBX8+9/sVM/YNyTCiMhaY8y8QdtVnPaz6UAjV9z31snPuWkezp1SQGaym9W7G9h6pAljYG5ZNpnJbt7YUUtf9H9tY0JemofKgjSqCtKpLEhjyvhMFlfl4Y6iK20gcWq31gGsqmk45XNDaxd/XndwULn1+xojFVLUUN/aRX1rF//ac/zkttw0D1fOKeYrF1STleq9Jz7W1MHK3Q2srKln6+EmvnXJVBZW5gHensux5k5yUz2keAJ3yyONitNmjDH8dcNgISqh09Daxe/f2sM/tx1jcVU+q2rqqalrPaXMhx9YyYySTLp7DDV1LXT3ersi2aluFlbkcsv5k5lRkmVH+CdRcdrMkaYOthxqsjuMmGRvfRt76/cF3L/54OD/98a2bl7ccpQXtxxlQm4Kn1lSyTXzJuBxJbDxQCPr9zVSnJ3CpMI0ynLT8CSGr/us4rSZwoxkUtwu2rt77Q5FGcD+hnbueHYLv/znTvqMoa7l1NFlV4JQlptKlXXP23/fW5iRzPIdtfzq1Z1cM28Cty6tDun8Kk6bcSUIU4sy9H7SwRxr7vS7vbfPsLuuld11rby89dig/SluF5fNKgr5vNEzpBXDTCvKtDsEJQz89NrZVI/LCLm+itMBTCtWccYaX7lwMstmhn7VhGGIU0SSRWS1iGwUkS0icpe1/UkR2WC99ojIhgD1b7XqbRaRx0Uk2dqeKyIvicgO698cnzq3i8hOEdkuIhePqoVRgF45Y4tzpxTwpfMnj/o4w7lydgLnG2NmA3OAS0RkkTHmw8aYOcaYOcAzwJ8HVhSREuBLwDxjzAzABVxn7f4W8IoxZjLwivUZEZlmlZkOXAL8SkSc8/ApDEwdn4mfabFKFJKfnsRPrpntd57zSAkqTuOlxfrotl4n56eId4bytcDjAQ6RCKSISCKQChyytl8JPGy9fxi4ymf7E8aYTmPMbmAnsGDYLYoyjDE8v+mQTvSOEX567Wzy05PG5FjDuucUEZfVbT0GvGSMWeWzewlw1BizY2A9Y8xB4CfAPuAwcMIY8w9r9zhjzGGr3GGg0NpeAvhOGj1gbRsY02dEZI2IrKmtrR1OMxxHW1cPn3t0Hd94ehO9Oh8v6rlpSQVnVw9K3B4ywxKnMabX6r6WAgtEZIbP7v8gwFXTuo+8EqgAioE0EflYkNP5u4QM+uUaYx4wxswzxswrKBi7/5BI0dTRzSd+u5oXtoR31YgSGWaUZPKNi6eO6TFHNFprjGkEXsN7L4jVVf0A8GSAKhcCu40xtcaYbrz3pYutfUdFpMg6ThHeqzJ4r5QTfI5Ryr+7wjFBQ2sXH3lwJWv2Hg9eWHE8qR4Xv7hu7pjPFhrOaG2BiGRb71PwCm6btftCYJsx5kCA6vuARSKSat2bXgBstfY9B1xvvb8eeNZn+3UikiQiFcBkYPXImuVcGlq7uO6BFX6njinRyV1XTKeyIH3MjzscqRcBr4rIJuBfeO85n7f2XceALq2IFIvI/wJY96ZPA+uAd6zzPWAVvRtYKiI7gKXWZ4wxW4CngHeBF4AvGGNiZm7bw2/v4b2jLcELKlHBV5dW86EzSsNybF3PGUG6e/s46+5/BpwOpkQPrgThB1fP5Nr5E4IXDoKu53QAz204pMKMARIEfv2xM1g6bVxYz6PiDDMd3b0cOdHB3oY2vvf8u3aHo4wBNy2pDLswQcU5phxr6uC3b+4mye3i1W3HOHyifdAyIyW6Kc1J4csXjn5q3nBQcY4Ra/c28LlH12m3Ncb5r6tmkOqJjGxUnKOkvauXx1fv4wd/33oy1YUSm1w2q4jzphQGLzhGqDiHSWdPL89tOMTxti6SEr3z8N/eVcfy9+o0i0EckJGcyHffPy2i51RxBqH/yvib5bs42qRd1njlpiWVI87GP1pUnAFo6ezh0ZV7eeiNGh3UUU5J8h0pVJwD6Oju5bdv7ubBN2pobOu2OxzFIdTaMNAXt+Ls6O4d5Ovx2vZjfOfZLexTOz5lABPzUiN+zrgU56Mr93Lnc1uYmJfK9OKskxm/1+oqESUA88tzI37OuBPnypp67nh2M8bArtpWdtW2Bq+kxDXZqW6mjg89i16oxFX2vaaObr721MaQnK6U+OVHH5xliwVh3IizvauXmx5ew8HGdrtDUaKIT7+vgoumj7fl3HEjzj+t3c+q3Q3BCyqKxdyybG5bNrapR0ZC3IjzL+vVyUsZPtmpbu77yOm2+nzGhTj3N7SpF4kyIu65ZjYl2Sm2xhAX4nx+02G7Q1CiiM+eXckFp4V/vWYwgj5KsewTlgNJVvmnjTHfFZEngSlWsWyg0Uqf6Vt3Cqdm5qsEvmOM+Xmg+iJSjjcJ2HZr30pjzM2hNK6fzYdOjKa6EkecMTGHr188JXjBCDCc55z9dgwtIuIG3hSRvxtjPtxfQETuAQYpwBizHa+FA5alwkHgL9a+oervGij00ZCd4h6rQykxTE6qm/s+MtfW+0xfImHH0M8FeEW313fjCOqHzEcWloXr0EoMcc+1synKsvc+05ew2jEMYFAazSHqV4jIehF5XUSWBIhp2HYMU8dn4nHIX0PFuWQ5rIcVVjuGfkTEA1wB/MnP7oH1DwNlxpi5wFeBx0RkkEfeSOwYXAlCZUHakGUUpaXTWYvmw23H0M8yYJ0x5qjvRn/1LXexeuv9WmAXUD2SOP2xsCLyE5eV6OKFzc7yrQm3HUM/ga6ug+pb53NZ7yvx2jHUBIszGGdW5Y/2EEqM89f1B2lodc7C+rDaMVifU/HaLQwy1/VXHzgb2CQiG/FaOdxsjBn1vLtFlbmoBaYyFO3dvTz89h67wzhJXNkxXHrvG7x7WA2ElMBkJCXyytfOiWi+oEB2DHE1hHlmVZ7dISgOp7mzh7tf2Ba8YASIK3EuVnEqw2DnMWe4wMWVOOfriK0yDCrznfHYLa7EmZnstn2lgeJ8JuapOG1h8rixdyBWYovxWZFNHh2IuBPnFBsSNSnRRWFGkt0hAHEoTp0ppARjXIRtFwIRd+KMlH2bEr0UZuqV0xac0mVRnEmyO4G8NGf8RuJOnAUqTmUILp9VbItpkT/iTpzpSYmkDPBIUZR+jrdF18T3mEJEHHNPoTiPlTUN9PT22R0GEIfiBL3vVALT0tnDxgPOSAgXl+J0ylC54kze3llndwhAnIpzyjidiKAE5k0Vp33MKMmyOwTFwazf10h7l/35hOJSnNNLBuULU5STdPX28a899ptexaU4CzOS9XmnMiRvOaBrG5fiBJhRrFdPJTBv7YoCcYpIsoisFpGNIrJFRO6ytj8pIhus1x4r6fTAulN8ymwQkSYR+Yq1704ROeiz71KfereLyE4R2S4iF49lg/vR+05lKLYcauJEW7etMdjmlWLxM2PMT3zriMg0vFn5pgPFwMsiUm2MGdM79OnFKk4lMMbAztpmzpho3yom271S/HAl8ISVXHo3sBNYECzOkTJV13UqQ5DsTiDX5gnwdnulfFFENonI70Qkx9pWAuz3KXPA2jYwpmF7pfjDKavdFWdy2cxiKmzOJWSnV8r9QBXebu9h4J7+4v5C8BPTsL1S/JHsdpGX5hlxPSU+eHX7Mbp67J1ja5tXijHmqCX6PuBB/t11PQBM8KlbChwaSZzDpShbr56Kfxpau3h1+zFbY7DNK0VEinw+Xg1stt4/B1wnIkkiUoHXK2V1sDhDYXymZuJTAvPoyr22zhSy0yvlRyLyjnXc84BbAYwxW4CngHeBF4AvjPVIbT9Fet+pDMEbO+pYfPcrHGvusOX8QR+lGGM2AXMD7LvBz7ZDwKU+n9uAQanWjTEfH+Kc3we+Hyy20aKDQkowjrd1c/9ru/ju5dMjfu64znalCaaV4fDIir3UNnfyybPKOb0sB4mQXV3cTt8DmKET4JVh0NtneH7TYT54/wp+9dquiJ03rsVZmZ9OZnJcdx6UEXLvKzt4YfMRImGdGdfiTEgQ5pTlBC+oKBZdPX3c/Ohalt37Bq9uC++jlrgWJ8DcCdl2h6BEIduONPPJP/wrrOs+VZxlKk4lNK6aU8y8ieHrecW9OOfolVMJgfK8VP776plhHbmNe3Fmp3qoLHCGH6MSPXzj4qmkJ4V3MDHuxQkwISfV7hCUKCLZncAFpxWG/TwqTsAh1hhKlFBVkE5yBCw9VJzAiXZ701Eo0UWk1nmqOIFGFacyAiL1x1zFCTR39NgdghJFrNrdQFtX+H8zKk68w+KKMly6evpoicAfdBUnMLtUn3Uqw6ciP43CCJhhqTiBOTpLSBkBiyojky5TxQksrsonV5N9KcNkYcWg3AFhQcUJ5KZ5+PmH5xChNbRKFONJTGBRpUPEGUY7hh+LyDYrb+1ffJKIlYtIu0+dX491o/1xdnUBt5w3KRKnUqKUivw0/vL5xRFLb2OnHcNLwO3GmB4R+SFwO3CbtW+XlSc3onz5wmr+tec4K2rqI31qxcGIwNVzSvjeVTPCPp/Wl+Ek+DLAcOwYzg9yqFPsGIwx//DZtxL40PDDDg+uBOH7V8/g/HtetzsUxSF84+IpfOD0EoqyIp9vym47hn5uBP7u87lCRNaLyOsisiRATKOyYwhEaU4q2anuMTueEr1MK8rkC+dNskWYYK8dQ/++bwM9wB+tTYeBMmPMXOCrwGMiMigT12jtGALhSUzgpiWVY3Y8JXq54axyW89vmx2DVf964P3AR63uM5a7WL31fi2wC6geSZyj5Zp5pZE8neJA8tI8XDG72NYY7LRjuATvANAVVuJp3/O5rPeVeO0YaobXnLEhM9mNS9eRxTUfXTQxIsvChsJOO4b7gAzgpQGPTM4GNonIRuBp4GZjTPiyKPkh2e3iF9fNVYHGMVfPHeQ6GXHstGPw+1DRGPMM8EywuMLNZbOK6Onr48tPDHp8q8QBtc2d0eHPGa+cXpZDfrpO64tH3jvabHcIKs6h+NqfNlLX0mV3GIoN7FBxOpuFFZFZfaA4j+U76iJiuTAUahQyBNOK1OgoHllYkcsHTi+ht8+Q6LJvUFDFOQSzJ2TjSUygq6fP7lCUMJKfnsSZVXksqszlnOoCSh2SKlXFOQTF2Sn8+EOzdMQ2BllQkcvls4o4syqPqoL0iHlujgQVZxAum1nEfz2/lbqWTrtDUcaIm8+p4hsXT3H8c2wdEApCoiuBBRVqExgLeFwJ/PTa2Xxr2VTHCxNUnMNCE4BFN97FDBXMmZDNB06PnnnT2q0Nwj+3HdXF11HOrJIsZpVmc9akfLtDGREqziC8d7SF17aP3XpRJXJ4XAl8bNFEvnnJFNsnsYeCijMIeZqVL+roTyty69JqJuQ647FIKKg4g5CfnmR3CMoIueX8yXx1aUSXAIcFHRAKQp5OfI86rppj7yLpsULFGYQ8vXJGFUmJCVHdlfVFxRkEveeMLuaV5+B2xcbPOjZaEUaS3S51IYsiFkXIKiES6IDQMJhVms2e+rbgBRXbmFSYzlVzirluQZndoYwZQcUpIsnAciDJKv+0Mea7IvIkMMUqlg00DszSLiJTODUzXyXwHWPMz0Uk19pXDuwBrjXGHLfq3Q58CugFvmSMeTHkFo4Bs0qzeG7jITtDUPwwLjOJK2YXc+WcEqYXZzpy8vposNOO4VvAK8aYu0XkW9bn20RkGt7EYdOBYuBlEak2xvSG3MpRMivGp++Nz0wmK8VNVoo3mXZNXavjJ/rfsLicO94/LSrmyIaKbXYMwJXAudb7h/Hmw73N2v6EMaYT2C0iO4EFwIrgzQkP3r/KYPPC+LCwuCqPx25adMq2o00dLPrBK45tr9sl3Lq0OqaFCfbaMYwzxhwGsP4ttLaXAPt9yh2wtg2MKSx2DP5IS0pkUkF6WM9hF+dNKRy0bVxmsqMHVrp7DW1d/7Z9P9HezT+3HR2iRnRiux2Dv+L+QvATU1jsGAIRq13bX7++i4bWwUnMrnD4g/wHltdgjOF/3znMhT99nQ37Gu0Oacyx047hqIgUWccpwntVBu+VcoJPuVLA9tGYWaVZdocQFhrbu0lKHPwzWDZjPG4b8+cE4/HV+7jpkTV8/o/rqG3upDRGJh74YpsdA/AccL31/nrgWZ/t14lIkohU4LVjWB0sznATq+KcUZxJmh/PyexUD2dPDl+PxOvgVcWtF1ZzzRmlnFmZx4TclGHfR3Z09/Hy1mMnP5fFoDiHM1pbBDxsjbYmAE8Fs2MAHjLGXGp97rdj+OyA494NPCUinwL2AdcAGGO2iMhTwLt43ce+YOdIbT+nFWWSmCD09Dl0lCRE5pUHTv95xZxiXtl2LOB+8D7OMAaONfsf3c1KcZOelIgxhj4DZXmpXH9mOZfNKvJbvqe3j6PNnRxoaONEezdv7qxj04ETvHe0mbYu/z+DZHcCcybE3m2HnXYM9XhHcP0d9/vA94PFFkmS3S5mlmaxPsbubeaXB07BcuFp40h2J9DRPTj7YGVBGstmjOfGsyp4c2cdv3trD1sPNdHV+++yiQnCnz+/mKoRDKYluhIoyU6hJNvriXnR9PEA9PUZ9h9vY/l7tdz5t3fp9fkjubgqPyrXawZDZwiNgE+cOTGmxJmf7mHJEF3XtKRELjxtHM9vOgx4u6LLZoznkhnjmTwu42S5K+eUcOWcEjp7etl2uJl3DzdR39JJYUbyiIQ5FAkJwsS8ND5+Zhp56Unc8vj6kwI9b+rgEedYQMU5ApbNKOIbf9oUM13bz587ye/9pi8fXzSRmSVZXDJjPBPzhjb2SUp0MXtCNrPD3MW8dGYR+xra+PO6A1y/uJxUT+xdNUHFOSKS3S6qx2Xw7uEmu0MZNQUZSXxkYfB5qAsr81hY6bxnnp89u5LzpxYyqSCdhBidjKCrUkZIrIzaTipIj+r7NBGhelxGzAoTVJwjZkZJbIgzI1k7TU5HxTlCFlXGhvNYRrLb7hCUIKg4R0hVQTqVNjsejwV65XQ+Ks4RIiIsnTbO7jBGTaaK0/GoOENgbln0e6ekqzgdj4ozBGLBVFfvOZ2PijMESnNSSA/y8N7p6D2n81FxhkBCgjB1fEbwgg5Gr5zOR8UZIqdFede2sW3wAmvFWag4Q6Qiyh+nfPmJDfzfV3fS09tHZ4/tK/IUP+iNRwgcbergvld32h3GqPnxi9v59Wu76O7rIzfVw4KKXC6fXcySyQV4/GRHUCKLijMEjpzo8Jt3Jxpp7vQmyjp0ooO/bjjEXzccIjM5kWUzirh8djGLKnNJjBF7g2hDxRkCsZ6SsamjhyfX7OfJNfvJT/dw6UyvUM8oy4npieZOQ8UZAgkxlll8KOpaunhkxV4eWbGXGxaXk53qZn55Lgsr9IoablScIRDrV85A/OHtPSff56S6uXpuKTe+r5zSnNCTa/X09tHY3k1emifm7BRGS1i9Uqz62cBDwAy8+WdvNMasCFRfRMqBrcB2a99KY8zNIbYvLMSpNk/heFs3v3trNw+v2MOlM4v47NmVw1pO19Daxfp9x1m37zjr9jay8UAjbV29pHpcTMxLozwvlfJ8778T89KoyE+jMCMpLoUbVq8Ui3uBF4wxH7KSS6cCBKm/y5/QnYLed/2b3j7D3zYe4m8bD3F6WTZTizKZmJvKxLxUynK9j5vWWWJcv6+R3XWtfo/T1tXL1sNNbPWTZSLF7WJiXirleWlMzE/lU++roDAjOaztcgJh9UoRkUzgbOAG61hdQNeAMsP1WnEMrjj8Kz4c1u1rZF0YEqC1d/ey7Ugz2440A5Cd4uFz51aN+XmcRri9UiqBWuD3IrJeRB4SkYFP7/3Vr7DKvy4iSwLEFDGvlIHE04CQE3lm3QGMU12WxpBwe6UkAqcD9xtj5gKteK3+fBlY/zBQZpX/KvCYdQUeGFNEvVJ8SdBBSlvZeayFF7fEnnHRQMLtlXIAOOBzpX0ar1gJVN8Y02klnMYYsxbYBVSPJM5wE6+jtU5BBGZPiI1cTkMxnNHaAqDbGNPo45XyQ2v3kF4pxpgjIrJfRKZYRroX4LVZIFB963wNxpheEanE65VSE0rjwoV2a+1lQXkuRVkpwy5/tKmDdXu9g1LvHW0hMUFIdrtI9bj45iVTKchICmO0oRN2rxTgFuCP1khtDfBJn+KD6uMdQPqeiPTgtZ2/2RjTMII2hR0Vp71cOWeQXSsA+xva2Fnbwr76NvbWt7GvoZWth5s52Nge8FhpSYncecX0cIU6KiLhlbIBmDeC+s8AzwSLy060W2sfbpewbMb4k5+NMazYVc/9r+/ijR11Iz7eu4ecmyBcZwiFgGrTPs6pLiAnzUNvn+GFzUf4zfJdbDoQ6BF7cN493ERfn3Hks2sVZwg48YuMFy6aPp5HV+7lwTdq2FvfNurjtXT2sLehzZHrc1WcIaCTEOzjrue20BrApzNU/rRmP9+8ZOqYHnMs0Cd2IaD3nPYx1sIE+H8r99JirWt1EirOENALZ2zR3NHD46v22R3GIFScIaDd2tjjt2/upqtnsIO3nag4Q0C7tbHHkaYO/rrhoN1hnIIOCIVAPK4tjAd+9MI2/rHlKFPGp/O1pVNsH5XXK2eI6NUz9qhr6eLlrUd5YfORk4nP7ETFGSJ63xm77Kpt5YuPraO71957UBVniKg2Y5s3dtRx+S/f5O1dI58SOFaoOENEu7Wxz7YjzXzn2S22LexWcYaIdmvjg+vmT7BtAFDFGSKqzdjH7RKunut/eVokUHGGiHZrY5+Lpo8nL92+hdgqzhBRccY+kwrSbT2/ijNENBtCbLO4Ko+l08bZGoPOEAoRFWdsMr04k9uXncb7JufbHUrwK6eIJIvIahHZKCJbROQua/uTIrLBeu2x8tr6q58tIk+LyDYR2SoiZ1rb7xSRgz7HuNSnzu0islNEtovIxWPV2LFEu7Wxhwj87ob5jhAm2GjHYPEzY8xPfAuLyDS8ib+mA8XAyyJSbYxxlP2y5q6NLZISE/j8uZMYl+kcmwfb7Rj8cCXwhDGmE9gtIjuBBcCKYLFGEu3Wxg5LJufzk2tmO0qYYL8dwxdFZJOI/E5EcqxtJcB+nzIHrG0DY7LNjgF0EkKssGRyPg9+Yp7jhAn22jHcD1QBc/BaMNxjbff3qx80f8pOOwbQJF+xQL8wk90uu0Pxi212DMaYo5bo+4AH8XZd++tM8DlGKXBoJHFGAtVmdHPWpDxHCxOGN1pbYBng4mPHsM3aHdSOAdgvIv0muSftGESkyKfo1cBm6/1zwHUikiQiFXjtGFaPqFURQO85oxO3S7ho2jge+sR8RwsT7LVj+JGIzMHbZd0DfBbAGLNFRJ7CK+Ie4AtOG6kFaO2yfzGuMjISBO7/6BlcaPPkguEiseBzOG/ePLNmzZqInc8Yw9Q7XqDTYQmhlKG564rpXL+43O4wBiEia40xgyxL9GldCLR29aowo4xPva/CkcIcChVnCKR5XBRlOW/oXfHPxdPH8Z+XnmZ3GCNGxRkCfQZaOvSeMxqYXZrFzz88NyqnW6o4Q+BYc4cjsrMpQ1Oak8JD188nxePsUdlAqDhDwONK0OecDiczOZE/fHK+Y12rh4OKMwTy0pMc6Uo1XNwuYVJhOnPLsvG4Yu8nkOZx8YcbFzCpMMPuUEaFrucMkc+eXcmGfY28sOWI3aEEJD0pkaKsZHLTPORnJFGQnsSZVXmcN6UQT6JXlPsb2rjl8fUcON7OifYuuntPfbSWkZzIzJIsctI8LH+vlmaH32unuF38/pMLOL0sJ3hhh6PPOUdBZ08vq2oaWP5eLa+/V8uOYy3BK4WR3DQPC8pzmV+Ry8KKXKaOzyBxBFdGYwxtXb00tndzoq2bVI+LiXmpJ7PPdfX0saKmnqMnOjAY+gwYA33GYICe3j6a2ns43tbFifZujrd10djWTWNbFx3dfaQluWho7aKls4dxmcl4XAlMKkxn//F2th1pwven6L26Z1Cak0JjWxe1zZ0ca+6kbQgLwKTEBH5/w3wWT3LGeszhEug5p4pzDDnU2M6bO+pYWVPPqt0NHGxsD+v5SrJTWFCRy/zyXBZU5FJVkOZ4HxdjDJ09fYOmznV097KvoY0Dx9soyU6lsiAN94A/LH19hqfXHeDHL26ntrnzlH0eVwIPXT+Ps6sjvwhitKg4beDA8TZW1TSwencDqy+hGv4AAAUFSURBVHbXsydEm/T0pEQ+d24Vc8uyWb+vkeLsZOaX51Kakxq8cgzS0tnDr17dyUOWbZ/bJfzm42dw/tTomJY3EBWnAzhyooPVexpYVVPPlkNN1NS20DTEPVyCwH8sKOPWpdXk25ii0ansb2jjZy+9x7KZRbYn4xoNKk4HYoyhobWL3XWt1NS1sruuld213n9LclK4fdlUJo+L7hFHJTiBxKmjtTYiIuSlJ5GXnsS88ly7w1EcRuw95FKUGEHFqSgORcWpKA5FxakoDkXFqSgOxU47hh9b2zaJyF98koiVi0i7z7F/PZYNVpRowU47hpeA240xPSLyQ+B24DZr3y4rT66ixC1Br5zGy3DsGAYllvaxY/itdawuK/ctxph/GGP6p8esxJufVlEUC7vtGPq5Efi7z+cKq/zrIrIkQEy22jEoSrgZ0fQ9677wL8AtxpjN1rb7gZ3GmHv8lJ+H96p4ljFmlYjcCzQZY+7wKfNtYB7wAWOMEZEkIN0YUy8iZwB/BaYbY5qGiKsW2DvshoRGPlAX5nPYQay2C6KnbRONMYOW04xo+p4xplFEXsNrx7DZx47hjABV/Nkx9HulICLXA+8HLrDczLDcxTqt92tFZBdQDQScPOuvYWONiKzxN/8x2onVdkH0t81OO4ZL8A4AXWGMObmWyjqfy3pfideOoSaEtilKVGOnHcN9QBLwkrVAeKUx5ma8A0jfE5EeoBe42RjTEGoDFSVaiYklY5FARD5jjHnA7jjGmlhtF0R/21SciuJQdPqeojgUFaeiOJS4E6eIXGPNEe6znsP2b18qImtF5B3r3/Ot7aki8j/WPOAtInJ3gOMGnBMsImdYx90pIr+QMKXIC1fbfI5TJiItIvJ1n22vich2n3YXxki7IvKdDYkxJq5ewGnAFOA1YJ7P9rlAsfV+BnDQep8KnGe99wBvAMv8HLcc2BzgnKuBMwHBOxNqUH0nt83nOM8AfwK+7rPtlHPFULsi8p0N9Yq7HELGmK3AoPyuxpj1Ph+3AMkikmS8z2Bftcp0icg6RjAPWESKgExjzArr8yPAVZw6XXFMCGfbROQqvI/CWsc67mBEul2R/M6GIu66tcPkg8B6452tdBJrMsblwCsB6vmbE1yCd6ZUPwesbXYx4raJdz70bcBdAY75e6tLe4ct3T8vY9kuR3xnMXnlFJGXgfF+dn3bGPNskLrTgR8CFw3Ynoh3wsUvjDH+ZiwdBsqMz5xg61j+fqwhP7+yqW13AT8z3mWDA/d91BhzUEQy8HYPPw48MqzGnBqDk9o1pt9ZqMSkOI0xF4ZST0RK8U7s/4QxZteA3Q8AO4wxPw9wzkBzgg9wapeqFDgUSnzWsSPeNmAh8CER+RGQDfSJSIcx5j5jzEErrmYReQxYQAjidFK78P6RGbPvLFRiUpyhYHV//gfvAvC3Buz7byAL+PQQ9QuABmNMr/jMCTbGNIhIs4gsAlYBnwB+Ga52BIhtVG0zxizxKX8n0GKMuc+6MmUbY+rEuxD//cDLYWiCX8LVLuuzrd9Zf4Bx9QKuxns16wSOAi9a2/8P3kGBDT6vQrx/NQ2w1Wf7p606VwDfs95/EO+gxEZgHXC5zznnAZuBXXjnFEs0tW3AOe7EGtUE0oC1wCar7fcCrmhvVyS/s6FeOn1PURyKjtYqikNRcSqKQ1FxKopDUXEqikNRcSqKQ1FxKopDUXEqikP5/y6Rc9idy0Z/AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "study_area.plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "To start modeling the problem assuming the arguments expected by `spopt.locate`, we should pass a numpy 2D array as a cost_matrix. So, first we pivot the network_distance dataframe. \n",
+ "\n",
+ "_Note that the columns and rows are in alphabetical order._"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 180,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " name | \n",
+ " Store_1 | \n",
+ " Store_11 | \n",
+ " Store_12 | \n",
+ " Store_13 | \n",
+ " Store_14 | \n",
+ " Store_15 | \n",
+ " Store_16 | \n",
+ " Store_17 | \n",
+ " Store_18 | \n",
+ " Store_19 | \n",
+ " Store_2 | \n",
+ " Store_3 | \n",
+ " Store_4 | \n",
+ " Store_5 | \n",
+ " Store_6 | \n",
+ " Store_7 | \n",
+ "
\n",
+ " \n",
+ " DestinationName | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ " | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 60750101.0 | \n",
+ " 11495.190454 | \n",
+ " 20022.666503 | \n",
+ " 10654.593733 | \n",
+ " 8232.543149 | \n",
+ " 7561.399789 | \n",
+ " 4139.772198 | \n",
+ " 4805.805279 | \n",
+ " 2055.530234 | \n",
+ " 225.609240 | \n",
+ " 1757.623456 | \n",
+ " 11522.519829 | \n",
+ " 7529.985950 | \n",
+ " 10847.234951 | \n",
+ " 10604.729605 | \n",
+ " 20970.277793 | \n",
+ " 15242.989416 | \n",
+ "
\n",
+ " \n",
+ " 60750102.0 | \n",
+ " 10436.169910 | \n",
+ " 19392.094770 | \n",
+ " 10024.022001 | \n",
+ " 7601.971416 | \n",
+ " 6930.828057 | \n",
+ " 3093.851654 | \n",
+ " 4175.233547 | \n",
+ " 1257.809690 | \n",
+ " 1041.911304 | \n",
+ " 2333.244000 | \n",
+ " 10509.099285 | \n",
+ " 6470.965406 | \n",
+ " 10216.663219 | \n",
+ " 9974.157873 | \n",
+ " 20339.706061 | \n",
+ " 14612.417684 | \n",
+ "
\n",
+ " \n",
+ " 60750103.0 | \n",
+ " 10746.296811 | \n",
+ " 19404.672860 | \n",
+ " 10036.600090 | \n",
+ " 7614.549505 | \n",
+ " 6943.406146 | \n",
+ " 3381.778555 | \n",
+ " 4187.811636 | \n",
+ " 2046.436590 | \n",
+ " 744.584403 | \n",
+ " 1685.517099 | \n",
+ " 10800.926186 | \n",
+ " 6778.892307 | \n",
+ " 10229.241308 | \n",
+ " 9986.735962 | \n",
+ " 20352.284150 | \n",
+ " 14624.995773 | \n",
+ "
\n",
+ " \n",
+ " 60750104.0 | \n",
+ " 11420.492134 | \n",
+ " 19808.368182 | \n",
+ " 10440.295413 | \n",
+ " 8018.244828 | \n",
+ " 7347.101469 | \n",
+ " 4044.473877 | \n",
+ " 4591.506959 | \n",
+ " 2463.736278 | \n",
+ " 795.715285 | \n",
+ " 1282.217412 | \n",
+ " 11308.221508 | \n",
+ " 7447.187630 | \n",
+ " 10632.936630 | \n",
+ " 10390.431285 | \n",
+ " 20755.979472 | \n",
+ " 15028.691095 | \n",
+ "
\n",
+ " \n",
+ " 60750105.0 | \n",
+ " 11379.443952 | \n",
+ " 19583.920000 | \n",
+ " 10215.847231 | \n",
+ " 7793.796646 | \n",
+ " 7122.653287 | \n",
+ " 4103.725695 | \n",
+ " 4367.058776 | \n",
+ " 3320.283731 | \n",
+ " 1731.462738 | \n",
+ " 249.669959 | \n",
+ " 11083.773326 | \n",
+ " 7379.539448 | \n",
+ " 10408.488448 | \n",
+ " 10165.983103 | \n",
+ " 20531.531290 | \n",
+ " 14804.242913 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 60816025.0 | \n",
+ " 17324.066610 | \n",
+ " 2722.031291 | \n",
+ " 10884.063331 | \n",
+ " 14178.007937 | \n",
+ " 13891.857275 | \n",
+ " 18418.384867 | \n",
+ " 16726.951785 | \n",
+ " 20834.395022 | \n",
+ " 21441.247824 | \n",
+ " 20875.680521 | \n",
+ " 14662.484617 | \n",
+ " 16569.371114 | \n",
+ " 12483.322114 | \n",
+ " 11926.727459 | \n",
+ " 4968.842581 | \n",
+ " 8648.054204 | \n",
+ "
\n",
+ " \n",
+ " 60816026.0 | \n",
+ " 15981.172325 | \n",
+ " 3647.137006 | \n",
+ " 10299.369046 | \n",
+ " 13593.313651 | \n",
+ " 13307.162990 | \n",
+ " 17833.690581 | \n",
+ " 16142.257500 | \n",
+ " 20249.700736 | \n",
+ " 20856.553539 | \n",
+ " 20290.986235 | \n",
+ " 14050.290332 | \n",
+ " 15963.776829 | \n",
+ " 11871.527828 | \n",
+ " 11342.033174 | \n",
+ " 3625.948296 | \n",
+ " 7919.659919 | \n",
+ "
\n",
+ " \n",
+ " 60816027.0 | \n",
+ " 14835.342712 | \n",
+ " 4581.333336 | \n",
+ " 9637.139433 | \n",
+ " 12931.084039 | \n",
+ " 12644.933377 | \n",
+ " 17171.460969 | \n",
+ " 15480.027887 | \n",
+ " 19587.471124 | \n",
+ " 20194.323926 | \n",
+ " 19628.756623 | \n",
+ " 13341.313338 | \n",
+ " 15301.547216 | \n",
+ " 11209.298215 | \n",
+ " 10679.803561 | \n",
+ " 2290.818683 | \n",
+ " 7242.830306 | \n",
+ "
\n",
+ " \n",
+ " 60816028.0 | \n",
+ " 13339.491691 | \n",
+ " 6392.856372 | \n",
+ " 8577.488412 | \n",
+ " 11871.433018 | \n",
+ " 11585.282356 | \n",
+ " 16111.809948 | \n",
+ " 14420.376867 | \n",
+ " 18527.820103 | \n",
+ " 19134.672905 | \n",
+ " 18569.105602 | \n",
+ " 11845.462317 | \n",
+ " 14241.196195 | \n",
+ " 10155.147195 | \n",
+ " 9620.152540 | \n",
+ " 1846.795647 | \n",
+ " 5746.979285 | \n",
+ "
\n",
+ " \n",
+ " 60816029.0 | \n",
+ " 15257.855684 | \n",
+ " 6394.920365 | \n",
+ " 10253.752405 | \n",
+ " 13547.697010 | \n",
+ " 13261.546349 | \n",
+ " 17788.073940 | \n",
+ " 16096.640859 | \n",
+ " 20204.084095 | \n",
+ " 20810.936898 | \n",
+ " 20245.369594 | \n",
+ " 13763.826309 | \n",
+ " 15918.160188 | \n",
+ " 11825.911187 | \n",
+ " 11296.416533 | \n",
+ " 508.931655 | \n",
+ " 7665.343278 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
205 rows × 16 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ "name Store_1 Store_11 Store_12 Store_13 \\\n",
+ "DestinationName \n",
+ "60750101.0 11495.190454 20022.666503 10654.593733 8232.543149 \n",
+ "60750102.0 10436.169910 19392.094770 10024.022001 7601.971416 \n",
+ "60750103.0 10746.296811 19404.672860 10036.600090 7614.549505 \n",
+ "60750104.0 11420.492134 19808.368182 10440.295413 8018.244828 \n",
+ "60750105.0 11379.443952 19583.920000 10215.847231 7793.796646 \n",
+ "... ... ... ... ... \n",
+ "60816025.0 17324.066610 2722.031291 10884.063331 14178.007937 \n",
+ "60816026.0 15981.172325 3647.137006 10299.369046 13593.313651 \n",
+ "60816027.0 14835.342712 4581.333336 9637.139433 12931.084039 \n",
+ "60816028.0 13339.491691 6392.856372 8577.488412 11871.433018 \n",
+ "60816029.0 15257.855684 6394.920365 10253.752405 13547.697010 \n",
+ "\n",
+ "name Store_14 Store_15 Store_16 Store_17 \\\n",
+ "DestinationName \n",
+ "60750101.0 7561.399789 4139.772198 4805.805279 2055.530234 \n",
+ "60750102.0 6930.828057 3093.851654 4175.233547 1257.809690 \n",
+ "60750103.0 6943.406146 3381.778555 4187.811636 2046.436590 \n",
+ "60750104.0 7347.101469 4044.473877 4591.506959 2463.736278 \n",
+ "60750105.0 7122.653287 4103.725695 4367.058776 3320.283731 \n",
+ "... ... ... ... ... \n",
+ "60816025.0 13891.857275 18418.384867 16726.951785 20834.395022 \n",
+ "60816026.0 13307.162990 17833.690581 16142.257500 20249.700736 \n",
+ "60816027.0 12644.933377 17171.460969 15480.027887 19587.471124 \n",
+ "60816028.0 11585.282356 16111.809948 14420.376867 18527.820103 \n",
+ "60816029.0 13261.546349 17788.073940 16096.640859 20204.084095 \n",
+ "\n",
+ "name Store_18 Store_19 Store_2 Store_3 \\\n",
+ "DestinationName \n",
+ "60750101.0 225.609240 1757.623456 11522.519829 7529.985950 \n",
+ "60750102.0 1041.911304 2333.244000 10509.099285 6470.965406 \n",
+ "60750103.0 744.584403 1685.517099 10800.926186 6778.892307 \n",
+ "60750104.0 795.715285 1282.217412 11308.221508 7447.187630 \n",
+ "60750105.0 1731.462738 249.669959 11083.773326 7379.539448 \n",
+ "... ... ... ... ... \n",
+ "60816025.0 21441.247824 20875.680521 14662.484617 16569.371114 \n",
+ "60816026.0 20856.553539 20290.986235 14050.290332 15963.776829 \n",
+ "60816027.0 20194.323926 19628.756623 13341.313338 15301.547216 \n",
+ "60816028.0 19134.672905 18569.105602 11845.462317 14241.196195 \n",
+ "60816029.0 20810.936898 20245.369594 13763.826309 15918.160188 \n",
+ "\n",
+ "name Store_4 Store_5 Store_6 Store_7 \n",
+ "DestinationName \n",
+ "60750101.0 10847.234951 10604.729605 20970.277793 15242.989416 \n",
+ "60750102.0 10216.663219 9974.157873 20339.706061 14612.417684 \n",
+ "60750103.0 10229.241308 9986.735962 20352.284150 14624.995773 \n",
+ "60750104.0 10632.936630 10390.431285 20755.979472 15028.691095 \n",
+ "60750105.0 10408.488448 10165.983103 20531.531290 14804.242913 \n",
+ "... ... ... ... ... \n",
+ "60816025.0 12483.322114 11926.727459 4968.842581 8648.054204 \n",
+ "60816026.0 11871.527828 11342.033174 3625.948296 7919.659919 \n",
+ "60816027.0 11209.298215 10679.803561 2290.818683 7242.830306 \n",
+ "60816028.0 10155.147195 9620.152540 1846.795647 5746.979285 \n",
+ "60816029.0 11825.911187 11296.416533 508.931655 7665.343278 \n",
+ "\n",
+ "[205 rows x 16 columns]"
+ ]
+ },
+ "execution_count": 180,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ntw_dist_piv = network_distance.pivot_table(values=\"distance\", index=\"DestinationName\", columns=\"name\")\n",
+ "ntw_dist_piv"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Here the pivot table is transformed to numpy 2D array such as `spopt.locate` expected. The matrix has a shape of 205x16."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 181,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[11495.19045438, 20022.66650296, 10654.59373325, ...,\n",
+ " 10604.72960533, 20970.27779306, 15242.98941606],\n",
+ " [10436.16991032, 19392.09477041, 10024.0220007 , ...,\n",
+ " 9974.15787278, 20339.70606051, 14612.41768351],\n",
+ " [10746.29681106, 19404.67285964, 10036.60008993, ...,\n",
+ " 9986.73596201, 20352.28414974, 14624.99577275],\n",
+ " ...,\n",
+ " [14835.34271218, 4581.3333364 , 9637.13943331, ...,\n",
+ " 10679.80356124, 2290.81868301, 7242.83030602],\n",
+ " [13339.49169134, 6392.85637207, 8577.48841247, ...,\n",
+ " 9620.15254039, 1846.79564734, 5746.97928517],\n",
+ " [15257.85568393, 6394.92036466, 10253.75240505, ...,\n",
+ " 11296.41653298, 508.93165475, 7665.34327776]])"
+ ]
+ },
+ "execution_count": 181,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "cost_matrix = ntw_dist_piv.to_numpy()\n",
+ "cost_matrix"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now, as the rows and columns of our cost_matrix are sorted, so we have to sort our facility points and demand points geodataframes too. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 182,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "facility_points_gdf = geopandas.GeoDataFrame(\n",
+ " facility_points,\n",
+ " geometry=geopandas.points_from_xy(\n",
+ " facility_points.long, facility_points.lat\n",
+ " ),\n",
+ ").sort_values(by=['NAME']).reset_index()\n",
+ "\n",
+ "demand_points_gdf = geopandas.GeoDataFrame(\n",
+ " demand_points,\n",
+ " geometry=geopandas.points_from_xy(demand_points.long, demand_points.lat),\n",
+ ").sort_values(by=['NAME']).reset_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Set parameter service_dist for maximum service standard of distance or time."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 183,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "service_dist = 8000"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Below, the method is used to plot the results of the four models that we will prepare to solve the problem."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 184,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from matplotlib.patches import Patch\n",
+ "import matplotlib.lines as mlines\n",
+ "from matplotlib_scalebar.scalebar import ScaleBar\n",
+ "\n",
+ "dv_colors = [\n",
+ " \"saddlebrown\",\n",
+ " \"darkgoldenrod\",\n",
+ " \"mediumseagreen\",\n",
+ " \"lightskyblue\",\n",
+ " \"lavender\",\n",
+ " \"darkslategray\",\n",
+ " \"coral\",\n",
+ " \"mediumvioletred\",\n",
+ " \"darkcyan\",\n",
+ " \"cyan\",\n",
+ " \"limegreen\",\n",
+ " \"peachpuff\",\n",
+ " \"blueviolet\",\n",
+ " \"fuchsia\",\n",
+ " \"thistle\",\n",
+ "]\n",
+ "\n",
+ "def plot_results(model, facility_points_gdf, demand_points_gdf, facility_count, title, p):\n",
+ " \n",
+ " arr_points = [] \n",
+ " fac_sites = [] \n",
+ " \n",
+ " for i in range(facility_count):\n",
+ " if model.fac2cli[i]:\n",
+ " geom = demand_points_gdf.iloc[model.fac2cli[i]][\"geometry\"]\n",
+ " arr_points.append(geom)\n",
+ " fac_sites.append(i)\n",
+ "\n",
+ " \n",
+ " fig, ax = plt.subplots(figsize=(10, 15))\n",
+ " legend_elements = []\n",
+ "\n",
+ " study_area.plot(ax=ax, alpha=.5, fc=\"tan\", ec=\"k\", zorder=1)\n",
+ " _patch = Patch(alpha=.5, fc=\"tan\", ec=\"k\", label=\"Dissolved Service Areas\")\n",
+ " legend_elements.append(_patch)\n",
+ " \n",
+ " demand_points_gdf.plot(\n",
+ " ax=ax, fc=\"k\", ec=\"k\", marker=\"s\", markersize=7, zorder=2, lw=.5 \n",
+ " )\n",
+ "\n",
+ " facility_points_gdf.plot(\n",
+ " ax=ax, fc=\"brown\", marker=\"*\", markersize=80, zorder=8\n",
+ " )\n",
+ " legend_elements.append(\n",
+ " mlines.Line2D(\n",
+ " [],\n",
+ " [],\n",
+ " marker=\"*\",\n",
+ " markerfacecolor=\"brown\",\n",
+ " markeredgecolor=\"brown\",\n",
+ " markeredgewidth=.5, \n",
+ " ms=20,\n",
+ " lw=0,\n",
+ " label=f\"Unselected Candidate Store sites ($n$={facility_count})\"\n",
+ " )\n",
+ " )\n",
+ "\n",
+ " _zo, _ms = 4, 4\n",
+ " \n",
+ " for i in range(len(arr_points)):\n",
+ "\n",
+ " cset = dv_colors[i]\n",
+ " fac = fac_sites[i] \n",
+ " fname = facility_points_gdf.iloc[[fac]][\"NAME\"]\n",
+ " fname = f\"{fname.squeeze().replace('_', ' ')}\"\n",
+ " \n",
+ " gdf = geopandas.GeoDataFrame(arr_points[i])\n",
+ " \n",
+ " label = f\"Demand sites covered by {fname}\"\n",
+ " gdf.plot(ax=ax, zorder=_zo, ec=\"k\", fc=cset, markersize=100*_ms, lw=.5,) \n",
+ " legend_elements.append(\n",
+ " mlines.Line2D(\n",
+ " [],\n",
+ " [],\n",
+ " marker=\"o\",\n",
+ " markerfacecolor=cset,\n",
+ " markeredgecolor=\"k\",\n",
+ " markeredgewidth=.5, \n",
+ " ms= _ms + 7,\n",
+ " lw=0,\n",
+ " label=label\n",
+ " )\n",
+ " )\n",
+ " \n",
+ " facility_points_gdf.iloc[[fac]].plot(\n",
+ " ax=ax, marker=\"*\", markersize=1000, zorder=9, fc=cset, ec=\"k\", lw=.5\n",
+ " )\n",
+ " legend_elements.append(\n",
+ " mlines.Line2D(\n",
+ " [],\n",
+ " [],\n",
+ " marker=\"*\",\n",
+ " markerfacecolor=cset,\n",
+ " markeredgecolor=\"k\",\n",
+ " markeredgewidth=.5,\n",
+ " ms=20,\n",
+ " lw=0,\n",
+ " label=fname,\n",
+ " )\n",
+ " )\n",
+ " \n",
+ " _zo += 1\n",
+ " _ms -= (1)*(4/p)\n",
+ " \n",
+ " plt.title(title, fontsize=20)\n",
+ " kws = dict(loc=\"upper left\", bbox_to_anchor=(1.05, .7), fontsize=15)\n",
+ " plt.legend(handles=legend_elements, **kws)\n",
+ " \n",
+ " x, y, xyc, arrow_length, c = 0.925, 0.15, \"axes fraction\", 0.1 , \"center\"\n",
+ " xy, xyt = (x, y), (x, y-arrow_length)\n",
+ " ap = dict(facecolor=\"black\", width=5, headwidth=10)\n",
+ " kws = dict(arrowprops=ap, ha=c, va=c, fontsize=20)\n",
+ " plt.annotate(\"N\", xy=xy, xycoords=xyc, xytext=xyt, **kws)\n",
+ " \n",
+ " plt.gca().add_artist(ScaleBar(1))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 185,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for _df in [facility_points_gdf, demand_points_gdf, study_area]:\n",
+ " _df.set_crs(\"EPSG:4326\", inplace=True)\n",
+ " _df.to_crs(\"EPSG:7131\", inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## LSCP-B"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 186,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from spopt.locate.coverage import LSCPB"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 187,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "start_1 = time.time()\n",
+ "lscpb = LSCPB.from_cost_matrix(cost_matrix, service_dist, pulp.PULP_CBC_CMD(msg=False))\n",
+ "end_1 = time.time()\n",
+ "\n",
+ "time_spent_1 = end_1 - start_1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 188,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "start_2 = time.time()\n",
+ "lscpb = lscpb.solve(pulp.PULP_CBC_CMD(msg=False)) \n",
+ "end_2 = time.time()\n",
+ "\n",
+ "time_spent_2 = end_2 - start_2\n",
+ "total_time = time_spent_1 + time_spent_2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 189,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8sAAANjCAYAAACdvogsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXzV5Zn38c/vZCPbOYTsK2FfBQJRJCgICsRxhxZltKMzbcV2nnGe9umjM6PtdGbaWez4tOMsDljbOu64Va0tAQtVJICEBGTfd7IvJ3tylvv5IwlCyHLIdkLyfb9evCInv/PLdRJUvue67+u2jDGIiIiIiIiIyJds/i5AREREREREZLBRWBYRERERERFpR2FZREREREREpB2FZREREREREZF2FJZFRERERERE2lFYFhEREREREWlHYVlERERERESkHYVlEek1y7KMZVk+H9puWdZXLctab1lWiWVZLsuyyi3LOmBZ1iuWZT3cxfNusCzrRcuyDluWVWNZVpNlWacty3rbsqyVlmUFXHJteltdl/xyW5ZVbFnWR5Zl3e5jrR3dx1iW1WBZ1lHLsv7TsqxUX1+7iIiIiFwbLGN8/vutiEiH2oKyMcby4dq1wDeBBuAj4CQQDowFsoAaY0xKu+cEAc8BjwEe4BNgD9AEpACLgSTgHWPMV1qfk956byfws9ZbjQBmAtmtv/9LY8xz3dTb0X0AooGFwHVACTDbGHO+u9cvIiIiItcGhWUR6TVfw7JlWfOBz4BzwDxjzLl2nw8CbjHGbGz3eFvA3gt81RhzuN3nA4BVwD3GmK+2PpZOS8g9bYxJb3f9nwK/AOqAOGNMfRc1d3qf1s9/ANwF/J0x5oddvHwRERERuYZoGbaIDKT5rR/faR+UAYwxrg6CchYtQbkCWNY+KLc+z2OMeQV4yMc6fkVLUA4Hpvlefofa6o3t5X1EREREZBBRWBaRgVTe+nHiVTxndevHtcaYwq4uNMY09aCm3i6vubX1Y14v7yMiIiIig0igvwsQkWFlPS17f29vXb78BrATOGY63xNyU+vH3/dhHX9KS1e5Dtjv43NGWpb1w0t+HwUsoGXP8q+Al/uwPhERERHxM4VlERkwxpjzlmXdB7xAyz7fu1o/VWNZVi7wCvC6McZzydMSWz9esWzbR5eG3BHADKBtEvbfGGMafLyPA/jbDh7fDrxpjHH3sD4RERERGYQ04EtEeu1qpmG3Xm+jZf/yQiCj9Z/jWz/9MXBn25Jqy7LqgVBgckf7lbv4Gum0DOa6lIeWvc95wH8YY37beu29wKx21+42xvy6swFflmU5Wmv/GS0B/DFjzFpf6xMRERGRwU1hWUR67WrDcgfPt4AlwEtAAvAdY8zPWj93nJZjpW4zxvi8FLu7Kdbtrv0V0P5855eMMY/4MA17PHAUqAKSrqJTLSIiIiKDmAZ8iYjfmRYbgKdbH1p8yac/a/14K/3EGPOIMcZq9+sRH597jJZu9UiubnCZiIiIiAxiCssiMpjUtH68tEPdtrT5Ucuy4umCZVkh/VJV118zEIhs/a3+myoiIiIyROgvdiIyYCzLyrYsa7llWUEdfC4C+N+tv/207XFjzFZaBoJFA+sty5rQwXNtlmWtwj8Tqf8XEETLsVj7/PD1RURERKQfaBq2iPSZ1r2/nfk2MBn4KVBpWdYWWvb6uoEU4A5aljLvAP6j3XP/nJbhXI8BBy3L+gOwB2gCkmlZtp0CvN1HL6Uj7Y+OsgOzaRlS5gW+bYxx9ePXFxEREZEBpAFfItJrbQO+uhFFyxt0d9MyzGsmLcdCRdAyHGsf8Bbwc2NMcydfZy7wKHAzkERLR7eElunWrwNvG2O8rdem4+OAr650MlUbwAUU07Kn+v8ZY3b29GuIiIiIyOCjsCwiIiIiIiLSjvYsi4iIiIiIiLSjsCwiIiIiIiLSjsKyiIiIiIiISDsKyyIiIiIiIiLtXLNHR8XExJj09HR/lyEiIiKD0K5du8qMMbH+rkNERK5d12xYTk9PJy8vz99liIiIyCBkWdZpf9cgIiLXNi3DFhEREREREWnnmu0si4iIDBeWZfm7hGuCMcbfJYiIyBCizrKIiIiIiIhIOwrLIiIiIiIiIu0oLIuIiIiIiIi0o7AsIiIiIiIi0o7CsoiIiIiIiEg7CssiIiIiIiIi7Sgsi4iIiIiIiLSjsCwiIiIiIiLSTqC/CxAREZGuGWP8XYKIiMiwo86yiIiIiIiISDsKyyIiIiIiIiLtKCyLiIiIiIiItKOwLCIiIiIiItKOwrKIiIhw9uxZFi1axJQpU5g2bRr/9m//1uF1jzzyCG+//fYAVyciIjLwNA1bRERECAwM5Nlnn2X27NnU1NQwZ84clixZwtSpU/1dmoiIiF+osywiIiIkJiYye/ZsACIjI5kyZQrnz5/v8jnf//73eeSRR/B6vaSnp/M3f/M3zJs3j8zMTPLz81m2bBnjxo3jv//7vwfiJYiIiPQpdZZFRETkMqdOnaKgoIC5c+d2es0TTzyB0+nkl7/8JZZlAZCamsq2bdv4zne+wyOPPMLWrVtpbGxk2rRpPPbYYwNVvoiISJ9QZ1lEREQuqq2tZcWKFfzsZz/Dbrd3eM0//MM/UFVVxZo1ay4GZYC7774bgOuuu465c+cSGRlJbGwsI0aMoKqqakDqFxER6SsKyyIiIgKAy+VixYoVPPjggyxfvrzT666//np27dpFRUXFZY+HhIQAYLPZLv5z2+/dbnf/FC0iItJPFJZFREQEYwxf//rXmTJlCt/97ne7vDY7O5u/+qu/4o477qCmpmaAKhQRERlYCssiIiLC1q1befnll9m0aROzZs1i1qxZ/Pa3v+30+q9+9at885vf5O6776ahoWEAKxURERkYljHG3zX0SGZmpsnLy/N3GSIiIjIIWZa1yxiT6e86RETk2qXOsoiIiIiIiEg7CssiIiIiIiIi7Sgsi4iIiIiIiLSjsCwiIiIiIiLSjsKyiIiIiIiISDsKyyIiIiIiIiLtKCyLiIiIiIiItKOwLCIiIiIiItKOwrKIiIiIiIhIOwrLIiIiIiIiIu0oLIuIiIiIiIi0o7Asw5Ixhvz8fH+XISIiIiIig5TCsgxLjY2NvPfu25SUlPi7FBERERERGYQUlmXY8jTXsysvz99liIiIiIjIIKSwLMNawa7teDwef5chIiIiIiKDjMKyDFshwcFEjgjg6NGj/i5FREREREQGGYVlGdamTBhN3ufb/V2GiIiIiIgMMgrLMqxNGj+G40cPUltb6+9SRERERERkEAn0dwEi/hQcHER6cgx79uxh/vz5/i5nWGtqasLpdOJ0OqmpqSE4OJiIiIiLv0JCQrAsy99lioiIiMgwobAsw960SePYumMrWVlZwz6M1dTUYLPZCA0NxWbrn4UnTU1NHD16lBPHj1FZUUZVZSVVVRV4PW4iwkOJCAshPHQELreHhsYm6huaqW9oxGsgMtJOhN1OZKSDSIcDu30kkZGRl4Xq8PBwgoKC+qX2a1FtbS2FhYWkpqYyYsSIi48bYzDG9NvPWURERORap7Asw15KUjyNn+3iwoULJCcn+7ucTh0+fJja2lqmT59OSEhIn967sbGRDTnrKdiZi2VZNLvchIaFExER2fLLHklEhJ2ISPvFQHrpr+Dg4C7faKivr+fQoUPs27uHE8cOkRDjIC0xhvGJkdgnxhMZGcGIkK7v4XK5qauvp66+oeVXXQUVZ89xvtFFfWMz9Y1N1Dc00dDYRFBwCJGR9pZfDgeRkSOJtNuvCNZhYWFDMiw2NTVx8OBBCvLzOHPyKKMcEZRX1ZCcmk58YjIV5aWcO3Mat8vFmHETGD9xMmPHjiU+Pn5Ifj9EREREekJhWYY9y7KYNC6ZXXk7B21Y3paby6YNHxA3ysFH77/NtOsymJ15Penp6b3qhhtj2L9/P795/x1S4yJ55P7bGRESgtfrpaGhkfqGRuobGqivb6S+vpDS8lOcaWqmodFFQ1MzDY3NNDQ2YYzVEqIjW0J1ZKSdiMhIgkNGcPzoIc6ePkFKwijGj05m4cpsRvQg7AcFBTLSYWekw97ta2psam4J1nUN1Nc3UFd7nqLS45y4GKpbam9saiYsPIJIeySRkQ7sdgeRrb8iIiIYM2YM4eHhPf32DiiPx8Px48fZnZ/HoQN7iY+OZNK4NJbMvYOgoEBcLjdnzxdy7sJpxsSN4uaZC7AFBHDuQhFnDn1O7ifraWz2Mm78JCZMmsLMmTMJDg7298sSERER8RvLGOPvGnokMzPT5OXl+bsMuUY1NDTwzI//lsf+5F4AqmtqeePDT/irp344qJbwGmPYuGEDu3d+yn23L8QeGUFdfQOHjhzn4LFzeG3BZN6QxayMDKKioq7q3k6nkw/ef4+iM8dYfNNsUpISelxnc7OrJVQ3NFJf33AxZDc1u0iKjyM9LZmgoMH33lzbmwIXu9VtAbuxiZq6Ri6UVDJ67EQyZmcyefLkPu/o95YxhrNnz7JndwF7CvKwhwUycUwKkyaMISx0RPc3aKe2to4z5wo5dvoCJZX1ZN20kLk3ziMsLKwfqhfpX5Zl7TLGZPq7DhERuXYpLMuw1D4sA7z7283MX3wXM2bM8GNlX/J6vbz/6/c4dWQP995+yxXhxxhDSWk5+w8f5+ipIpLTxjDn+huZOnVqlx1Br9fLjh3b+X3OR0yfkMz1GdMJDBx8QXYwaG52cfzkGQ6fOEdRmZMp02YwM2MO48ePJyAgwG91lZaW8sWe3RTs+hzjbmTCmESmTBjbbdf9apRXVLFrz0FOXShn9vXzuHFeFqNGjRr2+/rl2qGwLCIivaWwLMNSR2H54JETnCiu58++/qgfK2vhcrlY98ZrVJed5c4lNxMc3HW32+12c/zUWQ4ePU1xeQ3XzZrDnMwbSE1NvSzcFBYW8t476/A2Orn15usZFeXo75cyZNQ3NHLk2EmOnLyAs66J62bOYeasDEaPHj0gAbK6upq9e/dSsOtzqiqKmTA6kSkTxhAXG92vX7+2to78vYc4fOI82IJISk4hJXU0SckpJCYmKkDLoKWwLCIivaWwLMNSR2HZ7Xbz4hsf8fh3/5qRI0f6tbZX/udXBHpqWLZo3lV3MGtr6zhw5ASHjp/DFhRG5g3zmDZ9Onk7d7Jz2ydkzZnMtMkTFHB6obqmloNHTnD05AXcBDIz43pmZWQQHx/fp9/XxsZGDhw4QEH+55w7dYIxKXFMnjCa1OREvwziqq2to6SsguLScsoqqymtqKHZ7SUxMZnk1HSSU1oCdExMjF877yKgsCwiIr2nsCzDUkdhGWDTlh3EpE5jydKlfqmrurqaX/3iBeIdgSzMyuz18K6ikjIOHD7OsdNFpCbFsHDeHMLDQvuwYiktr+TQkRMcPV1IWMRIZs25gRkzZl7VHvL6+nrKysooKyujpKSY4sILlJYUUeOsIiVhFBPHpTIuPW1Q7vtuaGyipLScktJySiuqKauqobaukbiERJJTR5OSkkZCQgLx8fGDah6ADH0KyyIi0luD729eIn40Z+ZU3vloM8HBQSxYeEufdAmbm5s5ceIE8fHxXQaosrIyfvnzNUweHcP1s6f3+mtblkVifCyJ8bHc2qs7SVdio6OInTeHm240XCgq4fCxAj79/XpiE5KZNft6pk+fTkREBMYYqqqqKCsro7S0lJKSIkqLCikuLsLd3EjUyEiiIsMZaQ9jXMJIrp+SwUhH5KDv0IaOCGF0ahKjU5MuPtbc7KK0vKUDfWDXSbZU1VDlrGNUTBwpqWkkJqeSlJREQkLCZWc/i4iIiAwmCssil3DYI1l512Lez9lEVVUV2bf/UY8mIFdXV3P48GEO7NvLyROHGRFoMWHqbFZ8deUV1zY3N5Ofn8+mDb/lhhljuW7qxL54KTLALMsiOTGe5MR4FmZ5OHOukIMFn5Lz0XvYHaOoqqwgOMhGlCOCKHsYUQ47MyfEE33DRMLDw4bUsvjg4KCL34s2Ho+HsvJKikvLOX1wB3m5NZRX1mB3RJGcmkZSchpJSUkkJiZeM8d1iYiIyNCmsCzDktfr7fRzERHhfOWuW/n9p5/zLz/+IdNnzmZO5g2kpaV1GmiMMRQVFXH40CH279tDWUkho5NiGJOWyC2Z2XjcHl759SbuuW/5xcnT9fX17Ni+jdzPPiEuKow/WjSHxPjYfnm9MrACAgIYMzqFMaNTcLncVFY5cTgiCRnG5xYHBAQQHxdDfFzMxce8Xi8VVU5KSysoOl7A3rxPKa2oJjQ0nMTkVFLSRpOUlExiYiJ2u31IvaEgIiIig5/CsgxLBw4cIC6682N2QoKD+aPbbqKurp4Dh4+z7pWfExAcTubcecyalYHdbsftdnPq1CkOHtjPwf1fYNyNpKfEccO0VJJvm3P58tkQiHaEcfToURITE9n62Rbyd24jPSma+5beSPQo/w0Uk/4VFBRIXGy0v8sYlGw2GzGjoogZFcWUSeOAljeenNU1lJRVUHLuAEf27qCsohpjBZCckkZy6miSNYlbREREBoAGfMmw9N67bxPqdZIxY4pP1xtjKCwuZf+hExw/W0x8YgolRRcYGRlKenIs48amER01ssu/uB86eoJPdx7EeDxMGZfE7BlTiIjQclMRX1w5ibuaZpchMSm5JUCnpJKQkEBcXJxfJoXL4KMBXyIi0lvqLMuwdP7cGebPGuvz9ZZlkZQQR1JCHAubXZwvLCYua+pVTZaePGEs8bExhIaGMKIH+6BFhrOIiHAiIsIZm5568bEvJ3FfoCD3IKWVNRgriJtvuZU5czJ7NG9AREREpI3Csgw7Ho+H0uIiYkbN6dHzg4ODGDM6pUfPjRrZ+dJvEbk6HU3iLi4pY2f+Z2za+DvmzV/IjfOy+nxgWFNTE0ePHiUgIIApU3xbnSIiIiLXHoVlGXbKysoIDwshOFhnvooMNfFxMdy59GYqq6rZtWcvz27ZxOzMedx08wJGjuz5bIDa2loOHTrE/r1fcPLEYRJiHFRUVtN07wPMmjWrD1+BiIiIDBYKyzLsFBUVETMy0t9liEg/ihpp57aFNzKvrp5dXxzk3//fP3PToqXccssin4eCVVRUcODAAfbvLaDo/FlSE6MZOzqZRdffTkhwMGUVlbz33psEBwczderUfn5FIiIiMtAUlmXYOXf2LDFRCssiw0F4eBgL5s1hzsypvPPRJjweD7feeluHgdkYQ2FhIQcP7Gf/3t1UV5UzJiWOmeNTuHPhzIvHvrWJGRXFnbfdyK/XvcwXE6ex7PY7iIqKuuK+Ho+H4uJizp07x9nTpygvK8ERFcWoUbGMio5m5MiRREVF4XA4Lp+iLyIiIn6ladgyrBhj+Nd/+THZN8/UcT4iw0xdfQPv/nYzMzMXcNuSJViWhcfj4cyZM+zft5f9e3djeZsZkxLHuDGpJCXE+dSFdrnc7Nqzny8On2Fu1i1kzJ5NcXExZ06f5uyZE1w4d5bI8BHERzuIj40iaqSD2to6nDW1VNc2UFPXQHVtA/UNjcTGJTB9xmymTZ9OfHz8AHxXhi5NwxYRkd5SWJZh5cKFC7z84n/y8Mo/0vmsIsNQW2BOHD2ZEcHBHNi/h8iwYMakxDHehyPgulJbW8dnn+/mQkkVsaMiiRvlIDEhjvi4aEKCg7t9vtfrpbC4lGMnznL0dCHjJ13HXffcS1hYWI/qGe4UlkVEpLcUlmVYyclZT03RUW6e17NJ2CJy7aurb+APn+0kMSGG8WPSsEdG+LukK7hcbnI/382J8xXcs+J+Td3uAYVlERHpLe1ZlmHDGMMXBXlk3zzT36WIiB+Fh4Vyx9IF/i6jS0FBgSycn8m4C0V88NbL7J8yi4mTJhMfH6/l2SIiIgNEYVmGjcLCQryuBmJjRvm7FBERn6QkJfDHy5exs2Afuz47zfniCmbOuZElS5cxYsQIf5cnIiIypCksy7Bx8uRJUhNjtFdZpI8ZYyjP30f07On696sfBAcHMX9uBgANjU1s3VHAz/71n7n9rvuYMWNGt9/z5uZm9u/fT2VlBYmJSSQmJuJwOPSzEhER6YbCsgwbkZGRNDa5/F2GyJBTe+oce370HDf89G+pDAzg1fXrKXdWE+2w82B2Nmkpif4uccgIHRHCbQtv5EJRCR9/9DZ5O3dwz73LiYmJuew6YwwnT56kYFce+/cWkBBjJ3pkBEf3fU5ZRTVebCSnpJGcOprk5BQSExMZNWqUArSIiMglFJZl2IiOjsZZW+/vMkSGnOKtOwF48Z9/yoapUQRljSYwMomjNY1sefdF4qvgx48+SlJCnJ8rHTqSEuL44+XLKNh7kOef+1fmLbiVhQtvobq6moL8XeTn7SAQN5PHJfPQ8tsIDwu97Pl1dfUUl5ZTXHqC7Ud3U1pRQ7PbS1JSCsmp6SSntATomJgYbDZbr+utqalh+7ZtjIyKIj4+nri4OC0jFxGRQU/TsGXYaGho4J9/9AO+9Sf3qnsifWq4LUP2NLsoyc3DuD0AHHn5HTzVtdRFBPN59gQAvAE2jl8XjycoAE+TG/fre1jz+HcUmPtBTW0dn+Tmc760GhseJqQnMm3SuKuez9DQ2ERJaTklpeWUVlRTVllNbX0TCUkppKSOJjkllcTERGJjYwkM9P29dqfTyS9e+G9iIm2AjYrqOiqqagiPsHPfVx5gwoQJV/mKfaNp2CIi0lvqLMuwERoaSnBIKHV19UREhPu7HBlCLl2GHJme4u9y+p23sYnjL79LU0UVtuBgXK5mAoCQBhc3vX+QQJeXOnsIpyfH4AkKICAkEFbN5Km1a/nlD572d/lDTmREOHcuvZnKqmoc9oged4JDR4QwOjWJ0alJFx9ram6mtKyCktIS9n1+jM2V1VTXNhAbn0BK6miSklNJSkoiPj6eoKCgK+5ZWVnJz9f+F1PHxJI5a/rFx71eLy++/hsiIgbfsV0iIiJtFJZlWImNjaOiqlphWfpU2zLkkq07h0VYDrJHcONzf8eBf/8lZQX7CWhdoBToMbhsNk5Oi2PTyutwjfjyfzEBIYEUOwxnzhVqD3M/iRpp7/N7hgQHk5KUQEpSwsXHXC43ZRWVFJeUcWT3abZurqHKWcuomDhSUtNITE6lsaGB40cPc+7sKbLmTGbW9MmX3ff02QtExcSTmKg/CyIiMngpLMuwEhuXQGWVU39ZH8aMMXy6dRsbct7FcjsxXheWLQgT6GDpsuUsmD+v26XU7ZchF/5+KwAXfr+V0PhYAKzAAOKyMgkIvrLbNhQEhodx3ZPfZv0f/y+CL3m8KSyQnK/Ngg6+h0FZ6by6fj1//Y0/HbhCpc8FBQWSGB9LYuufdQCPx0N5RRXFpeWcPriDwIAArhuXQPZN0wju4N+BfYdPcMONtw5k2SIiIldNYVmGlZi4eAqPnfd3GeInORs38HHOOibFnmfFDDc225eBzus15G89wIfvJbIk+36WLVna6X3aL0M2Xi8Arpo6Dr/wOt7mZkJGjSRmzowhG5YBGovLCGxsxhVkw+Y1eG0WYdVNRFY0UBMddsX1gfYRVFQX+qFS6W8BAQHExUYTFxvd7bXVNbVcKHHytRkzBqAyERGRnuv9iEuRa0hMTAxVNQ3+LkP84LU3XuPAtud5cN4ZMsd7KHEaXtoRxHOfhPDSjiBKnIbM8W4eyjrLgW3P8/qbr3d6r7ZlyLFzZ4EFxu0GWj9aEDt3Fjf++98TFDm0l/sX5+ZhAw7MiOeXf7uYw3OSsRkYt7e4w+vd1Y2MskcObJEyqBhj+P2nn7Ng0RJCQkL8XY6IiEiXug3LlmWNsCzrc8uy9liWtd+yrL9rfXyUZVkbLcs62vox6pLn/LVlWccsyzpsWdaySx6fY1nW3tbPPWe1rnW0LCvEsqw3Wx/fYVlWet+/VJHW46Nq6vxdhgywnI0bKD7yFoum1VHq9PKjzRE8WzGDEysfwPnnf8KJlQ/wbMUMfrQ5glKnl0XT6ig8tI6cjRs6vWfbMuSgiMs7qEER4Vz35LcJbHdUz1AUOSaNpG9/jY/twbhCAtly31R+82dzKEvqOBC7ck/x0O23D3CVMpgcPHwcly2Mmxcs9HcpIiIi3fJlGXYTsNgYU2tZVhDwmWVZvwOWA783xvyzZVl/BfwV8KRlWVOBB4BpQBLwsWVZE40xHuB54FFgO/BbIBv4HfB1oNIYM96yrAeAfwHu79NXKgJERUVRU9uA1+vtk7NDZfAzxrBx/Zs8lNUSlJ8piCdi9V04Qr78z1+QPRTHvVl4mm7gmbUf8kRGMYun1/FqzjqW3rak0z3MjcVlNFVWYwsOwni9WDYbTZVOGovLCE2I7fA5/fH6ersHu6eiM6YRDcRv+5SqJjcBIYGcnRTT4bWeJjfxTovU5IQOPy9DX11dPZ/lHeDrjz1OQECAv8sRERHpVrdh2bQcxFzb+tug1l8GuAe4pfXxl4A/AE+2Pv6GMaYJOGlZ1jHgBsuyTgF2Y8w2AMuy/ge4l5awfA/ww9Z7vQ38h2VZlrlWD4GWQSsoKIhIhwNndW2/TI6VvtUXQfDTrduYHHcBgDX5diJW39VylFEHAkICiXj0LtasWcfTi2qZFHuBLbnbWTB/XofXF+fmgddL0q0LGPe1FRz7n3c4v/4PlOTuYvTy7N69eB/01R7s3vrxo4+y+rmfwqqZHX5v285Z/sfHv9tvNcjgt3lrHjdk3UJSUlL3F4uIiAwCPg34siwrANgFjAf+0xizw7KseGNMIYAxptCyrLjWy5Np6Ry3Odf6mKv1n9s/3vacs633cluW5QSigbJ2dTxKS2eatLQ0X1+jyGViYuOprHIqLA9yfRUEN+S8y4oZbooqDc609Ms6yh0JCAmkOjWdosovyBjr4t3173QaliPHpDHrB39JdEbL+bGTVz9I7A0zgf7p5F7qtTdeo/jIWzw4r2VbQVGlIedIMM5GG44RXpZNbCJzvJvM8WfZvO15KirKWXX/qn6pJSkhjjWPf4en1q6l2GEIykon0D4Cd3UjrtxTxDst/vHx75I4QN12GXyOHD9FdaPF4ls1AVtERK4dPoXl1iXUsyzLGgm8Z1nW9C4u7+hviaaLx7t6Tvs61gJrATIzM9V1lh5pOT6qCMHDjngAACAASURBVEj1dynSib4Mgpbbic1mkXMkmLCVGT59/dDFGeS8dZiH57qw3M5Or4vOmNbBY13957FvtN+DvSbfjjMtnbCVGQRGjqC8ppFnNxXg2H2K1bOrWTStjk371pGzMbrfOsxJCXH88gdPc+ZcIa+uX09FdSGj7JE8uOIbnR7V1nZtubOaaIedB7OzdazbENTQ2MQn27/ga3/2LYKChu50eBERGXqu6ugoY0yVZVl/oGWvcbFlWYmtXeVEoKT1snNcnkJSgAutj6d08PilzzlnWVYg4AAqrvK1iPgkNi6e43uP+bsM6URfB0HjdQFQ3WQjMHKETzUE2kdQ3WRd9vzBoj/3YPeFtJTEbs9RvlBU0tKFHglBWaMJjEziaE0jW959kfiqlmXdSQlxXd5Drh2f5OYxKzOL0aNH+7sUERGRq+LLNOzY1o4ylmWFArcBh4APgIdbL3sYeL/1nz8AHmidcD0GmAB83rpku8ayrBtbp2D/SbvntN3rK8Am7VeW/hIdHa3jowaptiDYFpSfKYjHs3oljnuzCLKHYlnWl0Fw9UqeKYin1Oll8fQ6Ps5ZR0f/2bBsLZ0se4gXd02jT3W4qxuxh5jLnj9YXLEH+1Ef9mDnt2w5aNuD7U8XikpY/dxPqbpvPGHZky/7uYZlT6bqvvGsfu6nXCgq6f5mMuidPH2Okqomlixd1v3FIiIig4wvneVE4KXWfcs2YJ0x5jeWZW0D1lmW9XXgDPBVAGPMfsuy1gEHADfw563LuAG+BfwKCKVlsNfvWh9/EXi5dRhYBS3TtEX6RXR0NFXVOj5qMOqPYVwm0IHXa1g2samlI31vVrd1NGwqIHtiEx6vhQl09P6F9aH+3IN9qf6asv3U2rUEdjIIrK1eVs3kqbVr+eUPnr7q+8vg0dTczObcAr7yx3+mM5VFROSa5Ms07C+AKzb6GWPKgQ4ndRhjfgz8uIPH84ArNvQZYxppDdsi/c3hcNDY5MLlchMUdFU7EaSf9UcQXLpsOflb95M53oNj9yk8TTd0GtSgZXKz/ewp4sfbyDsWyLLsFb16TX0dOvtzD3ab/pqyfeZcIcUjIcyHn2uxw3DmXKH2MF/Dtu4oYNL02UyYMMHfpYiIiPSIkoIMOzabjVHRsVQ5q4mNGeXvcuQS/REEF8yfx4fvJZE5/iyrZ1fzzNoPO1267GlyU7v2Q56cUw3YOFyaxNezbuzx6+mP0Nnfe7D7c8r2q+vXE5Tl277VoKx0Xl2/vtv9zzI4lZZVcOJ8Bd9ZtdrfpYiIiPSYwrIMSzFxcVRUORWWB5n+CIKWZbEk+342b3ueRdPqeCKjmDVr1lGdmk7o4oyLRxw1bCrAfvYUT86pJsZuY9O+cG7Lvr/Hw7D6K3Reuge7rKaRIHtot8/xdQ92f0/ZrqiuITDSt05xoH0EFdWFPl0rg4sxhk+25XPbsjsJCwvzdzkiIiI9prAsw1JcXAKV5Sf8XYa0019BcNmSpVRUlLN5/zoWTavj6UW1FFV+Qc5bh6lusrCHtOxpThhvA1qCcuLklSy7bUmPXkd/hs7+2oM9EFO2R9kjOXIVP9dR9shur5PB59iJM7itUK6//np/lyIiItIr3U7DFhmKYmLjcFZrIvZgc2kQrN9U4NNzvgyCpsthXKvuX8XUed/ildxU8o4FEuuweHiui79Y0MzDc13EOix2Hgvkldw0pmV9y+elxVe8hn6Y6H2ppcuWk38ikIQoG44zp/A0ubu8/uIe7CgbBSeCOt2DPRBTth/MzsaVe7rb6wBcuad46PbbfbpWBg+3283WnXu5857l2Gz6K4aIiFzb9H8yGZaio6OpqtVE7MGmv4Jgm2VLlvKTf/05E2/6Pu9+MZO380bz1udJvJ03mve+mMWkm77PT/71hasaWtVef4fOBfPncagkCYDVs6upXfthp9+ntj3Yj82pBuBwaRI3d7IHe0POu8we66ao0oszLb3LIWhttbcMV/OSMdZFzvp3urweWs5gjq/Cp59rvNMiNTmh23vK4JL/xUGS0icybtw4f5ciIiLSa1qGLcNSdHQ0VU6F5cFmIIZxWZbFgvnzfDo+qSf6+2in/tqDPRBTtgF+/OijrH7up9DJ8VGeJjeF/7ae0WFunv7rb/b6qCoZOHV19ew+cJJvPf49f5ciIiLSJxSWZVgKDw/HWDbqGxoJC/VtkJT0P38N4+rT1zAAobM/9mD395TtNkkJcax5/Ds8tXYtxQ5DUFb6xZ+rc2MBMedP8aP5LT9X6N1RVTKwcnfuIfPGBcTExPi7FBERkT6hsCzDkmVZOEZGUV1do7A8yAz0MK6+NlChc9X9q8jZGM0r699kclwhGWNdPDz3y+d6vC17sA+XJLEke2W3IbM/p2y3l5QQxy9/8DRnzhXy9E9/RnnZESbGN7NsYhPEwUcHQ/rkqCoZOCWl5ZwucrLia4v8XYqIiEifUViWYccYw2dbPqW+uoLoUVH+Lkc60NdBcCANZOhctmQpS29bwpbc7by7/h0stxPjdbXcI3AkS7OX842sG33quPfXlO2uHDy4lwzHERZl9c9RVcYYPt26jQ057172vdHS7r7VclRUAUuy7yQ0tPs/7yIiItcKhWUZVrxeL7/58AOO7Mtj5d23EhSkfwUGq74MggNpoENnX+3BXrpsOflb95M53oNj9yk8TTd0OeTr4nC18TbyjgV2O1ytvf4+qipn4wY+zlnHpNjzrJjhxmb78lot7e5bR0+cxhsYRmZmpr9LERER6VNKCjJsNDc388brr1Jbfo6V99xGSHCwv0uSbvT3MK7+MNChs6/0x3C1rjq7SalTmBR7HmidGr7ah6nha9bx9KLai1PDO/tz8dobr1F85C0enNcyxK+o0pBzJFhLu/tBy1FR+1j50Dd0VJSIiAw5CssyLNTU1PA/v3oRe7Cbe2+/hYCAAH+XJEPUQEz07k5Plh/39XC17jq72w/vpuCki4pqW59ODc/ZuIHiI29dPOe6r5d2y+V27TlAyphJjB071t+liIiI9DnLGOPvGnokMzPT5OXl+bsMuQaUlZXxy5+vYWLaKObOmTHolu1Kzw3WPak5GzdwoDV0tgW2zkLnY5eEzmnzv93rQWWXhtTZYztYfnwiiEMlnS8/fv3N1yk63DJcDaCo0kvOkZDLh6tFtXQQ24arte/KtnV229/j0s5u2z3+7gMb3r940Ke93S5nA2PfeoOH57p4O280P/qnFy77vDGG//u9b/BQ1tkvl3Z380bFExnFxDpsvLotjWd+8oL++3AV6urqefW9j/n2X/5foqOj/V3OFSzL2mWM0dpwERHpMXWWZUirr6/npV+8wMyJicycPtnf5UgfGsx7Uv010bsvlh/3drja1XZ2R40MoaqPpoZ/unUbk+MuAH2/tFuu9NmO3Vw/b+GgDMoiIiJ9QWFZhiyPx8Prr75MWly4gvIQM9j3pBpjSEoezR/+4GDP0VpCg1yEBhs8Hjc3Twhg5lgbXtO3E737cvlxT4er9WRo1xgqcPfR1PANOe+yYoabokrTp0u75UrFJWWcL6th5SM6KkpERIYuhWUZkowx/ObDD/DUl3HTsoX+Lkf60GDfk3ppx3v14raOd8swOa/XsP2Ql5+8A6GRyTz88Oo+mejdH5OlezJcrSed3aL/WEdDH00Nt9xObDaLnCPBhK3M8Knm0MUZ5Lx1mIfnurDcTp+eM9x9eVTUXYwYoXPqRURk6NLoShmStm/bxtEDu8i+db4mtA4hbaGwLSg/UxCPZ/VKHPdmEWQPxbKsL0Ph6pU8UxBPqdPL4ul1fJyzjv6e0fDaG69xYNvzPDjvDJnjPZQ4DS/tCOK5T0J4aUcQJU5D1tQAnviKxfQUJ+fPneqTPbJXhNRO9unCJcuP8+0AF5cf94UNOe8ye6ybokovzrT0LqeAt9XSODadkMPH8TS5u7z24tTwKBsFJ4I6nBretjS7uslGYB8t7ZYrHT52EoIjmT17tr9LERER6VdKETLkHD16lN9v+IC7l96s46GGmMESCjvSvuP9o80RPFsxgxMrH8D553/CiZUP8GzFDH60OYJSp5dF0+ooPLSOnI0bev21exJSW5Yfe8kY6yJn/Tu9rgEu7eyGELbY985uSoSL2rUfdhqY24ZxPTanGoDDpUnc3MHU8Lal2fYQL+6aRp++fndLu+VyLpeb3Lz93Hn3fXojUkREhjwtw5YhpbS0lHWvvcTtt9yAwx7p73Kkjw3WPan9sQz6avT38mNfp473tLPrwsYTGcX88J/eIHzm2B4dVQVgAh14vS3D057tbmm3MaQdLmPfgSNdLu2Wy+3as5/08VMZM2aMv0sRERHpdwrLMmTU19fz8q9+zo2zxpOSlODvcqQfDNY9qf6ewtyfy4+vZur4pZ3dsqsc2hXrsHGjo4ol0T2fGr502XLyt+4nc7wHx+5TeJpu6PTnEF1Ywx2/zKc2ror4CTbyjgV2uLRbvlRbW8eeQ6f5X//7CX+XIiIiMiC0hkqGhLbJ16mx4UyfMtHf5Ug/Gax7Uv29DLq/lh/7sgc7c7ybh7LOcmDb85wuqrvY2a3fVOBTHV8O7TKUVVvEOiwenuviLxY08/BcF7GOlqnhr+SmMS3rW11ONV8wfx6HSpIAWD27usul3WPzL2AwrHS0fA86W9otX/rs893MzbqFUaNG+bsUERGRAaHOslzzjDF89JsPcdeVcVO2Jl8PZb3pXF76/D6vy88d76taftyqu8nSPZk63tTsYt0WwwMLbd12duHLoV1x4yze/gy8QfH8x2+cBODGY6CuMQD7qGS+9tDX+UbrUu+uWJbFkuz72bzteRZNq+OJjGLWrFlHdWo6EQtmMulUFdQ103zwDFNO1WNhwzoXye7GQJaMv56iT7YTl5VJQLD2LrdXVFzKhbJaHvhTHRUlIiLDh8KyXPN27NjO4X153H/PbRo4M8T1Ryjsk7r83PG+muXHcMlk6fEdLz/u6R7s7Ixm/uUtC2MMq2dX88zaDzsdwtY2tGvpyEp+vt4wfXQAK+aXty7zbvm+eL0e8k8U8uF7L9LYUOvT0V/LliyloqKczfvXsWhaHU8vqqWo8gs2vX2ErNNxhHpsYDNYrV/D0xBA8gUHtrN5HN9zjJg5MxSW2zHG8Mn23Sy9/W5CQkL8XY6IiMiAUbKQa9qxY8f4+Hfvc88yTb4eDpYuW07+iUASomw4zpzqk+OG+oK/pzBfzfJjXyZL92bq+C0zbLy8OYhYR8vQroA166h+LxeXswFjDC5nA9Xv5RKwZh1ZQefBwDdvD2be1IBul3m//ubrPn0/Vt2/iqnzvsUruankHQsk1mHxx1nNJK84T3BKA5YFeFvCsg2LwMBAYufO4sZ//3uCIsN9+hrDyaGjJ7GF2MnI8G3VhIiIyFChzrJcs8rKynjz1Ze4fZEmXw8XC+bP48P3ksgcf9bnzuWTc6oBG4dLk/h6P+1J9XfHu6vlxz2ZLN2bqeOZEyx2nIhh8/76Lzu7FXt45YVDnK2AETYvY8IaaGgyBCQHsGR2kE/LvG+ZWstLm17mD3/IIXZkUKcTudssW7KUpbctYUvudt5d/86XU7zDg5hnWYzgyzO3gyLCue7Jb/fJmddDjcvlJnfXfh585DGt3BERkWFHYVmuWVs+/QPTJyRq8vUw0tehsK/09TLonuhs+XFPJkv3dg92UmwYU+c9zCvr3yTQdZqaOjcLxxnmLAnAZrMwJpif/66Zu+cF+bTM++///QPGN5wna4qHORPOdzmR+9Kl2pZlsWD+vMsmjTcUlZL7509jCw7EeL1YNhtNlU4ai8sITYjtwXd+aMvbvY+xE6YxevRof5ciIiIy4BSW5Zrk8XjY90UBD9ylgV7DTV+Gwr4yWDreq+5fRc7GaF5Z/yaT4wrJGOvi4bkujDHsOeHlo+1uXB6LZk8QEZHBlLt38Uny6Cu6sn2xB3vZkqWUlZVy/sDrPLCwpSNZVOkl50gwp0otRgQEUlTp4ue7uz9qK+Yv7qZmzTqun1R78R7ORhuOEV6WTWwic7ybzPFn2bzteSoqyrucmF2cmwdeL0m3LmDc11Zw7H/e4fz6P1CSu4vRy7N9eq3DxZlzhew/Vsi3H+/8+ykiIjKUKSzLNenkyZPYw4KxR0b4uxTxg85CYRuPt+W4ocMlSSzJXunTYKjeGEwd7/bLj4sKz9BYV8lNU+FPlwVf0pWtxOut6LAr2xdTx3M2bqDk6NssndXc4TLr+ppG/un97bgSRpDkwzLv8lFJfH/DBRrHdT2Re9O+deRsjO70Zx45Jo1ZP/hLojOmAzB59YPE3jCTtqFi0qK0rIKcT/L444e/SVRUlL/LERER8QvLGNP9VYNQZmamycvL83cZ4ie/fu8dApvKuH72df4uRfzIGMOW3O3kXLon1RYEgSNZmr2cm7Nu9CmIGmP4dOs2NuS8e9l9OtsP25nX33ydosMtHW9o66SGXN7xjmrpsrZ1vLvqgvbWa2+8dvH4p0vrubQr21bP5v3hJExqqeep73+PFTP2UOI0PFsxw6c92NXv5fJ/or8gxmHxzp4ZNDdU8VDW2S+XWXfQaT//63ziFk/pNow3lddybt3npP/Zgi679U9kFBPrsPHqtjSe+ckL2oPcQ9U1tbz1m83ced8qZsyY4e9yesyyrF3GmEx/1yEiItcudZblmuP1etn3xW5W3nGTv0sRP+toT+rVytm4gY9z1jEp9jwrZrh93g/bkcHU8e7JOcltXdne7sFOSZtGcOVbQOs07U6WWbvrm3xa5n3h/fxOgzJcMpF7zTqeXlTLpNgLbMnd3qs/F8NVY1MTv17/KQtvveOaDsoiIiJ9QWFZrjmnTp0iIjRwUE7APnOukFfXr6fcWU20w86D2dmkpST6uyzpRFvn9cF5bZ1X06v9sNDFFOZLOt7f8LHj3VM9PSd58fQ6Xs1Zx788s/aq9mCf/38fMNsq5xfrLZzuKJKTD/CVmd1P0w4MC8HdzTLvxmInIfH2LsM6XD6RO2Osi3fXv6OwfJXcbjcf5mxh2qwbyZo/39/liIiI+J3Cslxz9u39gnGp8f4u4zIXikp4au1aikdCUNZoAiOTOFrTyJZ3XyS+Cn786KMkJcT5u0y5RG86r911hHva8e6r5eBXnJPczQCt9l3Zz7bt8GkPdv2mAhxnT/GPC6qJsYfg9Rp2Hq1i28EKbBndT9OOnjeO0i2HSbpj1mWPNxY7Kd92HHddIw2FTlLum+3T9+/SidyW2+nTc6SFMYb1m3KJTR7P7X90h5awi4iIoLAs15iWJdj5rMjufg/lQLlQVMLq535K4KqZhLXr3AVlT6aqyc3q537Kmse/o8A8SPS287r0tiV9Hib6cjl4b85JbuvK/vgf/vWKqePvbMln338cYOTIQOwhhtnxDeSHhfJaQejFTvzcSYYjZ11AcLfTtEfEO2gqrsbT5CYgJJCm8louvJ9PSLyduMVTCIwcgbumkdJPD1P6yWGS7plNSHTnQ/3aT+QW332Sm4cJHsmKr65UUBYREWll83cBIlfj9OnThAbZGOmw+7uUi55au5bAVTO77NwFrprJU2vXDnBl0pkrOq+dLDGGSzqv+S1/5tr2w/al1954jQPbnufBeWfIHO+hxGl4aUcQz30Swks7gihxGjLHu3ko6ywHtj3P62++3uX9vjwnOYSwxVdxTvKREAJs1sWu7Kr7VzF13rd4JTeVNz7xEhlm8bd3e3lgZiNn60P4H88sTqx8AOef/wknVj7AsxUz+NHmCOqaWgZH2kO8uGsau/y6SffM5tRLW6i/UMW5d3aS9mAWSXfMIsgeimVZBNlDSbpzFmkPZnHunZ00ldd2eq/2E7nFN3m791HsdPPg1x4mMFDvoYuIiLRRWJZryr69XzA2bfAswT5zrpDikfi0n7LYYThzrnCAKpOubMh5l9lj3RRVenGmpV/FflgvGWNd5Kx/p89qab8c/EebI3i2YkaHIbTU6WXRtDoKD60jZ+OGTu/ZF+ckt1m2ZCnP/OQFqppjWDon6GIn3rN6JY57sy4LtY57s/CsXskuk0xxlYdlE5uo31TQ5dcNiY4gZcX1nPzv35P+8M1dvmmR/vDNXHg/v9N7NWwqIHtiEx6vwQQ6fHrdw93BIyfYd7yYh//0G4SGdn9EmIiIyHCisCzXjIaGBr4oyGPyhDH+LuWiV9evJyhrtE/XBmWl8+r69f1ckfiirzqvvdW2HLwtKHcXQp8piKfU6WXx9Do+zllHZ0f/XXpOcned3TZddWW35G4nc0zLa/alE5/y3bt59jM7CVE2HGdO4Wlyd/2165uJmp7k05sWIXF2Gouv/P5fnMgdZaPgRBDLsld0eS9pOSJqy879PPJnj+Jw6M0FERGR9hSW5Zrxh82bSU+KGlRLsCuqa66qc1dRXdPPFYkv+rLz2hv9tRzcBDrweo1Pnd02XXVle9KJrx/T0olfPbua2rUfdhqYPU1uin++gdjsWR1+vr3YmydRvu34FfeoXfshj82pBuBwaRI3Z93o0/2GK2MMm7bs5OZblhAfP3hW64iIiAwmCstyTaioqCBv+6fMu36mv0u5zCh75FV17kYNwuOuhqO+7rz2VH8tB1+6bDn5JwJ97ux215XtSSc++vbZrNkSSKzDxhMZxQSsWUf1e7m4nA0YY3A5Gyh+cysBa9YxNarxqt60aK6qu3iP6vdyCVizjidnFxNjt7FpXzi3Zd+vIVXdOHXmPA2eQG5esNDfpYiIiAxaCstyTcj53UfMnJJOeNjg2lP3YHY2rtzTPl3ryj3FQ7ff3s8ViS/6uvPaU/21HHzB/HkcKkkC8Kmz211Xtqed+CZPABvzXcQ6bDy9qJbvRn/B2LfeYOR/vcTYt95g6vF8nl5US2yEuao3LaLPnmDkf71E409e5bvRX/D0otqLQTlx8kqW3bbEp3sNV8YYduQf4Nalf0RAQIC/yxERERm0FJZlUHK5XJSUlHDw4EE2bdrEqeMHmTNzqr/LukJaSiLxVfjUuYt3WqQmJwxQZdKVvu689lR/LQe3LKvlnOT94V12dn3tyva0Ez8pCRzhFs+8bcg7Fkisw+LhuS7+YkEzD891ERxIj960+D8LG/j2TU1McjQS67DYeSyQV3LTmJb1LVbdv8qn+wxnp8+exwSGMm3aNH+XIiIiMqjpjAjxG7fbTWVlJeXl5ZSXl1NaWkx5aQnlpSXU1lQTGRGKPTIMR0Qoty+aO2iPNPnxo4+y+rmfQifHR3ma3Lhf38M/Pv5dP1QnHVkwfx4fvpdE5vizrJ5dzTNrP+x0v3Bb5/XJOdWAjcOlSXw960aMMXy6dRsbct7FcjsxXheWLQgT6GDpsuUsmD+v26XAl4bQsppGguzdr5zwdTn4siVLrzgnuahiD6+8cIizFTDC5mVMWAMRoRYf5IItKIwbFny1w67spZ34ZzcV4Li3+3PO2zrxMY4ATtXPYOJNX+Hd9e9c9r1qCPSSd+wcN0w0OHafwtN0Q5dL0S++aTHeRu4BD/Uk8N4XqSzNXs43sm7U0msftHWVF2cvx2bT++UiIiJdGZzpQ655xpjL/uLq9XrZuXMnRUUXKC8toaykmNqaaiLCR+Cwh+OICMVhj2D6mFGMnJWOPTLimvmLXFJCHGse/w5PrV1LscMQlJVOoH0E7upGXLmniHda/OPj3yUxIdbfpUqri53Xbc+zaFodT2QUs2bNOqpT0wldnHHx59ewqQD72VM8Oaf6ss7rho838nHOOibFnmfFDDc226V/1g35Ww/w4XuJLMm+n2VLlnZaR29CqMdrdbscfNX9q8jZGM0r698k0HWamjo3C8cZ5iwJaK055GLNO496yN/5e6KjY66oeemy5eRv3U/meI/PobZuzwk+CncTGR7Esq+sYMH8eSyYP+/y128M//d73+CGiVf/psVJ5xheWPtCvwXkvngzZDA6c+4C3oBQpk+f7u9SREREBj2rs6NHBrvMzEyTl5fn7zKkAyUlJfzqxbUEBgYwdvxE0seM48L58xzZu4NJ49OIctiJGmm/pgKxr86cK+TV9eupqK5hlD2SB7OzSUtJ9HdZ0onX33ydosMtnVeAokovOUdCqG6ysIe0hNiEqJY/o237YY0xF89FvvQ5zkYbjhHey56zeX84CZNWdro0+JPPcjm69R/IHO/hR5sj8Kxe2W0IDVizjqcX1ZJ3LJCJN33/igDakVdff5XzB15n6azmHtXcFmofyjp78YirbkPt7GJGRVhsP+TlRFV6p28c5GzcwIHWNy1KnV7W5Ns7fdPisUvetJg2/9v9tjc5Z+OGi2+GzB7bwZshJ4I4VNL9myGDjTGGtz74mAVL72XmzME1LLE/WJa1yxiT6e86RETk2qWwLH2qpKSEX6z9L+bOGEtMdBTnCou5UFxOXX0jd942n/DwMH+XKHKZnI0b2Lj+TSbHFZIx1kXAJcHI0xqMDpcksSR7JcAVwc6Zlk7Y4gwCI0fgrmmkflMBjjOnWD27mlhHa7DL+laHoaqnITTGbuPVbWk885PuO6sdhdGe1NzRfUoTRzNy6eyLodb5/naajp1nbJSbuEjj8xsHV/OmxQfbPXjtC/jh9/+2ux9tj7z2xmt99mbIYHP67AW25B/lO//nySH3RmVHFJZFRKS3FJalz5SUlPDi2v9k3szxTJk0zt/liPjMGMOW3O3ktNtTS+BIlmYvvzgd+mqD7RMZxcQ6ug62/dlZ7UkY76rmS0Pt54fdnCnxUhccTrHTcLo+jBHT04i4tWdvHPzg73/IqUOfcNN0izkTAih1mosh1R7iISGwgbMlXmaOC6DO7eiXkNpXbywMVm998DHzb72LjAzfJq9f6xSWRUSktxSWpU8oKMtQ159LpnuyHNyXoNgfNeds3MCG371BeckJ/vd9wX0SwttC6i1Ta/l0r4c3jzgImDqGUbd/GVKrNxYQfe4Uq+f02v8QWAAAIABJREFUT0jt6zcWBpsz5wr5NO8I3/ne8Ogqg8KyiIj03vD4P6b0KwVl8TdjDJ98lstT3/8eT//1N3nqyUdaPn7/e3zyWS598abghpx3mT3WTVGlF2daepehEyAgJJDq1HSKKr1kjHWRs/6dTq9ddf8qps77Fq/kpnZ4xFJPj0fqj5qXLVnK3cu/Qda0luFga/LtnYbKtntGPHoXa/LtAEyKvcCW3O0XP2+MYeP6N1k0rY6yasNvKhKJ/5v7ib8/iyB7KJZlEWQPJXpFFp7HVvJMQTylTi+Lp9fxcc66PvnZAny6dRuT4y70yWsajD4v2M+i25YNm6AsIiLSFzQNW3qluLiYX7zwX8ybNYEpE8f6uxwZhi4dxtSbydTdsdxObDaLnCPBhK30bRlr6OIMct46zMNzXVhuZ5fXLluylKW3/X/27jwuyvPcH//nGWaYYZthEdmRKK4oyhINGE1dWJKmrVGLsaZNlyRkOUlO00RPT9L09MTkfJvW5nfs4tGmi4lLxAQTTSoDRmMUcAU1brgQBKPsMMMyMzAzz++PAQQEZns2huv9ep3XaXDmeW5mQOe672vJwJGSY3eNWOpNB3d2PBJfay7U5mNFohW1LSx0sXHQOByEn0PSxG7kF3zUd2J9V5Ca60CQ2nP63RukOtLkzB7b92Tm5HuSmppvamEwy8dEUy9CCCGESxQsE5dRoEzE1tuMaU1ab/oyC+0V7wHNmFLjzUiNr8Gh0k1obm5yuc6VtXYDAPQmGeQBKoeeI1eroDcxA54/EoZhhhyx5Cq+1sxlEC6VIJXvzRAxnSi7gEVLH4KXl5fYSyGEEEJGFcrHIi6hQJmITVtU2Ne1uEFnxfpD/tjQnIjKnEehe+5HqMx5FBuaE7H+kD8adFYsSujA7ct50BYVunQ/RqYAAKiVVpjbjA49x6w3Qq1kBzxfSHytmbV2g2VZVDUybgfhd4JUJXwXOxGkXlHCS8ZwFqQKsRkihpu3atHRzWDOnDliL4UQQggZdehkmTiNAmXSi2VZfFlcikJt/oC0YVauQWbWciycn8ZL06PeOtfH0jvuNGPK/c6AU0mF2geaZemwmObi7Z5mTItndmC7Ng+ZSzOcXhcr18BqtTXb2nCwHJpl6XafYzhYjuwpJlisDFi5xunv0118rbm2qRPvFnRDJZOjs80IhdrH7nWHC8KlEqT231hodPN7kpITZRexaGk2nSoTQgghLqBgmTiEZVlUVlbi5PFSVFz6Ct+6bxamTaZAeSwTqlZ4KGLUuWZmLUdZ8QWkxlugOVMFi2mu3c7S6poqhMXLcOqaHFnZK5y6Hxf4WPOOD3bgnuAWPDzPG7Ut3fifT46hK0ADc4cRcj8VQtImQRV2d5A9XBAulSB1NG6G2PPN7Tq0d2HMjIoihBBCuEbBMhlRW1sbyspO4+SxYsisJsyYPAE/zsmGSqkUe2lERELWCg9FjDrXhfPTsG9PJFLja5CbrMfbW/bZHy2UrMOZ68D+UzJUtf4d2r2bXT55d+UU39k1f/OHvUi0NOHMdTku18fgZz3zpXv1pr4/PI9Bg86Kd8+o0R2uwvjF0/tGPDUcqYCpTo/I7yVDGeLfd+3hgnCpBKmjcTPEnuNlF/CtJVl0qkwIIYS4iILlMaatrQ3Nzc1QKBR3/Z9cLodMJoPVasW1a9dw8kQprlVcxKSY8chIn4mw8eMkPUeUCGNwrfDmMjV0sXHwzbHNxG1qM9qCnjNVyE3WY1FCBw6ez4O2KISzE2YxmjExDIOM7FU4VLoJixI6sDapDps350EfEwefxUmQq1Uw640wHCyHuqYKmYEt+LiExaw4GV7NsUAmu9F3LWdP3l09xR9uzY2RE6DJSL5rzW8t1CPY3xvHKyzQt7Wh8EBR3/WGS32PHJT6HvntObCYzKjaegTRK+6F3F+Fmxv24q2FOgBeqGiIHBCESyVIdWUzZF2KHoDsru9JCm7V1qPNyCI5OVnspRBCCCGjFgXLY4TFYkFJcTEOfb4fQQG+MFssMJstMFusPf/f9t9eXl5gGBmC1D5ImDIBC1Y9CKW3t9jLJxIhRq3wkOsQqc41KyMTzc1NOHQhD4sSOvDaonbUtpyDdncF9CYGaqXthPS83gKWBZ580Pa7U9tidfnk3d1T/MFrvk/Tgtb6ZnTsvgK9iYHMYgYjk8Es88Jnl5TImmJC2nQ50qa3Dries6nvcY8vQOU7/8Jk33bkRLfgVqMMX9X4YWn2qgE/A1IJUp3dDFmXosc4tQwHz9/9PUkBnSoTQggh7qNgeQyoqqrCJ3t2wxsm5Hz7AQQFqod8HMuysFhsgTOlWZOhSGUmrph1rqtXrYa2KATbCnZh2vjbSJrYjcfn3Qm+j12yossCPHSvwu2Td65O8XvX/Iftf8W08EasXOCNBp2p53pT4LvY/vW+/LLQ6dT3cZND8EToLYRq5PhDvgUPL8tB1tKMAY+TUpDq6GZIeLwMgG0NEdPu/p7EdruuAbpOC50qE0IIIW6iYNmDdXR0oGD/v3D5fBkWzJ2JKZPiRvxgyTAM5HI55HL6sSBDk8pMXLHrXLMyMpG5NANHSo4hv+CjvhpiMHJ8XX0Ta1dY3T555/oUP3NpBgr378JD9+pcup5SwTid+u6/NBna3Vfw+LxuhASHDnt6LqUg1d5miMXK4OQ1OSrqI5GRncN58zouHD99Ht9akkV/lxNCCCFuon9JPRDLsjh9+jS0n32C+Nhx+OHKLEqlJpwQo1Z4KK7UuXacrcRnfmYE+CmQuXK522tgGAYL56cNCP4PHy3B1eI3ALh/8s71Kf6XxaWYHub69c7ftDXrcjX1PcB/5NN/KQWpw22GMDIFIA9EZvZyPJF+n+RSrwGgrr4RrZ0WpKSkiL0UQgghZNSjYNnD1NbW4pM9H8LY1ojvLp2L8aEhYi+JeBCpzMR1pc71NxntCPZX4NhlK/bt+RuMhnbOAy4uT965PsV393rFF9sA8Jv6LqUgdajNkNGgRadH7IR76FSZEEII4QD9a+ohTCYTPj9QhNPHj+K+pKmYtThJkqceQ3FlJA4Rh1Rm4g5X59oQMQGBmXe6POs+OQbTtW8wMcjc17wqfYYX0sHPSCsuT965PsV393odBlaQ1PfRGqRKhY9KiY72RrGXQQghhHgECpZHOZZlceHCBXy2Nx8Rwb5YszwDfr72AxipcHUkDhGH2LXC/Q2uc82MbEV1T5fnOh2L2k5fqGbGYvzLK2AMUKFSgJFWXJ68c32K7+71AgL8UVbZIfqIJzIyH5UKnZ3tYi+DEEII8QgysRdAXNfc3Iz3tv4dBZ/swpK0mchanD6qAuUdH+zAxdJNWJNWjdR4C+p1LLYeV2DjYSW2HlegXsciNd6Mx9JrcLF0E3bu2in2kse8zKzlKKuUIzxIBk11FSwm84iP7wuYgmQor1RwHjCtXrUaM9KewfvF0Si5aMXKBd54aJoJDd5BGL92JYIeSYdC7QOGYe40r8rNwdvlYWjQWbF4ZgcOaPPAsiwn6+l/8m5uMzr0nOFO3rm8FhfXCw8NxOX6SADAPE0Lbm7YO+z7bzGZcXPDXswLbAEAVDREYoHE5hB7Kh8fFTo7OsReBiGEEOIRKFgehcxmM744dBB//t/fIVhlxg+WZyImKlzsZTll8Eic9Yf8saE5EZU5j0L33I9QmfMoNjQnYv0hfzTorFiU0IHbl/OgLSoUe+lj2sL5aX0BU26yHu1b9o0YMLVv2YenU/QA+AuYsjIy8d3lTyA9wTbubHOZetj6ZaBf86oy2wi13mZYXOh/8t55sNyh59w5eWcHnLxzeS1Xr9e0vwwR8k5YrCygCERG9ir8337bSfNbC+vhtTkPje8dQvWu47ixvQTVu46j8b1D8Nqch/95oB5ggf/bz0hyDrGn8lEp0dHZztkGECGEEDKWURr2KHP9+nXs3bMb/t5WPPrdRVAH+Iu9JKdxPRKHCEdKM3H7szWvsgoy0mqkGvvImOk4ff087p1sdTtV2ZWO3yOlPfe/nvnI17A8eOd6xjodmkqvw9xhhNxPhZC0SVAE+iG8/gYYDfD+ASuW/2gFDJ1tmDDeCxnJthnSAOAVoETEkkTIA1QwtxnR/nk50AqwLJCRrID5tMz2H0QQcrkcMoZBV1cXlEql2MshhBBCRjUKlkeJtrY27P/sU1yvOIeF8xIRP3GC2EtyGdcjcYiwpDQTt5dQI63s1thXXsTnZyxgrRaHu3SvS9EDkKGiIRI/63fy7krH7+Gu1f96VsvXuD+kBce27INixSLUFZyDMkyN8Yun9wW8DYcr0HH6Gv7zPh2mRimw95gVHe16fF6Yh8fSzQM2uYIGbXIFPTJwk+vBFNAml8CU3gp0dnZSsEwIIYS4iYLlUaC8vByfffIhpk2MwA9XPgiFYnS/bVyPxCHCk9JMXECYkVY7PtiBuiu7sSbNVg9a28JCe8UbOqMMGpUVWVNMSI03IzWewWcnAH2nBZmBt3HcxZN3rk/xGYbB0qwc7Pjn/8NLK7yRcLMWv33vMOJ+/u0BAbhC7YPI78yBJXMm3t2yD2v96/Dd+2R454O/Y8E0W0o9bXLdTUpd/X1U3jAYDAgKChLkfoQQQoinGt1Rl4czm8347NN9qDh/Cssy0xA6LljsJXFCqFNAwi9JzcTleaTV4Br7zWVq6GLj4JuTBHmACk2DOm1/e64c+Ue7seMYg63/1oY2g2sn71yf4vv4BmB+gu17/fCq5q5Aub/BAS+66pE8UU6bXEOQWld/Ly8Zuru5mWlOCCGEjGUULEtUS0sLdmzbChVjxKPLMqD09hZ7SZwR4hRwLJDCSVb/mbgD19MK7d7NKPz074Ksh8+RVq7W2KvU3oj68Xy8X1yKJxeZXT555/IU35bVwboU8IYEWGmTawiOZxzwM9t7MJZl0dLajnHjxvF2D0IIIWSsoGBZgq5cuYLdO99H0oxYJCfe63F1fnyfAkoR14Gt1E6yxF4P182w+nO1xl7mJcO4H0xH5dl65J9TuXXyztUpvjtZHTLG1vWcNrnucDbjgI/Z3oPp29qhVPnCz8+Pl+sTQgghYwkFyxJitVpx6NBBHDvyObK/dS+iI0fXOChH8XkKKEVcB5JSO8mSwnq4bobVnys19q3hMUCnAYEMg05/Bv/5yzfcnoHe/xTfVe5kdQT2/PdY2uQaiVS7+tc3NCMiKobz6xJCCCFjEc1Z5tjVq1ex8Z3fY+8nH+Pq1aswm4eeQTtYZ2cn3tv6d1wqL8bq7y3x2EAZ6DkFrJQjPEgGTXXVsHN6e/WdAgbJUF6pGPEUUGp2fLADF0s3YU1aNVLjLajXsdh6XIGNh5XYelyBeh2L1HgzHkuvwcXSTdi5a+eI15PafGqprKevGdYFP4RqZFibVAevzXnQ7ylBt84AlmXRrTNAv6cEXpvzsC65zuGRVndOY5XwXezYaawxKAjy9FkAAL8FU/Cvw0c5+T7d1T+rw9xmdOg5vQFvtxmczn0e7e7KOBBptvdg9U3NiIqO5eXahBBCyFhDJ8scun79OnZt/wcWzk2AXl+Hgk++QrOuA/FTpmN6wizEx8cDAIxGIwwGA4xGI4xGIzo7O3Hki89xT6QGWQ8vgUzm2XsYfJ4CDiZmXS/XKZpSO8mS2nr4Gmnlymms8VYrwpYmAAD8p4SjKP80vv8gf6OzHOVOVsc3jTIcr2CRNl3meKp7tWOp7qORVLv6N7W0YWpSJOfXJYQQQsYiCpY5cuPGDex8/2/IfiAVMVG2U+F7k4FOgxFf36hBWUkhPt2zC15eMnh7K6D0lkPprYBSoYBKKceClMmYGDc2Uue4HokzHDHraPkIJKU2n1pq6wH4GWnlbI29tcsMyJi+949hGNRaDTCaTFCJPPfWndru6kYFzt7UIG16M3KT9fjvP+7FuOe/O+wmV+Mf9yK+sxEnKuS42hzr1CbXaCDVrv6NLW0ID/fczCRCCCFESBQsc6C2thbb/vlXZC5I6guUe/n6qJAwbTISpk0WaXXSxNcpYC+x62j5CCSldpIltfX04nqklbOnsS3lNxCUEjfga6YZQfjZsz9FXGSE4DN3+3Mnq+NKYxSWLc/BoWObYDG14lv+t3CpZ5NLNmsSWs/fRHdLJ9jGVkRaW/Hr+zswTq3CZyfM8NPEeFyjQil29TcYTTB1WRAc7BljBgkhhBCxUbDsJpZl8enePbh31kRMiIkSezmjCh+ngIA0OtTyEUhK7SRLausZsDYOmmH1cvY0Vn/pFuJ+dP+Ar/lPjwJ76DBWJJ7lLKPBlRIDd7M6spZmoPR4KbzNh7FivgINOj02Hq9Cq5lBWNYcyANUMLcZ0XmwHP93+s7M6YPnz0BbVChIZ3ahSLGrf0NjMyKiojxuY4IQQggRCwXLbrp06RJ0jbcwa2GW2EuRtJE+2D+87KdgZDJuTgElUkfLRyAptZMsqa2HL86cxna3m2BtM4CRDQpSZQy+ZoJxq1nPSUaDOyUG7mR1sCyLjtZqPJIuv/P79W/fQZjIHaDFIMWu/g2NTYiMouZehBBCCFcoWHaDxWJBwWef4P65s3htylV98za2FxSgSadHiEaNNdnZiI2O4O1+XLP7wb7kIi7Xc1M7LJU6Wj4CSamdZEltPXz543sf4IpZjXUFQRgXYEYgjKj63R6YfXwhG6eBTC6D1WyFuaEVlqY2RD92/5DX8V+ciF/mm6BiuxGnMcNbATQWfYyPTp/B+NDQAY81GkxImjARzz9+dyDNRYnBUFkdP5rbhbOVVpRdtaDwFAtDFwNDtzeU/hqkLJnQt+Elhd8vKeBztrerGpr1mHlvCufXJYQQQsYqCpbdcPLkCfjILYiLjebl+rdq6/Hqli2oCwQU6RMgD4jE1TYjjuT/DWGtwJtPPYXI8PG83JsrQtcOS6WOlo9AUmonWVJbD19++L1v40zVddx+IA6mmbZSiwkuXEczPQqaV23PZwGYAAT0/Fl9v8cZL9Yi7KwRP1z27buuwWWJQf/a7r9s3Qxj2ze4fwbw40zFoA2tb1BWvB779kSgrdOC3MXi/35JgZBd/R1hNJlQc7sRD8XSyTIhhBDCFc+eUcQjg8GAzwv3Y8F9jqXYOutWbT1yN76D1kfi4Zs9DQq1DxiGgULtA9/saWh9JB65G9/Brdp6+xcTiRgzeF2ZieuzOAnaK0p4yRjO6mj7B5JczaSV2nxqqa2HL0GBavzt9VfxsCkCLXmnwVqsvNyHtVhh2HsBDxnD8e7rryJQox745z0lBr2/T2+Xh8GSmwPNsvQBfz9olqXDkpuDt8vD0KCzYvHMDhzQ5oFl2bvuyTAMbtZ8jZnROryykkHaDK8RZ4FbDdWS+P2SAj5ne7ui9ORZzJwzF6GDshQIIYQQ4joKll10+IsvMCFcg9CQIF6u/+qWLZCvnj1iiqN89Wy8umULL/d3Fx8f7B26r0TqaPkIJBfOT8Pletv81NxkPdq37Bv2ur0nWU+n6AEAFQ2RWMDxSZbU1sMnhmHw3OocbMx5Aux7Z2BqaOP0+qZ6Pdj3z+Lt7z6GZx9dOWQgdVcK9DCnmEC/FOgyW8DdmwI9mLMbWmof20aB2L9fUpGVkYnwqTl9AfNri9rxUsg5TNz9AQL/shUTd3+Al0LO4bVF7X2BsjNd/R3V0NiM6zVNyMzK5vS6hBBCyFhHwbILWlpacPLYl0i/dzYv16++eRt1gRix/g2w/XmdhkX1zdu8rMMdfHywd0T/9Gdzm9Gh5/BRR8tHICm1kyyprUcICVMmYfuvf43Jpa0wnrjByTXbj15A56ZCbH/9dSRMmTTs4wq1+UieaEZtixW62DiH/n6wpUBbkTSxG9qCjwb8uSsbWh0m2++J2L9fUrJ61WrMSHsG20picOqaHKEaBo/P68bzC7vw+LxuhGpsXf23lcQiIf0ZTkfUAbb38VDxaWQ8+B34+vpyem1CCCFkrKOaZRcUafdj1pQY+Pnx88Fke0EBFOmOVUUq0uOwvaAAv3ziJ7ysxVVi1Q5LpY7W3RE9wwWSfM+ndpbU1iMEH5USf3j55/hQewD/3HUYimUJdgPXoVhMZtx69wBWhd1EU3Q4fFTKER/PdYd1V5p1nXvzA1itHaL/fkkN17O9nXH5SiVkKg1SU1M5vzYhhBAy1lGw7KQbN27g6uWv8KOV/KW7NevbIA9wrNu1XK1Cs156J8tizeCVUodavgJJvuZTu0pq6xHKyqyluG/WTLz8579AtzACfvc4XivacaMRtz89g7nWb7B4qhUfnrJ/4sp1iYErG1rKxHtwoPwMMlMUov9+SQ2Xs70dZerqwtFTF/D4E8/xOpGBEEIIGavsBssMw8QAeA9AOAArgC0sy/4vwzC7AEzteVgggFaWZecwDBMH4BKAip4/O8ay7NM910oB8E8APgD+BeBFlmVZhmGUPfdIAdAEYBXLslVcfINcqqqqwvat72Jx+hx4e/OXThisDsAVJzooB6sD7D5OaGLVDkutQy1fgaSYJ1mjYT1CiY4Mx/b//jXSH30Mfm86Hgh+83EZwqL9sCK02+ETV647rLuyoaXOSIb2t5eQmWKVxO/XWHfs5DnMSExBTEyM2EshhBBCPJIjJ8tmAL9gWbaMYZgAAKcZhiliWXZV7wMYhtkAoP9R4HWWZecMca1NAJ4CcAy2YDkbwH4APwPQwrJsPMMwjwL4LYBVQzxfNC0tLdj2z78ic8EcTIiJ4vVea7KzcST/b1BkT7P72O6SKjy28kle1+MKsWbw8pX+7A6+AkkxTrJGIrX1CEUmkyFoonPj4xQaH6hvViFsiuMnrlyXGLi6oeXv74WiMhMykhWS+P0aqxqbW3Cluh7//oufir0UQgghxGPZDZZZlr0N4HbP/25jGOYSgCgAFwGAsX36yQGweKTrMAwTAUDNsmxpz3+/B2AZbMHy9wD8V89DPwTwJ4ZhGNbVlsg8OHnyBCZPGM97oAwAsdERCGsFWk1muymOYToGMVHhvK/JWWLWDkuxjnasBpJjQflXl8DMcG7eud+EEGQ2nwfg5fCJK9clBq5uaE0cDzAM8OlxKx6eJ5PE79dYw7Isvig+jaVZ34a/v7/YyyGEEEI8llNFTj0p1kkAjvf78gIAdSzLXu33tXsYhilnGOYwwzALer4WBeBmv8fc7Pla75/VAADLsmbYTqlDnFkbnywWC06fKMGs6ZMFu+ebTz0F886zI3ZQNu88i7eeyhVsTc4Qewav2B1qydjxwcHPoUpy7mQ5JG0yTtX5OnXiynWHdXdmgS+aLcfXrdH0+yWSimtfwyr3x9y588ReCiGEEOLRHG7wxTCMP4CPAPw7y7L6fn+0GsDOfv99G0Asy7JNPTXKHzMMkwBgqE+DvSfHI/1Z/zU8BVsaN2JjYx1dutuuXr0Kf5UXQoIDBbtnZPh4bH7h53h1yxbUaVgo0uP6Uhy7S6oQpmPw1gsvISLc8aZCQpJC7fBYraMl9rEsiy+LS1GozR/wc8HKNcjMWo6F89Mc+rlgWRZf6xrhpbq7IZ+xXofmD44g+NEFUI0fmCnhpVLgjC4AEcFTHD5x5brEwN2T6scfz8WC9PuG/f3KyHoEU2BrJHbk4G6XX2MyUFdXN46evIDHfvI0NfUihBBCeMY4kunMMIwCwKcAtCzL/qHf1+UAvgGQwrLszWGe+wWAl3sed4hl2Wk9X18N4Fssy+YyDKMF8F8sy5b2XLMWQOhIadipqansqVOnHPw23bP3k48hM9Th3uRZgtxvsOqbt7G9oADN+jYEqwOwJjsbsdGOdcsWk7aoEBd7Ptg36KzYXKYe9oP90/0+2CfMf5ZSNglvtEWFOKDNw9TQb5A80QyZ7E7AZrWyKKtU4HJ9BDKyV9ltuHb+8lW8cjQffgsHzkduOXQeEy6exk/vNeJPR1WoT0pB8KKZAx6jP3AGKVfPIvG+Hzh18rpz107UVthKDACgtsUK7RXlwBToIFsQ1ZsCPdT1WZbFKy8/gcfSa/rmLNvd0OqZlb29NBZv/+6vwwa7XL7GZKAvS0+D8RmPlTmSaushSQzDnGZZlmZqEUIIcZndYLmnJnkrgGaWZf990J9lA/gly7IP9PtaaM9jLQzDTARwBMAslmWbGYY5CeB52NK4/wXgjyzL/othmOd6HvN0T4Ov5SzL5oy0LiGD5d//9k1kL5iN0HHBgtzPk3D1wZ4QLuz4YAfqruy+6+dRZ5RBo7IO+Hk8dMEP4VNH/nl89Y+bcGGBGnJf24xki7EbDX//HCvH30RCuBmby9TQxcbBFBiEzuomxOTMg5fKVits7jAh4v2dmKxRICH9GaeCRm1RIYr6dVj36heMWnqCUUc6rPOxocXVa8zV6b8naWpuRX5BMV78xX8gIEB6UxCkhoJlQggh7nIkWL4ftoD3K9hGRwHAf/YEuf+EbTTU//V7/AoA/w1bF20LgF+zLLuv589ScWd01H4Az/eMjlIBeB+2euhmAI+yLFs50rqECpabm5uxaePv8LPVD4v2waz3ZLlJp0eIRj1qTpZ7cfXBnhB3DBUY6mLj4Ls4CfIAFcxtRnQeLIemugq5yXqEanoCwxEC2VX//RtYHk0AABhvNKHxH1/gjaUNAHDXSa2pqR03PzyJ8OxZ8JswDgDQ8ad8/M8DjXZPaofCsiyOlByDdpgSgwUOlhhwuaHF1WtMJ9N3Y1kW+Z8dxJz7FiM9fb7YyxkVKFgmhBDiLofSsKVIqGD5xIkTuFT2JbIX2+/mzLVbtfW2muVAQJE+oe/DZnfJDYS12pqARYY714VXLFx9sCfEFa6kHK9NqkOoZviU46vXb+CFou3wXTQZxgNXEdvAIkl5BHOnWLH+kD8suTl3XZ+1WHFrXzm8fLwRljkTdfvK8B8BJ1Hb6o0p9/9KtG7pXGxocfUac3367ymuXK9C+eVbeO6Fn8PLy0vs5YwKFCwTQghxFwXLdmx/fyuiAmWYPnWS/Qdz6FZtPXKJII6SAAAgAElEQVQ3vgP56tnDftg07zyLzS/8fNQEzM6iNEzPJMb7evhoCa4Wv4HUeMuwgWx/FpMZXpvz8Nqidpy6Jh8ykP3NpndxYjoL+YGvsfaRHPzr421YkXgW9ToWG5oTRxyXpr98C41HryLioUSEf/gxnn2gC/nnZuPNN37P2ffsLHc3tLh4jQ2dbZyf/nuC7m4z3tu9H6sffwr33HOP2MsZNShYJoQQ4i6Hu2GPRRaLBdevVSDtkSWC3/vVLVuGDZQB2L6+ejZe3bIF/3j9NYFXx7/+aZgrEodIwyy+iH17xlYapicQ630t1OZjRaIZtS0sdLFx0IwQxAG23y99TBxqW84haWI38gs+uitYPnLiNO5pjMWGdf8JdYA/9n/4Z8hkDLRXvOGbkzTi9dXTIuEbHYwb20tRUyWD1yIGjFnn9vfpDndngbv7Gn+0/0N0GVrxWHrHnZPp3O8MuI5C7QPNsnRYTHPxds/J9OKZHdiuzUPm0gyP3Tw7fvoc4qclUqBMCCGECIzmTozg5s2bCPDxhp+vj6D3rb55G3WBGPFUBrD9eZ2GRfXN2wKtTBg7PtiBi6WbsCatGqnxFtTrWGw9rsDGw0psPa5AvY5FarwZj6XX4GLpJuzctdP+RYnoxHxfGbOuJ5BVwnfxyIFsL5/FSdBeUcJLdncgy7Isnvn+cmx57T+gDvC3fc3aDQDQm2SQB6jsXl/ur8I9Tz6AqAAzWJbte/5o5e5rXF/3DaaNvwUA2FymHjaFG7D93ef/1HewuUwNAJgaegtHSo5x841ITEurHpcqbyP7oW+LvRRCCCFkzKGT5RFcu3oVMREhgt93e0EBFOkTHHqsIj0O2wsK8MsnfsLzqoShLSrsq1cckIaZY0vDbGozYsPBcmjO2NIwFyV04OD5PGiLQsbsCbO7ac1CpEWL/b46G8gCgFytgt7EDHh+L4ZhsOKhgd2gGZmty7VaaUVjmxEKtf1NNkubCdNiZGAYpu/5o5W7r7FO14LkiVZOT/9HO5Zl8UXxKXxrSTbUarXYyyGEEELGHAqWR3Cl4gJSp0cLft9mfRvkAY51u5arVWjWe8bJMsuyKCrY5fFpmFwGp+6mNQuRFi2F99WVQNasN0KtZAc8fySsXAOr1dY9esPB8hFrlnsZDpYje4oJFisDVq6x+3gpc/c1DlCxDqex9/JZnATt7go8Pq9b9DR2Plz/uhpGqzfS0oVvMEkIIYQQSsMeVmdnJ+puf4OoCOGbZwWrA2BuMzr0WLPeiGC1Z8zb/LK41OPTMLVFhVj7ypO4WvwGViSexcrUG/j+3FtYmXoDKxLP4mrxerzy8hPQFhXavZa7ac1CpUVL4X3tH8h2Hix36Dl3AlnWoUA2M2s5yirlCA+SQVNdBYvJPOLjLSYz1DVVCAuSobxSgazsFQ6tS6rcfY1lMts/R1yd/o923d1mHDnxFb6zbAV1vyaEEEJEQifLw/j6668RMT5IlA8pa7KzcST/b1BkT7P72O6SKjy28kkBVsU/PpowOUKo7sy9I3HWpPWOxGGhveI9YCROarwZqfE1OFS6Cc3NTSPOs3UnrVnItGix3tf+MrOWo6z4AlLjLdCcqYLFNNdup2Z1TRXC4mU4dU3uUCC7cH4a9u2JRGp8DXKT9Xh7yz67o5PWpegByFDREImfpd834vWl3h3e3dfYP0ADoInX0//R5GT5ecTFz8CkScJOYiCEEELIHRQsD+NKxSXERowT5d6x0REIawVaTWa7HzbDdAxiosI5X4MYH8zvNAgSLg1TqO7MXAan7qY1ZyxZKmhatBjv62B8B7KArY45I3sVDvWMPlqbVIfNm/Ogj4mDz+IkyNUqmPVGGA6WQ11ThXUpeoxT20YfLc1eNeJrOhq6w7v7GvtpAmG1No7ZNPb+WnV6nL96Ey+8tE7spRBCCCFjGgXLw7h25TK+/a1k0e7/5lNPIXfjO4CdOctvvfAS5/cW64M5102Y7OHypHckXNfs3pXWnOtAWnPPPNupobew6W//dOv5R0qOOXXSK/T7OhQ+A9n+sjIy0dzchEMX8rAooQOvLWpHbcs5aHdXQG9ioFba0pTD42UAbNePmJaDrKUZw15TqJ9Td7n7GqtUfryf/o8WX5aW44HFmdBoPGcDgBBCCBmNKFgeAsuy0OtboVH7i7aGyPDx2PzCz/Hqli2o07BQpMf1fdjsLqlCmI7BWy+8hIjwUE7vK+YHcyGaMPUSMg3Z3eB2cHDqblrz//swH79cKVxatJDv60j4CGSHsnrVamiLQrCtYBemht6CF8ywtHQgUA6gCyg8xaKxTQYoxuMHP/gpsjOzhr2W2F3EneXOa8yyLO+n/1ziK/umsqoGbSYgff79PKyaEEIIIc6gYHkI3d3dYADI5eK+PJHh4/GP119D9c3b2F5QgGb9bQSrA7BmxROIjXasW7YzxP5gLlQ3YaG7M3Nds+tuWrO/skvQtGgpdYnuH8hOG38bSRO78fi8OyfXFiuDk9fkqKiPREZ2jss/11kZmWBZ4JP8vyMxuhE/zvS6O0Ojsg0HtHlgGGbI+0ihi7grXH2NhTr95wJf2TdmsxlfHjuL5at/Ivq/P4QQQgihYHlIRqMRSm/pNIuJjY7gfY6yFD6YC9GECeD+pNcermt23U1rljFWADLB0qKFel8dlZWRicylGThScgz5BR8NOBWEPBCZ2cvxRPp9bv0892Zo5GZ0AJChtsXqdIaG0D+nXHL1NXb0ZDpsEoOzlSz+UWiGRiNDU9F2HPk8T5BmZ3xm35w8cx7RE6dh8uTJvKydEEIIIc6hYHkIRqMR3hIKloUghQ/mQjRhAoTvzsx1za67ac1WVubW851NixbqfXUGwzBYOD+Nl2CSqwwNKXQRd4err7G9k+ljl6zY9YUVc6d64RfLvSCTtQFoA8B/szM+s2/0be34quIm/u3fX+F0zYQQQghxHc1ZHoKvry8MBpPYyxBUoTYfyRPNqG2xQhcbN+LJH9D/g7kVSRO7oS34yO019KVhXvBDqEaGtUl18NqcB/2eEnTrDGBZFt06A/R7SuC1OQ/rkutcSsO8c9KrhO9iJ056ryjhJWOcTkPuH9w6Mz97uODU3Xm27SZv3mcO9yfU+yoFvRkavcHU2+VhsOTmQLMsHQq1DxiGuZOhkZuDt8vD0KCzYvHMDhzQ5oFl2b5rCf1zKiVZGZn43e/fxZT7f4X8c7Px4akJ2H0iEn/Y649GvRdefMQbaTO8eJsNPhQu39uhHC4tw/0PLEFQUBBnayaEEEKIe+hkeQh+fn5gGRk6DUb4+jh2EjjaSWG8DyBMEyahuzNzXbPrblrzt5YuR1nlbkHTooVqruUMPho0cZmhIYUu4mIafDKtLSrExdJNWJTAiNJTgc/sm6rqm2jtsOL+BQvdXichhBBCuEMny0NgGAbRMRNw81at2EsRjJQ+mK9etRoz0p7BtpIYnLomR6iGwePzuvH8wi48Pq8boRpbg6BtJbFISH/G6W7cXJ/02pOZtRxllXKEB8mgqa6CxWQe8fF9wWmQDOWViruC04Xz03C5PhIAkJusR/uWfcNeszet+ekUPQCgoiESz/zsx249f4GLadF8v6/O0BYVYu0rT+Jq8RtYkXgWK1Nv4Ptzb2Fl6g2sSDyLq8Xr8crLT0BbVOjUdbnM0BD651TK+D7VdQRf2TcWiwWHj53Fw99bDoXCc94zQgghxBNQsDyMlHvvw4WKr8VehmCk9sG8Nw1z8vzX8JfPY/HWLhn+9xMWf9rL4s+fylFWE4nvPPJTZLpw8uhuGrOzacjuBreDg1N305plMploadHDpdd+eGoC9pybg6n3/wq/+/1feR17tOODHbhYuglr0qqRGm/hNJWXy9RpoX9OpeyuU91hat6Bfqe6ZWoA6DvVdRdfafGnz15EROxkTJs2ze01EkIIIYRblIY9jISEBOz7eDf0be1QB4g3b1koUhrv06vwQBEOaPOQds8tJC+x9BvPYoHVegNlxetdauQjdHdmPkbiuJvWLGZaNMMwWJB+H1iWHZgCbW6FtuAjsCzLWzdjvsejcZmhIbUu4mKSQrMzPrJv2to7cOZSFZ57kZp6EUIIIVJEwfIwFAoF5iTPxYWKa0hLnSP4/XtnKzfp9AjRqLEmO5uX2cq9pPbBnM/xLGJ0Z3Y1OM1cshSNp79CSPLMu4JHd2cGCzVzeDC+ZtTaI8R4NHc7lffP0JBiF3GxSKGnApfvba8vS8uQtmAxgoOD3V4fIYQQQrhHwfIIJsVPRvHnlwS9563aery6ZQvqAgFF+gTIAyJxtc2II/l/Q1gr8OZTTyEyfDzn95XSB3O+T//4OOl1hCvBadvXNTi7fiPmvvNrBMRF33VNd2cGCzFzuD8+N0HsEWI8GpcZGmL9nEqRFHoqcJ1909DYjLoWA374wLfcXhshhBBC+EHB8ggCAgLQIeAIqVu19cjd+A7kq2fDd9BplyJ7GlpNZuRufAebX/g55wGzVD6YC3H6B4iXhuxscFpXfBIAUF98cshgGXB/ZjCfM4f743sTxB4hUnm5ztCQYhdxMfBxqussrt9bPz9fdJmMsFqtbq+NEEIIIfygYHkEarUanZ3CBcuvbtkC+erZI552YfVsvLplC/7x+muc318KH8yFOP3rJVYa8kjBqaWrG7WHj4E1WwAAtz8vBgDc+rwYPmGhtufLvTA+PRVe3qOnc65QmyAjESKVl48MDbF+TqVECj0VuH5vfX1UiAjV4OLFi0hKcuznkRBCCCHComB5BP7+/jCYTLBarZDJ+G0cXn3zNuoCMeBEeSheSjnqNCyqb97mpYZZ7A/mQjfyEToN2R6r0YTr7+fD1NwKmbc32J5Tp+62DlT8dSesXV1QBgdiXEriqAqWhdwEGY4Qqbx8ZWhI7edUaFLoqcDHexsVFoLqG1UULBNCCCESRcHyCLy8vKDy8UNnpwH+/n683mt7QQEU6RMceqwiPQ7bCwrwyyd+wstaxPxgLkYjH6HSkB2hUPvjvo2/wcU//gNNZy6CNdtGTLFmMxilN0LnzcGMF34Kua/9NFQpkUI3Y6FSefnK0JDSz6nQpNJTgev39lZDM+YumMfJ2gghhBDCPQqW7dBoNGjv6OQ9WG7Wt0Ee4NhJsVytQrP+Nq/rEeuDuRQa+YhN7ueLWeueRfGTa2EydfV9XeHvh1nrnh2Vp4dS6GYsZCqvvQwNswXIO8Ki4qYXosK80dSpxWtnDoKVa5CZtZy30VmjlVR6KgDcZt+06jswfjz3DRsJIYQQwg0Klu0IDA5Bi64N4T31onwJVgfgihOnXcHqAF7XIxYpNPKRAmNdI0wtesi8FWCtVjAyGUwtOhjrGuETzu/PIh+ksAkidCrvcBkatU2dMHbq8cAsFivnWyCTtQBoAcDv6KzRTgo9FfqvhYvsm7CQQNTU1CAigr+xgIQQQghxHQXLdkTHxKGh6hymT5nI633WZGfjSP7foMieZvex3SVVeGzlk7yuRyxSaOQjBXUlpwCrFZFLFmLSD1fg2nsf4ZuCL1BfchoTlmeLvTynSWETRIxU3sEZGjs+2IFxV3ZjUYKtFl3I0VmeQOyeCv1xkX0THTEO169VYO7cuRyujBBCCCFcoWDZjqioKFwoO+r081iWRVPZeYQkz3QoBTA2OgJhrUCryWz3tCtMxyAmKtzpNY0GUmjkIwUB98RizusvIiRpJgBgWu4ahM6dDWB0puZKYRNE7FResUdneQpPanYWExWB0s+OgmXZUbFeQgghZKyhYNmOyMhINDTrnf4w0151E2fXb8Tcd3497Hzcwd586inkbnwHGGZ8lMVkhnnnWbz1wksOr2O0kUojH7GFJCUM8bWZIqyEG1LZBLGbyuttRYzKgCoTi/0ngHYjAy+lDE2HtVCp/FyuJZbC6CxP4inNztQB/pAzVjQ0NFDtMiGEECJB/M5D8gB+fn7w9fVHq67NqefVFZ8EANT3/H9HRIaPx+YXfo7APdfQuf8SunUGsCyLbp0BnfsvIXDPNWx54SVEjMKaVUf1nf5d8EOoRoa1SXXw2pwH/Z6SAa+Hfk8JvDbnYV1yHW+NfAh3Fs5Pw+X6SABAbrIe7Vv2wWIyD/nY3k2Qp1P0AICKhkgs4HATZPWq1ZiR9gy2lcTg1DU5QjUMHp/XjXlhnehq6YS/isGPMxX44VJvPPOwAk9ltGFF4llcLV6PV15+AtqiQqfvedforGE2gIB+o7PK1ADQNzqLeKbI8UH4+uuvxV4GIYQQQobAsCwr9hpckpqayp46dUqQe+3Y9h4iA2Uj1i1burpRX3IKrNkCALi+fQ+6WvXwDtJg0g+WAQAYuRfGp6c6NB+3+uZtbC8oQLO+DcHqAKzJzuZlrrJU7dy1E7UVttM/AKhtsUJ7RTmwkU+Qba+nt5EP1XZKm7aoEBd7UqB705CHS4F+ul8KdML8Z3lp0sSyLI6UHIO24CPUVFdiSpgOD8/zAnDn561/LXHvz9uhC34In+rcz9urv3oZKxLPol7HYkNzokNp6Po9JXgp5BxCNQzyz83Gm2/83rVvlEja5auVqKwz4Cc/9cw+FGJiGOY0y7KpYq+DEELI6EVp2A6IipmAusozIwbLVqMJ19/Ph6m5FTJvb7BWWwOf7rYOVPx1J6xdXVAGB2JcSqJDwXJsdARvc5RHAyk18iHckFI3Y+BOKq+hs60niPfirZZYCqOziDRNiovF4WOfQa/XQ61Wi70cQgghhPRDwbIDoqKi8NXpIyM+RqH2x30bf4OLf/wHms5cBGu2pZiyZjMYpTdC583BjBd+Crmv/S7AxMaTGvkQm95NkPf3fwCVtQb69m54K8wIBIAu4LNjLAL8vWGSxSLzQf5HJwlVSyyF0VlEmhQKOSbGhOHs2TNYsGCh2MshhBBCSD8ULDsgMjISjU06u02+5H6+mLXuWRQ/uRYmU1ff1xX+fpi17lkK6lzgKY18yEAMw2BCmAyp870hk935vbBaWZy86oWrTcKs465a4lwHaok35+G1Re19tcSO/GxKYXQWka7pU+Jw9OQx3H//Avp3ghBCCJEQavDlAF9fX/gFaNDcYj8V0ljXCFOLHjJvBRi5F2TeCphadDDWNQqwUkKkbccHO3CxdBMeS6/B3Cks6nUsth5XYONhJbYeV6Bex2LeVCseS6/BxdJN2LlrJ6/rKdTmI3miGbUtVuhi40bs0A3YAmZ9TBxqW6xImtgNbcFHDt2n/+iszoPlDj3nzugs1mPmh5OhRUWEwdihw61bt8ReCiGEEEL6oWDZQdExE1DfYP+4q67kFGC1InLJfCx87/9DxOL5gNWK+pLTAqySEOkaPGd4/SF/bGhORGXOo9A99yNU5jyKDc2JWH/IHw06KxYldOD25TyXuk876k4tsRK+i52oJb6ihJeMcbiWODNrOcoq5QgPkkFTXTVsJ/BefaOzgmQor1R4zPxwMjSGYTBlYhTKTgvTtJIQQgghjqFg2UHRsXGoa2y2+7iAe2Ix5/UXMfWpNZD7qDAtdw3mvP4i/O+JEWCVhEhTb21wb6D8dnkYLLk50CxLh0LtA4Zh7tQG5+bg7fIwNOisWDyzAwe0eeCra79QtcRSGp1FpClh6iScLT8Js3nkjRRCCCGECIeCZQdFRkaivllv93EhSQkISZo56GszEZKUwNfSCJE8qc4Z7l9LbG4zOvQcV2qJaX44sUejDkBQgApXrlwReymEEEII6UENvhwUGRmJxmY9rFYrZDLaYyD8YFkWXxaXolCbP6D7NyvXIDNrORbOTxuVgVOhNh8rEs2obWGhi40b0G16KHdqg88haWI38gs+4qXJW/9a4g0Hyx2af3ynlphxqpZYaqOziPRMmxSN0yePY8aMGWIvhRBCCCGgYNlhPj4+CFAHorlVh3HBQWIvh3ggbVEhDmjzMDX0G6xINN/VJbqs+CL27YlARjb/I5W4JtU5w5lZy1FWfAGp8RZozlTBYpo7YpOvvlrieBlOXZM7XUs8GuaHe+qGzWgwZdI9KN71L7S0tCAoiP6dIYQQQsRGwbITomPjUFffSMEy4dyOD3ag7spurEnrAADUtrDQXvGGziiDRmVF1hQTUuPNSI2vwaHSTWhubsLqVatFXrXjpDpneOH8NOzbE4nU+BrkJuvx9pZ9w6aI99YSr0vRA5ChoiESP3OhlnjE+eFeGiydOhc/e2WlKBksnrxhMxp4eyswa+oEHDxQhBXfzxF7OYQQQsiYR8GyE6JjJuDmlVOg6mPCpcFdojeXqaGLjYNvThLkASo0tRltKcJnqpCbrMeihA4cPJ8HbVHIqAlYpDpnuK+WuHQTFiV0YG1SHTZvzoM+Jg4+i5MgV6tg1hthOFgOdU0V1qXoOaklHm5+eNvXNTjx0n+jY0E6AuKiufgWHebpGzajRfLs6diap8WSjEwEBgaKvRxCCCFkTKNg2QlRUVEoP3ZI7GUQD9LbJfqx9Dtdov1zvzOgprevS7RpLt7esg9rk+qweGYHtmvzkLk0Y1SkxApZG+wsKdUS1xWfBADUF58UNFgeCxs2o4VKqcT0SZEoPnoE3374O2IvhxBCCBnTqFOVEyIiItDYYmvyRQgXpNolmmtSnzO8etVqzEh7BttKYnDqmhyhGgaPz+vG8wu78Pi8boRqbLXE20pikZD+DGcnqpaubtz+ohS3DhzFrQNHcfvzYgDArc+L73zti1JYuvhJQwekO9ZrLEtOnI7TJ0vQ0dEh9lIIIYSQMY1Olp2gUqmg1gShqUWH0BCqWybuk2qXaK6JURvsrBFrieWByMxejifS7+P0JN9qNOH6+/kwNbdC5u0NtmcjrrutAxV/3QlrVxeUwYEYl5IIL29+UtHv2rDJdWDDZnMeXlvU3rdhMxp+BkcTf38/TIoORWlpCZZSN3RCCCFENBQsO8nW5KuBgmXCCal2ieaaWLXBrqxzqFpivijU/rhv429w8Y//QNOZi2DNthN31mwGo/RG6Lw5mPHCTyH3tV/j7aqxsmEz2qTMnoEP9x/GggULoVQqxV4OIYQQMiZRsOyk6JgJqL58QuxlEA8h1S7RfJBSbTAXuBqxJPfzxax1z6L4ybUwmbr6vq7w98Osdc+CYRiX7+XQ88bIhs1oExSohp9Kjrq6OsTGxoq9HEIIIWRMomDZSVFRUThd2ib2MoiHkGqXaL6MhjnDjuB6xJKxrhGmFj1k3gqwVisYmQymFh2MdY348qtyl+7l6BpbWloBjI0Nm9HGYOiCRsNfcztCCCGEjIyCZSdFRESgsdnW5EuMOajEs0i5SzRfxKgN5hIfI5bqSk4BVisilyzEpB+uwLX3PsI3BV9Au+ldfO11wul7ObPGT49bcaDcArVSMSY2bEYLi8UCg6kLAQEBYi+FEEIIGbMoWHaSUqlEYFAImppbETouWOzlkFEuM2s5yoovIDXeAs2ZKlhMc4dtrgT06xIdL8Opa3Leu0TzRejaYK7wNWIp4J5YzHn9RYQkzQQATMtdg2q5BQ2XPsWiNOfu9bs/3IK8/ajDa3x4ngyFpy0Il3fi/BjZsBkN9G0dUKs1tClLCCGEiIiCZRfExMahtr6RgmXittHQJZorXNX4ioXPmdghSQl33avw4mE8lt7q9L1+u7sAa1cCDTrW4edlpijw1/1d0OjGzoaN1Onb2hEYRP/GEEIIIWKiLWsXRMVMQH1js9jLIB6gr0v0BT+EamRYm1QHr8150O8pQbfOAJZl0a0zQL+nBF6b87AuuU6ULtHu0hYVYu0rT+Jq8RtYkXgWK1Nv4Ptzb2Fl6g2sSDyLq8Xr8crLT0BbVCj2Uocl5Exsd+61cKYF5yqtTj9v9kQZFoxrRfuWfcPOwe7dsHk6RQ8AqGiIxIJRtGEzmujb2hEcMk7sZRBCCCFjGp0suyA8PBxlxzrFXgbxEJ7WJXowPmp8xSDkiCV37jV3qhf+srcLulnOPS9lshe2FnZjbZo0x3qNNfq2dgRFxYi9DEIIIWRMo2DZBUFBQdC3UbBMuOMpXaIH46vGVwxCjlhy9143TT7wXez88wzdMoRqZB63YTMatXeYEBcYJPYyCCGEkDGNgmUXqNVqGIxdsFgs8PLyEns5xEOM9i7Rg/FZ4ysGd2ZisyyL2/UtePVXLztUr+3u/G0TZPB34Xk+fsHYVqLxqA2b0UrfaUBgYKDYyyCEEELGNAqWXeDl5QW1RgN9WweCAtViL4d4kNHaJXood9Xd5jpQP7s5D68tau+r8XXndeC6oZirM7E7Oyx4t6AbqXEtmDdN59CcZHfnbythhdmF56nVQXjjrS0es2EzmnV2mmhsFCGEECIyCpZdFBwSCp1eT8EykSyxu08LWeM7mLaoEAe0eZga+g1WJJodClDtcWUmdmthGRL9DVixwBsAUNtidahe293529FKA6pdHAPlSRs2o5nB1AU/Pz+xl0EIIYSMaRQsuyhkXChada1iL4OQIfERLDpLyBrf/vhqKObKTGxZRRVWfM/b6Xptd+Zvl14yY+EsOfZV0xio0cpqtaK72wyVyrFUekIIIYTwg0ZHuSg4JBT6tg6xl0HIXXZ8sAMXSzdhTVo1UuMtqNex2HpcgY2Hldh6XIF6HYvUeDMeS6/BxdJN2LlrJy/rcLfutvf5zhjcUGz9IX9saE5EZc6j0D33I1TmPIoNzYlYf8gfDTorFiV04PblPIdGVi2cn4bL9ZEAgNxkvd0RSzc37MWri9r66rUtuTnQLEuHQu0DhmHu1Gvn5uDt8jA06KxYPLMDB7R5WJB+n1P36j/O6cvzXkicKHP6eTQGSjoMRhNUPj6QyeifaEIIIURM9C+xi4KCgqDvMIq9DEIG4DNYdFb/ultzm2O/K/3rZ3uf76jehmK937uzASrLsiN/P07MxO58ZxdWRd/GOLXMpZnMR0uPuzx/O3nug/jior9Hz+32dAajEX5+/mIvgxBCCBnzKA3bRUFBQdC3G/2ydxgAACAASURBVMReBiF9pNZ92t26W1aucep+QjQUc3Qm9r+8zFg8W4HaFqvL9dpvvvF7l+Zvr161Gjt3RXjs3O6xwGAwUbBMCCGESACdLLvIFizTrGUiHXcFi06eZh4pOcbpejKzlqOsUo7wIBk01VXDpgP36qufDZKhvFLhdP1soTYfyRPNfQHqSLW6QP8A1Yqkid3QFnzk0H1Wr1qNGWnPYFtJDE5dkyNUw+Dxed14fmEXHp/XjVANgy4zeuq1lc7NO76ihJeM6avXduReJ6/Jsa0kFgnpz/TVXrv6PCINBqMRvhQsE0IIIaKjk2UX+fr6gmUZGE0mqJRKsZdDeMJHR2m+ulSL2X16KAvnp2HfnkikxtcgN1mPt7fsGzaA762fXZeiByBDRUMkfuZk/ayQDcXszcRW+d8A0MpJvbar87c9bW73WGIwGOHv71xmBSGEEEK4R8GyixiGQXBICPT6dqhCKVj2RHx0lOazS7VY3aeHXU9vjW/pJixK6MDapDps3pwHfUwcfBYnQa5Wwaw3wnCwHOqaKqxL0btVPyt0Q7GRRiy99ssnAbS6PCd5cL22q+OcaAzU6GQwGuE3LlrsZRBCCCFjHgXLboiOiUPNN7cxPjRE7KUQjvExfoivkUa9xOg+bY+jNb5c1M/2byjGRYDqDqHrtYlnMZq6EepPadiEEEKI2ChYdkNy6r34cPvfkDw7gVIZPcjgjtLOzMcd7jSYj2sOJqVgsb/Vq1ZDWxSCbQW7MG38bSRN7Mbj8+4E5harrX62oj4SGdk5Ls99llKA6s6cZJp3LC6+yiScYTR1w9fXl9d7EEIIIcQ+CpbdMGHCBLS2GWCxWCCX00vpCfjoKC1Ul2opBYuDCVE/K6UAVeh6bcINPssknEHBMiGEECINFOG5wWQyQe7FUKDsQfgYPyTESCNAWsHiUPiun5VSgCp0vTZxH99lEs4wmLooWCaEEEIkgEZHucFkMkGhoEDZk/AxfkiokUYL56fhcn0kACA3WY/2LfuGHdfUGyw+naIHAFQ0RGLBKD/N7AtQL/ghVCPD2qQ6eG3Og35PCbp1BrAsi26dAfo9JfDanId1yXW8BqhZGZkIn5rTt57XFrXjpZBzmLj7AwT+ZSsm7v4AL4Wcw2uL2vvWQfOOxTG4TGL9IX9saE5EZc6j0D33I1TmPIoNzYlYf8gfDTorFiV04PblPGiLCnlZD50sE0IIIdJAkZ4bVCoVTF2uNUWSQl0cuRsfHaWF6lJNp5nCNhRzhFD12sR1QpVJOMNoNFGwTAghhEgABctu8Pb2Bgugu9vs1AmzVOriyN346CgtZJdqqQWLYpBagErzjqVNqDIJR5nNZlisLJRKGklICCGEiI2CZTcwDAM/X38YnUjHHlwXBwz8gCyTMYLVxZG78dFRWugu1VILFsUgtQCV5h1LV6E2HysSzahtYaGLjRtwojyUO2US55A0sRv5BR9x+r4ajSb4+vnR5gkhhBAiARQsu8nXzw8GgxEB/n52H9u/Ls4RrowPGkv4SGXno6O0GF2qpRYsioECVOIIocokHGUwmuDrSzOWCSGEECmgYNlNfn4BMBiNdh/Xvy7OGXzWxXFBrNprvlLZ+egoLVaXagoWCbFPyDIJR3QajPDzo2CZEEIIkQIKlt3k6+eHToPJ7uP618U5i4+6OC6IVXvN54gXPsYPSWmkESGeyJ1NO6HLJOwxGI3w86dgmRBCCJECCpbd5OvvD6Ox2e7jeuviBtcoO4KPujh3iTWTdPCIl81lauhi4+CbkwR5gApNbUZbqvOZKuQm651OZeejozR1qSaEP+5u2glVJuFoQH+7rhFhE2Y6/gKQUaGsrCxLLpf/mmXZcNDYTkIIkQIrwzC1ZrP5N8nJydrhHkTBspv8/QOgv23/xLi3Ls4VXjKG87o4d/AdsA5HqBEvfHSUpi7Vnk/K4+CkvDZ3cLFpJ0SZhKMB/dKsVahpMGLpdx9z8RUhUlRWVpalVCr/FBcX1+Xj49Mik8lYsddECCFjndVqZQwGg6aqqupPZWVl/zZcwEzBspv8/PxRb+qy+zh369q4rotzlZgzSYUc8cJHR2nqUu25hCpJcCXo9dRRdVxt2vFdJuFMQH+g+M9okqdj3LhxnL5WRFxyufzXcXFxXX5+fgax10IIIcRGJpOxfn5+hri4OFy/fv3XAChY5oOvry+MJrPdx7lb18Z1XZyrxJxJKvSIFz46SlOXaung6rRVqJIEV4JePtcm5mk1l5t2fJZJOBvQL000oOjcMXySvwPfW/4DXl47IjyWZcN9fHxaxF4HIYSQu/n4+Bh7SmSGRMGym3x8fGDscuBkuacuzpVUbIuVdWl8EB/EnEkqxogXPjpKU5dq8XF12ipUSYIrQW9wcAhva+P6tNrZwJvrTTs+yiRcDegzEjuwa+c7+O4jq2nTzHPIKPWaEEKkqefv52F7SVCw7CZHT5b718U5q7xS4fL4IK6JOZNUaiNePIWn1rMOh6vTVqFKElwJyD//ahcOfeONZ7O5XxvXp9WuBN58bNpxXSbhTkAfH1iJz4v2Y2nmQyPegxBCCCH8oo6MbrIFy/ZPlhfOT8Pl+kiX7lHREIkFEhkfJGbA2n/Ei7nN/mxrgN8RL55AW1SIta88iavFb2BF4lmsTL2B78+9hZWpN7Ai8SyuFq/HKy8/AW1RodhL5cTgwHP9IX9saE5EZc6j0D33I1TmPIoNzYlYf8gfDTorFiV04PblvCG//7uCoWHqXIF+wVCZGsCdcXD29Abkvet9uzwMltwcaJalQ6H2AcMwd4Le3By8XR6GBp0VIb5tSIpt4nxtXL5+gC3wvli6CWvSqpEab0G9jsXW4wpsPKzE1uMK1OtYpMab8Vh6DS6WbsLOXTsB9N+0U8J3sRObdleUIzZMzMrIxO9+/y6m3P8r5J+bjQ9PTcDuE5H48NQE7Dk3B1Pv/xV+9/u/OnRaXqjNR/JEM2pbrNDFxo3YNAzoH9BbMSfOiPydf3Lo+yJECC+99FIkwzApDMOkyGSyFLVaPWfmzJnTn3/++ajq6uoBP9wVFRXeDMOk7Ny5U9CUuKioqFlPPfVUtBD30ul0MoZhUjZu3Bgy0uOuXLnivWzZsnsiIiJmKZXK5PDw8MQlS5ZM2r9/v2Dz4T799NMAhmFSTp486diHNg7o9XqZj49Pko+PT1JLSwvFGmRUo5NlNzkaLA+ui3OU1MYHiTmTVKgRL2OFWOO/xML1SbAQJQmunk5Gmprx40xFX6DGxdq4fv3cSWHnc9OOqzIJd7Nw2K5Gt+5PpO+/fvWfkS3Njd5C3zcoeFzXf73xlv0xHoP4+/tbPv7446sA0Nra6nXq1Cnff/7zn6Hbtm0bt3fv3qsLFizoBIDY2NjuAwcOXJ49e7Zju9oeqqGhwWv+/PnTQkNDu19//fVvoqOjuysrK70//fTTwKNHj/o/+OCD7UKsIz09vePAgQOXp0+fbhLifgCwY8eOQKPRKAOAnTt3Bj777LP2Z6wSIlEULLvJ29sbVpaF2WyGXD7yyzm4Ls4eV8cH8ZlWK2bAKsSIl7FCrPFfYuK6zlWIkgRXA/KQS02cr43L18/dwNu75+9aMTbtHOV2QG+hshFP19Lc6L3uuR/Y323n2G//vMOlAF0ul7NLlizp+/CyYsUK/S9+8YuG9PT0qWvWrJlYWVl5Xi6Xw8fHZ8Djxqr33nsvqKmpSXHmzJmLUVFRffV6L774YpPVanX7+p2dnYyvr6/dWvjg4GCr0O9HXl5ecFRUVFfv/7YXLFutVhiNRoe+H0KEZjc1gmGYGIZhDjEMc4lhmAsMw7zY8/X/YhjmG4ZhzvT830P9nvNLhmGuMQxTwTBMVr+vpzAM81XPn21keiI2hmGUDMPs6vn6cYZh4rj/VvnBMAx8ff1gMDq2Ybd61WrMSHsG20picOqaHBbrwL8XLFYWJ6/Jsa0kFgnpzzh9ksd3Wm1m1nKUVcoRHiSDproKFjv12n0Ba5DM7drr/qnsucl6tG/ZN+z9e0e8PJ2iByCtVHaxuZrau3hmBw5o88Cyo/PfMnfSYpMmdkNb8NGAPxeiJMHVdOOqTh/O18bl6+duCntdK9u3add5sNyh7+/Opp0wDRPdLhvxorIRIn3jxo2zvPXWWzdramqUH3/8sRoYOg17+/btmoSEhOk+Pj5JarV6TmJi4rTPPvusLxX5nXfeGRcfH5+gUqmSg4KCZt97771TT5061feX1+3bt+XLly///9k777imrvePf24SMiAQQsIeIqCgIBhArFJt1YrrqyJQFKjab922asVaR9272taftl9Hta7iXrViFbWOatHWCeK2KrIhrLASSHJ/f2BoQEaADJD7fr141d6cc8+Tc8+B+5xnOZubm3flcDiigIAA9z/++MO4Lrk2bNggYDKZvmKxmK5+/ebNm2yCIPxOnDhhqroWExNj7uXl1YnFYvkKhUKfyZMnO8hksmoWhV27dpk7Ozt7sdlsX39/f/eEhIQGf7EWFBTQjYyMSCsrqzdeVGi06q/fcXFx3G7durlzOByRubl511GjRrVTd1/euHGjgCAIv4sXLxoHBAS4s9ls38WLF9vY29t3mTx58huu5wMHDnTx8/NzB2p3w5bL5Zg3b56Ns7OzF5PJ9LW2tvYODQ11Vr+HJvNSGzk5OfQrV66YBQcH5wUHB+ddvXrVLDMzs9pziI6OtuPz+T5xcXFcLy+vTmw223fnzp18TeYiOTnZ6MMPP3R2cHDowmazfZ2dnb2mT59uJ5VKq8k2b948GycnJy8Wi+UrEAh8evXq1aFmyAAFhSZoEkcgBzCLJMlOAN4B8ClBEJ1ff7aeJMmur39+A4DXn40C4AlgIIBNBEGoNslmABMBdHj9M/D19XEA8kmSdAOwHsDXzf9q+sPYmAuphsoyoN24OHWaGv/XGAypsFa5st83gSWPhi9FWaBvPQTJ8XhUFJaBJElUFJZBcjwe9K2HMMc3S+MSL20JfcTatkS0Heeqjxj6pirk5SRN67Jpc/6aq3gb0QmDHdppiroXTlMUeoJJ1VqmaB0MGTKkiE6nk/Hx8bXG4d6/f5/18ccfu7777rtFBw8efLZt27YXAwYMKMzNzWUAwOnTp7mzZ892+vDDD3OPHDny9IcffngZEBBQnJ+fX6Vg/ec//3H9448/eEuXLk356aefniuVSgwaNMg9KSmJVduYH330UQEA7N2711z9ekxMjIWFhYV8yJAhRQCwfft2/tixY127du1asn///mezZ89O37t3r3DatGn2qj5Xr141Hj9+vGunTp1K9+zZ82zw4MEFkZGRrg3Ni7+/f2l5eTkREhLS/sqVK8YKRe0JXs+ePWsydOjQjlZWVhW7du16vnLlylcXLlzgRUREONdsO2bMGJeBAwcWHD58+GlwcHDBsGHD8k6ePMlXt1QXFhbSLl++zAsNDa3TmhsVFdXum2++sRs2bFjewYMHn61YsSKltLS0SifQZF7qYs+ePXy5XE6MHj06b8yYMXkKhYL4+eef+TXbSaVS2vjx453Hjh2bc/To0afvvvtuiSZzkZWVxeDz+fLVq1enHD169Mm0adMyDxw4IPzkk0+cVG1++OEHwcaNG22nTp2adezYsSffffddcvv27WVFRUX0mnJQUDREgycsJElmAMh4/e8igiAeAqhvswwHcIAkSRmAFwRBPAMQQBDESwBmJEleAwCCIPYACAZw+nWfJa/7HwHwA0EQBNlKTFgmJiYoLWtcaI62ywfpy61WlzVJNUEXJV50SUvMNG3I8l+GRNuWYH2EJDQ1RwADSq3Lps35a64Lu8CMwKNsO/i7pWCSrwRrfzxZ56GP6tBujp8EAA2Pc+wwTg9eJs0JG/nrMR0hkZ/pXEYKCm3A4XBIPp8vz8rKqnWB//3338YmJibKrVu3pqqujRw5sur07Nq1aybu7u5lq1evzlRdi4qKqvr8yJEjZrdv3+bGxsY+HjJkSDEA/Oc//ylq165dl1WrVtns27cvueaYAoFA0atXr8IjR45YzJgxI1d1/ZdffrEYMmRIPoPBgFKpxKJFixxGjBiRGxMT80rVhsViKefOndtu2bJlGTY2NopVq1bZtGvXTnrq1KnnNBoN4eHhEplMRqxdu7ZexXH48OFF48aNy9qxY4d1bGyshYmJiTIwMFAyZcqU7ODg4CJVu3nz5jmIRKLiU6dOPVddc3R0rBg+fHjHGzdusLt161b1gjlx4sTshQsXZqsNk7dlyxabixcvmqhcrQ8cOGBeXl5OGz16dK21ve/cucM+dOiQcPny5SkLFiyouteECRPyAWg8L3V978OHD1u4uLhIu3fvXgYArq6u0sOHDwtmz55dLRGDVCqlrV69OlV1sAEAfn5+zg3NRUBAQFlAQEDVWgoKCio2MTFRzpgxw1kqlb5is9nk33//bfLuu+9K5s6dm6NqN3bs2AJQUDSBRmWoe+0eLQLw1+tLnxEEkUgQxA6CIFSnRvYAUtS6pb6+Zv/63zWvV+tDkqQcQCGANzIMEgQxkSCImwRB3MzJyan5scEw4ZqiTGq4PBb6dqsd0D8INu7hVRbeBX2KES1IhMvhAzDftBsuhw8gWpCIBX2KqxRlbSqsNV3ZLXkExnavwLTe5RjbvQKWPKJZruzaoqVmmtZVJuGWjrYtwfoISWiqdXKwRzluPlFoVTZtzp82FO+W7mXSHC+c6/9w0feDgbW2paBoiZAkWeem8vX1LS0uLqaHhIQ4Hzt2zEwikdBqfv7w4UPjcePGOZ4+fZpb0532+vXrJnw+X65SlAHAzMxM2a9fv8K///67zqzSH374Yf61a9dMMzIyGAAQHx/PSU5OZkVGRuYBwL1791gZGRnM8PDwvIqKCqh+Bg0aVCSTyYhbt25xACAhIcFkwIABBequ0yNHjtRI8dq+fXtqYmJi0sKFC1MDAgKK/vjjD7OQkJCOa9eutQSAoqIiWkJCAjckJCRfXYagoKBiBoNBXr9+3UT9fiNGjKj2BzgwMLCsXbt2sn379lmorh0+fJgfEBBQ5OjoWOsvnLNnz5oCwNSpU2vNIqjpvNRGcnKy0Y0bN0xHjBhRZdUOCQnJu3nzJvfFixfV/ogSBIGwsLCq76PpXCiVSixbtszK1dXVk81m+zKZTL8pU6a0Ly8vJ549e8YEgK5du5ZevnyZN3PmTLuLFy8ay+UNl3iloKgLjZVlgiC4AI4C+JwkSQkqXapdAXRFpeX5W1XTWrqT9Vyvr0/1CyT5I0mS/iRJ+ltaWmoqus4x5nJRVqa3JINvYAi3WkMrrLpyZdcW+nCJbypttV51c91ia1pb9RGS0FSF/H0fOuIfKrUqmzbnTxuKt6EP7RqiOWEjVo7+KCoqangQCooWQGlpKVFQUEC3trau9ZeMj4+PLCYm5llycjIrPDy8g5WVVdehQ4e2T09PZwBAcHBw0YYNG15ev36dO2TIEHehUNj1o48+clIp1RkZGUZCofCNPzxWVlYVhYWFdbrVRkREFBgZGZEqV+y9e/daWFlZVQQFBRUDle68ADBy5MgOTCbTT/Xj4eHRBQCSk5OZACAWi41qxh3b2dlp/IfQy8tLtmzZsqwLFy48e/78+T0PD4/SlStX2iuVSojFYrpCocDcuXOd1GXgcDi+crmcSElJqZaMzd7e/o1xg4OD82JjY/lKpRJ5eXm0K1eu8MLCwup0wc7NzWVwOBylhYVFrVnGNJ2X2ti9ezdfqVRiyJAhhWKxmC4Wi+lDhw4tJEkSu3fvtlBva2ZmpmCz2VXv+prOxfLly62WLl3qOHjw4IJ9+/Y9u3Tp0sPVq1e/AoCysjICAGbMmCGeN29e6okTJ/h9+/btZGlp6TNjxgw7SmmmaAoaBboTBGGESkV5L0mSxwCAJMkstc+3AYh9/b+pABzVujsASH993aGW6+p9UgmCYADgAWg1aeZNTLgoymx0FQatYSi32gH9gxD0QX9cib+OY2eOVnMzBsMcQQNDML7nOzqz4mjblV1btPRM04Ys/2VItJ1NXR8hCb0De+Dk8ca7GxMEDSTDEhfvy7UmmzbnT1su7BEjIxB3ToCYMwfhYZUBkUsFxnb/911Soaw8tHucbYf+A8P1fnjW1LARV54d0tLSwONR5e4oWj6xsbGmCoWCCAwMrLMU0qhRowpHjRpVmJubSz98+DBv/vz5jhMnTnSKjY19DgDTpk3LnTZtWm56ejpj79695osWLXI0MzNTbNq0Kc3W1rYiNzf3jT882dnZRjwer053YB6Pp3z//fcLjx49avHFF1+If/31V/7QoUPzVBZioVCoAIBvvvkmuVu3bqU1+3fs2FH2ul1FdnZ2tV926enpTfpDaGtrK4+KispdsGCBY1paGkMgECgIgkB0dHT6sGHD3nDbcnJyqqYc10wMBgCjR4/O27Bhg+3Zs2e5z549YykUCkRFRdXqgg0AAoFAXlZWRsvLy6PVpjBrOi+1ceTIEQsA6Nu3b6faPluyZIm67lDNKKbpXPzyyy8WgwYNyv/+++/TVJ8lJiZWe5Gh0+lYvHhx9uLFi7OfPXtmtGPHDsHXX39tb29vX/Hll1+2HNdUilZBg8ry64zVPwF4SJLkd2rXbV/HMwPACABJr//9K4B9BEF8B8AOlYm8/iZJUkEQRBFBEO+g0o17DIDv1fqMBXANQBiAC60lXhmoVJbF5YaztumjhE2dY7dQhdVQaLsWrU5kbKP1qpuqeNYX56rrGPrmKOSRH01EXq5Ya7Jpc/60qXgb+tCuIZqi0Mf/fQcpKa/QuXPneu5MQWF4xGIxfcGCBQ5OTk6y4cOHSxpqLxAIFJMnT877448/TG/evGlS83M7Ozv57NmzxSdOnOA/evSIAwA9evQo+fbbbxmnT5+uqk1cVFREu3DhAm/gwIH1ukOPHDkyb/z48a779u3jpaamsqKioqoMMT4+PlIrK6uKly9fsmbNmlVnYXNvb++SuLg4c6VSmaZSVg8ePGheV3sV6enpDDs7uzdMmU+fPmUxmUxSIBAojI2NSR8fn5InT56we/funVHbfRrCz89P2qFDh7J9+/ZZvHr1ihkYGCipL6Z44MCBkrlz52LLli2C+fPnv6E4ajovNXnw4AHz3r17JuPGjcsKDg6u9mJ56tQpsy1bttjcu3eP1aVLl1qVbTMzM6UmcyGVSmlMJrOakn/gwAGLutq7ublVrFq1KnPfvn3CBw8eaOZOR0GhhiaW5UAAowHcIwji7utr8wFEEATRFZXu0i8BTAIAkiTvEwRxCMADVGbS/pQkSdWmnQJgFwAOKhN7nX59/ScAP79OBpaHymzarQZjY2NIG3CP1CVt1a22JaLtWr66oK3Wq9aVJVjX1s3mKuTakk2b86ftg4uWfmjXWIXe1toSSc9fGFhqCorqyOVy4vfffzcBAIlEQr9x44bxrl27LMvKymi//vrrUwaj9r8j69atE16/fp07YMCAQkdHx4pHjx6xT506xQ8NDc0FgJkzZ9rl5eXR+/TpU2RpaSm/deuW8Y0bN0y/+uqrVKCynrOvr2/xmDFjXBYtWpQmFArl69evt5HJZLT58+dn1jroa8LDwws/++wz5eeff97O3t6+vE+fPlWWUjqdjhUrVqRMnTq1vUQioQ0ePFjCYrGUz549Y508edI8Njb2uampqXLevHmZffr06TRkyBCXcePGiRMTEzl79+5tMBZwy5YtgsOHDwtGjRolFolEZRUVFcS5c+fMYmJirKKiorJVNYXXrFmTOnTo0I7BwcEICwvLNzMzU7x8+ZJ5+vRp3tdff53m7e3dYJxfcHBw/rZt26yKi4vp33333RsJz9Tx8fGRRUREiJcsWeKYnZ1t9P777xfl5+czjh49yo+NjX2u6bzUvO/u3bstaDQaFixYkOXs7FztxVIkEpVt27bNes+ePRbr1q2rUxHWZC7ee+89yc6dO63WrFlT0qFDB1lMTIxFcnJytZffyMjIdnw+X96jR48Sc3Nzxe+//2766tUrVr9+/aj4FopGo0k27KuoPab4t3r6rASwspbrNwF41XJdCuDDhmRpqVQqy+UGG7+tutW2RFpDpmldWFj1gTYyi+vKEqxr62ZzFHJtylbn/B16hJe5BEqLFHAxKQOXQ+D030BmAQ3u3gEI6vdBtfsYOqu+IWiMQm9jbYm4K3egVCprdbukoDAExcXF9A8++MCDIAiYmJgo2rVrJwsNDc2bPXt2lpOTU50WA5FIVHbq1CnzBQsWOBYWFjKEQmFFZGRkznfffZcOAAEBASUbN260/vXXXy1KS0vptra25bNmzUpXz9R88uTJfz799FOHr776yrG8vJzWpUuXkt9+++2xl5dXvYqksbEx2a9fv4Jff/3VYurUqW8o1hMmTMjn8XiKr7/+2vbQoUNCOp0OBwcHWVBQUAGbzVYCQO/evUu3bdv2fMmSJfZRUVFuXl5eJXv37v3n/ffff8PVWJ3hw4cXvnjxgrVnzx7LtWvXMmk0Gunk5CRbuXLlq+jo6CqL7oABA4rPnDnzePHixXaTJ09ur1AoYGdnV96nT59Ce3t7jSwxY8aMyVu3bp0dk8kkIyMjG0w+tmfPnmQnJydZTEyM5f/+9z8bCwsLea9evao8AzSZl5ocO3ZM8M4770hqKsoAYG9vLw8MDJQcO3asXmVZk7n4+uuv08ViMWP16tX2ADBw4MD8devWvYqMjHRT3eedd94p3rVrl2VMTIxleXk54ejoKPv222+TR48eTWXEpmg0RCvydq6Gv78/efPmTUOLAQBIS0vDoZjtiBxhmPJEXy38AqHeCcguJPFtnrdGbrWS4/GYJUiEkEfgWKIPVi7/Rg+Svv0smDcBYf7J2P2XEZ6Hj9Lo4KKisAwuhw9gbPcKHLnZDitWb9O5nHHnzuLBa0VFFVddl6IyWU1R8QycapAyXHHnzuJ83CG4W6bB10UOGu1fzhaCQgAAIABJREFUZUmpJHH7uREeZdui/8CRGllu486dxTk1xZOudj/F6/sZKs61PkiSxJX464irQ+ntpSd3Y/X5k1dIce+lEl1daPDrQG/Us9l/cD8yH1cq3gCQma9E3BNW9YMLfqWyqDq4MFR2e32z6+Bv+GTyDLSkZJatDYIgbpEk6W9oORISEl76+Pi84c66ZOF8u/w8cZ3JknQF30JYvmT5KsMlWqGgoKBoYSQkJAh9fHyca/tMowRfFPVjamqK4pIyg43fVt1qWyKtxSW+NdWr3ndgH7KeHEZUD5VCRSLuCROFUhp4bCUGdJTB300Of7cUXLy2GXl5uQ0qVC09zrUuWoq7sWr+Vn69BpBcwIRBlb9vKpVdzZ9NS0/QZUisBDykpaVRyvJbDKWwUlBQULR8KGVZC5iamkJBAlKZDGwWS+/jt1a32reR1uQS3xoUFV1mFm8pimdr5ez5czAp/xt9uhPNejat9eBC11gLeUh5lYyuXbsaWhQKCgoKCoo2C6UsawGCICC0tEJefiHsbKwMMn5bi/9rqbS2TNMtWVFpDZnF2yrafjaGOLjQRgy8LrG2EuL6vecGG5+CgoKCgoKCUpa1hpW1LfILDKMsA63LrfZtpjW6xLdUC2tryCzeVmntz0Y9Bj7Uu5YY+D8f4ORxzWPgdYG1pRDZmdchl8tRV5ZhCgoKCgoKCt1CpdnUElbWtsjLb7DEoE6JGBmBzj2mICbeETefMWDJIzC2ewWm9S7H2O4VsORVutXGxDvBs+eUNpMoR5/0DuyBR9l2AIBJvhIU/3gSijrKiqlc4if7Va6bxzl26EW5xFdxNu4YfF3kyMxXotDJud5DB0A9s7gSIpcKxJ05qidJ2x6t+dnsO7APD65tRlSPV/B3UyC7kMTuv4yw8TILu/8yQnYhCX83OT7qmYIH1zZj/8H9BpHTyIgBnikHmZn1VsahoKCgoKCg0CHUcbWWEAqFeJZU0uh+2nYFbMlutW0ByiVeexDyQtBoBOKeMGEcLtKoD6evCHGHH2Ns9woQ8kIdS9h2aa3PRpcx8LrAyqIyyZeDg4Pex6agoKCgoKCglGWtIRQKkS9pnLKsK1fAlupW21agXOK1Q2vJLF4fLT0utqm0xmfTGmPgrS35SH31Et27d9fruBQUFBQUFBSVUMqylhAIBCgqKoNSqQSN1rB3e81yOED1lzAajWh0ORyKlkNryDTd0mlNmcVrozXExTaV1vhsWmOctY2VEEnX7ut1TIrWwf1t2yw9J0zIMbQcFBQUFG87lLKsJYyMjGDK46FQUgy+uVm9bdVdATXB0K6AFE2DcolvHq0ts7g6uqgN3ZJojc/mbNwxhHrLkZlPotDJuZpFuTb+jbNOhMilAsfOHNW7siwU8FGQnwupVAo2WzMLPsXbjzQvj560dauDW1hYHovPVxhaHgoKCoq3GUpZ1iJCS2vk5RfUqyyruwI2htZeDockSeTeToLA16tVyt9UKJf4pqOLzOL6cItubXGxTaFVZn1vhXHWNBoNQr4Z0tPT4eLiovfxKVomL06e5CukUuLFyZPmHmPG5BpaHgoKCoq3GSobthaxsrZDfkH9GbHVXQEbi8oVsDVS/DIVCSs2ojg5zdCiULQStJ1ZPO7cWXw5ewKe/rkcod4JCPNPxocB6QjzT0aodwKe/rkCs78Yj7hzZ5sss+owTKUor71jDcWkcPCCe8LIjAOCIP6Ni50UjrV3rJFTqERfrxKcjzsEkiSbPLY+aY1Z31tjnDUAWAnMkJqaapCxKVom6Zcv80CSRNqlS+aGloWCgoLibYdSlrWIlbU18guL622jKrnSFAxdcqU5ZP15AwCQ/fq/FBQNUZVZ/L4JLHk0fCnKAn3rIUiOx6OisAwkSaKisAyS4/Ggbz2EOb5ZdWYW11e5oDfiYidqEBd7u9ITpTUdhmnz2ehNZrU4a3mRVKM+ho6zBgBrSwFSX700yNgULQ9SoUBJejoLAErS01mkUmlokSgoKCjeaihlWYsIhULkF9XvXq1yBWwKdBrRasrhKMorkHHpGtLPX0X6+avI+P1PAED673/+e+3SNSjKDZ+xmKLlMqB/EGzcw6uUsgV9ihEtSITL4QMw37QbLocPIFqQiAV9iquUsZqZxWu6Ra+4yMW3ed54Hj4KhZ+OwfPwUfg2zxsrLnKRU6hEH88SZDw61CQLc2uuP9xYtPFs9Il6nHXphTsa9fk3zpo0WAy8rbUQKckvDDI2Rcsj584dTllODhMAysRipvjOnYaz62mJgIAA94EDB9YaD+Dl5dUpNDTUWV+yqAgNDXX28vLqpO37bt++nb9x40aBtu5348YNNkEQfrGxsaYNtd29e7f5O++809HU1LQrk8n0dXZ29po+fbpdRkaGXkIna5NVk3luzHdUR9tzDQAbN24UeHp6djIxMRGZmZl17dSpU+fx48dX1eDTxZi6oubcG0J2pVIJd3f3zt9//73Ox01KSmJFRka2c3d370yn0/0CAgLca2tXUVGB+fPn27Rr186LyWT6Wltbe48bN85Rvc3o0aOdwsPD2zVXJipmWYsIBAIUFNavLDfXla8llMPRBKVUhn9+PgZZXgFoTCZUp98VRSV4vG0/lOXlYFmYQ+jnDTrTsFmLG8vbWg6opdKczOL6LhfUGuNim4O2sr7rY0+1xjhrAOCZmUImLUVRURFMTRv1DkrxFvLs6FGhQiqlA4CirIz+7OhRoaWfX4qh5XrbOHLkCD8vL89o+vTpeo0JnzBhgsOOHTusw8LCxNOnT8/i8XiKpKQkzo4dOywfPnzIOXfu3D/6lEfFsmXLMkpLS3XyYqPtuZ43b57NunXr7CdPnpzZr1+/tLKyMuLmzZsmR44csQCQqosxdUnNuTeE7D/99BNfIpHQJ06cmKfrse7evcu5cOECTyQSFVdUVNS55j788MP28fHxprNnz07v3LmzNDk5mfngwYNqh4cLFizI9Pb29kpKSsr08vKSNVUmSlnWIqamplCQQJlUBg6bVWub5rryGbocjqYYmXHxzsalePD9TuTefQBSXul6TsrlIFhMWHbvis7TPwHDWG+H4lrhbS4H1JJpamZxfZcLaq1xsc2huVnf9bWnegf2wMnjdvB3S8EkXwnW/niyTjd5VZz1HD8JABoe59hhnAHirIFKl3crAQ9paWnw8PAwiAwU+uPepk1WyadPCxjGxrX6V0vF4movAVl//212ZuTIWi0v8tJSWrtBg3K7TJ2arQtZKbTLvn37eNu3b7dev379y88//7xKERoyZEjxrFmzco4dO1Z/qRUd4unp2WRFQ9/89NNPVhERETk//PBDVZKcyMjIwm+++aZpCYMaQC6XQy6XE2w2WydJR1rC3G/evNk6LCwsj8Vi6TyxSkRERMFHH31UAAADBw50ycvLe0PxOXLkiFlsbCz/r7/+euDn51dnXJW7u3u5n59f8YYNGyy3bdvW5OQflBu2FiEIApZW1sgvqNs6pHIFbAqGdAVsCgwTY3SZMxVGXONq1424JugyZ2qrU5T1FfdKUTuqzOIrl3+DFau3YeXXu7Bi9TasWL6uTsujvt2i9RUXS5IkLl+Nx1cLv8CCeRPw1ZyPK/+78Atcvhpfb6Kw5vSti6Y8G0C/e6o1xlmrsBSYITWFMh62BTwnTMi29POTlKSns/KSkrg1f0ozM6udxJdmZLBra1eSns6y9POTeE6YoHdFWeU2evz4cbOOHTt25nA4Ij8/P/ebN29WO0G8efMmu1evXh14PF5XDocjcnFx8Vy9erWlepu4uDhut27d3Dkcjsjc3LzrqFGj2uXn59f77qpJn9OnT3O7d+/e0djYWGRqato1ICDA/c8//+So5I+Li+PfuHGDSxCEH0EQftHR0XaNuf+aNWssbWxsvDkcjqhv375uqampzIbmbePGjdadO3cuVVeUVTAYDISHh1dlkD1//rxJ37593aysrLw5HI7Iw8Oj8+bNmy3U+2j6HDSRtTY37Ib6aSpjc+e6JkVFRXQbG5s3Tp5pNJpGY27fvp3fsWPHzkwm09fGxsZ72rRp9hUV/95ONRc///yzuZubmyebzfa9dOmSSVPlbWgfqM99c+dLkz1Xk6SkJNadO3dMRo0aVc2qrFAowOFwRGvXrrWcPn26nbW1tbepqWnXUaNGtVMoml7Rjk6nN9hmx44dwnfeeaeoPkVZxfDhw/OPHz8uaI5MlGVZy1ha2SAvvwB2Nla1fq7uCthY7jw3MpgrYFORZokhy5eAxjQCqVSCoNEgyy+ENEsMjk29+7NF0RbKAb2N6NstWh/1h5tjiW1q38a6SWvS/uz5c3rfUwP6ByEvLxcX7x9CH88SLOhTjMz8RMQdfgyJjIAZq/LZ2bjRABg+zlqFrZUQj19RccttAZqREbovWZLmMmJE3t+LF7cr/OcfYyiVmp/U0Ggkz9W1NGDp0mRLH58yHYpaL+np6cx58+Y5zJ49O8PY2Fj51VdfOY4aNcr1yZMn91VKy4gRI9xcXV2lP/744ws2m618+PAhWyKRVL0pnz171mTo0KEd+/fvX7Br167nYrGYvnTpUoeIiAj6mTNnntc2riZ9YmNjTYODgzt07969aNOmTS+4XK7yypUr3FevXjEDAwPLli1blpGWlsaUSCT077///hUAODs7l2t6/5iYGPN58+Y5RUZG5oSEhBRcvHjRdMqUKc71zZdMJiPu3LnDnThxYpYm8/v8+XNmjx49iidNmpTD4XCUV65c4U6fPt2ZRqNh0qRJVUpNQ8+hKbJq+h01kbG5c10bnTt3Lv3pp5+snJycyj/88MMCGxubai/c9Y157NgxswkTJriMGDEid9WqVal3797lrF271j43N5e+b9++V6p7pKWlMRcuXOjw5Zdfptva2so7dOgga6q8De0DTWXXZPzGjKXi9OnTphwOR/nOO+9U+33y8OFDllQqpf3www/WAwYMKNiyZcvL+Ph4k2+++cZu8ODBhWPGjClQKpXQREk1Mmqc1+zdu3dN+vfvXzBmzBinY8eOCRQKBXr16iX58ccfXzk7O1c7KOndu3fx3LlzGX///TenR48eTfqdSCnLWsbK2hbi5Ht1fq7uCthYDOkK2FSy4m8CSiXs+vWG6+hQPNtzFGlnLiE7/hbahQw0tHgaoe+4VwrtoW+3aF3Hxe47sA9ZTw4jqkdlboTMfBJxT5golNLAYysxoKMM/m5y+Lul4OK1zcjLy0XEyIhm9W2sgq1J+1+P2aCoqBhTB+p/T2krzlqf2FgJcT4+ESRJUr9L2giWPj5lgw4ffnRj5Ur71N9/F8hqcUWsCcvCosKhX7/cbl99lUZr5MuntpFIJIzLly8/6tKliwwAlEolMWbMGNeEhAS2SCSSZmRkMFJTU1lHjx79JyAgoAwAhg8fXqR+j3nz5jmIRKLiU6dOVSkajo6OFcOHD+9448YNdrdu3d6wKmnSZ8GCBfYeHh5lV65ceapS3MPCwqqstp6enjJzc3O5Uqkk+vXrV9LY+3/99de2vXr1kuzdu/cVAISGhkrEYjHj4MGDwrrmKysri15eXk44OTlp5HI7ceLEfNW/lUolBg0aVJSWlsbcuXOnUF1Zbug5NEVWANCknyYyNneua5Nt06ZNr0JDQ92mT5/uPGPGDLi4uEj/85//5C9atCjTwsJCWd+YS5cutQsICCg6duzYS+DfdbF69WqH5cuXZ7i6ulYAQEFBAePUqVNPevbsWaV8hYeHuzRWXk32gTrNmS8HBwd5Y8ZScfv2bRMXFxdpTYvvrVu3OAAwbty47MWLF2cDwIgRIyS7d++2fPLkCQsAfvjhB8GMGTOcGxqDJMlbDbVRRywWGx05ckTo4eFR+tNPPz2XSCS0xYsXOwwbNsz17t27j1T7GgD8/f3L6HQ64uPjTShluYVgaWmJZ0mldX5e5Qp4bTP6eNafDEydluAK2BRM2zuh66IZEIi8AAAek6JgGeADoPV8D33HvbZUWmNiM3W3aHGRFEZmDbv+N6dckC7jYpvj3QCgSX0XL38MczJBYwX7/IXzsOM8bbA9g0iG1IIEwDDInmpunLW+MTExhhGdQF5eHgSCVpHAlUILqFuZr0ZHu5bVcMFWh2NjI3v3u+/+MaQ1WR07OzuZSkEDAJ/XciUnJxuJRCKplZWV3MbGpnzy5MntpkyZkjV48OAie3v7qrqaRUVFtISEBO7KlStfqbvABgUFFTMYDPL69esmNZUPTfq4u7uXJyYmmixfvjxF/YVaEzS5v0gkkj58+JCzatWqahaRkJCQ/IYUUAAa/87Jycmhz5492+7s2bPm2dnZTJX1zsrKqtoJb33PoUuXLk2SVS6XQ5N+mspYG015/iq6d+9e9vTp06Tjx4+bnTlzhvfnn3+abtiwwfaXX36xSEhIeMDj8WrNByCXy/HgwQPj5cuXV/teY8aMyV+5cqXD5cuXua6urvmq76CuKDdV3ob2gaZoMv7UqVNzmzJWVlaWkYWFxRvtEhMTOVwuVzFnzpwc1TWlUomioiK6UCiUA0B4eHhB165dHzb2+zQESZIgSRKnTp16pvIccHBwqBg8eLD7yZMnTdUPAYyMjGBqairPzMxs8gkipSxrGaFQiHxJ/bWWa7oCNkRLcQVsCgKRZy3XvAwgSdM5G3cMod5yZOaTKHRyrmb9qo1/414TIXKpwLEzR1u9stxaE5vpwy1anZqHYV+KsrB16yFIHJ3B6SsCw4wNuUSKsgt3YJbyEnP8JBrFxTbXu0GpVGJ0YOP6co0KUVJwFX260zRSsE0YhTBX3kQfT0aD7c0luZg6lFkVS26IPaWKs24te9PSwgxpaWmUstwGMXV0LCfl8nq1KFIuJ8ycnMp1KQeDwSAVCkWtcigUCoLBYFQlPDAzM6vme6lKDFRWVkYDKuMSf/vtt6dz5861nz59uvOkSZNoIpGoeOPGja8CAwPLxGIxXaFQYO7cuU5z5851qjleSkrKG3G1mvTJycmhkyQJOzu7RmdT1OT+6enpDIVCQVhbW1e7v62tbb1KibW1tYLJZJKvXr1qMLYZAEaNGuV89+5d7qxZs9K9vLyk5ubmih9++MHy3Llz5urt6nsOTZVV036aylgbTXn+6nA4HDIyMrIwMjKyEADWr18vjI6Obrdx40bhwoULa43jz8jIYMjlcqJmvLODg0MFAOTm5laZVoVCYbU2TZW3oX1Q33ds7PhNHUsmkxEcDueNA4b79+9z/P39i9UTmz148IAllUpp3t7eUgCwsrJSCASCui2ITcTMzEzh6OgoU3exDwoKKjYyMiKTkpI4NS3mRkZGpFQqbXKeLkpZ1jIWFhYoKiqDUqlEfaeWtbkC0tUUEIWSxO3nRi3KFbCt0tbKAdWkOa6/hsYQ5YJ0ERfbHO8GN4sUvMpWAKBp3nfLIVhLczFhMEMzBXvrSTgUpGDGCLZG7RO/+xW5RdmIe8Jqk3uqKVgLeEh59Qre3t6GFoVCz7w4eZIvFYvrVQ6kYjHzxcmT5h5jxuisnIxAIKhISUmp1bqdk5NjZGlp2SiLmEgkksbFxf0jk8mIuLg47vz58x1GjBjRISMjI1EgECgIgkB0dHT6sGHD3tjwTk5Obyi7mvSxsLBQ0Gg0pKenN9rKpMn97ezs5HQ6nczKyqp2/4ZqJLNYLNLX17f4woULPAD1Zm0uLS0lLl++bL5q1apXX375ZZVVb+PGjY1yhWmqrJr0a66MTXn+9TFz5kzx0qVLHR49elRnPJatra2cwWC88b1SU1ONVDKprtU82G6OvPXtA02SXTVm/KaMxefzFdnZ2W/sl0ePHhkPHTo0X/3azZs3OTQaDf7+/mWA7tywXV1dpeXl5W+sJZIkQaPR3shSWlRURK/NOq4plLKsZYyMjGDK46FQUgy+ef1Z/lubK2BbpS2WA1LR2hObGapckLbjYpvj3eDfgUDS8wpk5htp3DfXvh0Ciiv/BmqkYE8airTvDgIo0ai9ffQwbN16CDx6RZvbU03FxtoStx7VmSOG4i0m/fLl6i4uNBppbG1dXpqVxVRP/pV26ZJOleXAwMDihQsX8l+8eGHUvn37qk144cIFk9zcXEbv3r0bjH+sDRaLRQ4bNqwoIyMja/Lkye3FYjHd2tpa4ePjU/LkyRN27969MzS5j5mZmVKTPt7e3iX79+8XzJs3L7suo4aRkREpk8mqvXxpen8PD4+y2NhYc3Ul8dixY/yG5J82bVpWVFSU2/fffy+YNm1ateeoUChw/Phxs7CwMElZWRlNoVCAxWJVWfvy8/Np58+fNycIQuNyBgwGo0myatKvMTI2Z65rIy0tjVHTvTg9PZ1RXFxMt7a2ltc1JoPBgKenZ+nx48f56q7FP//8M59Go+G9996r0220OfKqqGsf1GynjfnSdCwA6NChg/T27dsm6teKi4uJlJQUlkgkqmY1TkhIMHZwcJCZmZkpAd25YQ8cOLBg3bp1dhkZGQyVR8Pp06dN5XI54evrW81Knp6ezpBKpTR3d3fNSpTUAqUs6wBL68qM2A0py0DrcwVsi+g77rWl8DYkNtOVW7QmaPMwrLneDUwjolFWXLP+vkg/9BiZ+eUaK9ikR3vce3m3Ucq8RdojyNvQnmoO1lYCZPz+N5Xkq41BKhQoSU+vsuaqknj5zZ2bfmvNGjv15F8l6eksVdUJXTBlypTcTZs2Wffu3dv9iy++yGjfvn35/fv32evWrbMTiUQloaGhkobvUslff/3FiY6OdggLC8t3c3OT5eXl0devX2/j7u5epnppX7NmTerQoUM7BgcHIywsLN/MzEzx8uVL5unTp3lff/11mre39xvJsDTps2rVqtRhw4Z1fO+99zqMHz8+h8vlKv/8809ut27dSiIiIgoBwN3dXXr+/Hnzn3/+2bxdu3blTk5OFc7OzhWa3P/LL7/MGDt2rGtUVJRTaGhowcWLF00vXbrUYExPZGRk4cWLF7NmzpzpHB8fzx0+fHiBqamp4sGDB+wdO3ZYOTg4yMLCwiQCgUDh5eVVunbtWjsej6eg0Wj45ptvbLhcrqKkpKRRD7+psjbUrzEyNmeua5PN29vbMygoqCAoKEhiY2NT8fz5c+bGjRtt2Gy2cuLEieL6xly0aFF6aGhoh7CwMOeIiIi8hIQEztq1a+1HjhyZo0ruVRdNkVeTfVCTps5XWVkZrbFjAUCvXr2K/+///s82PT2dYWdnJweA27dvc5RKJfz9/aspy0lJSRwPD48qZdXGxkZhY2PTKDfsoqIi2pEjR3gAkJmZySwuLqbv3LmTDwBhYWGFpqamys8//zxn27ZtVoMGDXL78ssvMyQSCX3JkiUOPXr0kAwYMKDaocbVq1eNCYJA375964+RrQdKWdYBVlZ2yMtPhWt7Q0tCoQ30HffaUnhbEpsZslyQtg7Dmuvd0JS+ReW0RinYxn1F+HnjUxjP0FyZJ3c/QGkb2lPNgcVkgk4DSkpKwOVyDS0OhZ7IuXOHU5aTw6ytJFT3JUvSXIKD8/5esqRd4T//GJeJxUzxnTscSz8/nST54vF4yj/++OPxrFmz7JctW+ZQWFhIFwgE8qFDh+atX78+TVOXUaAyDtTS0lL+7bff2ubk5BiZmpoqevToIfnuu+/SVG0GDBhQfObMmceLFy+2mzx5cnuFQgE7O7vyPn36FNaVmEiTPoMGDSr+5ZdfnixevNh+8uTJ7RkMBtm5c+fSsLCwKpfSWbNm5SQkJBh/9tlnzhKJhD5z5syM7777Ll2T+48ZM6YgNTX11YYNG2yPHTsmCAgIKNq0adPL0NDQDg3Ny7Zt21IDAwOLN2/ebDVhwoT2UqmUZm9vXx4UFFSwYMGCTFW7/fv3Px8/fny7KVOmtDc3N5ePGzcuu7S0lL5z585G1eRsqqya9NNUxubMdW188cUX6bGxseZz5sxxLCwsZAiFwgpfX9/iAwcOPPfw8Civb8yQkBDJjz/++HzdunW2J06csLCwsJBPnDgxS31d1kVT5NVkH9SkqfMllUqJxo4FAIMHDy7i8XiK48ePm3366ad5AHDnzh0Om81Wenp6VjsAePToESc8PLxZ3i3p6emMTz75xEX9mur/e/bsec/d3b3cwsJCee7cuSeffvqp47hx41yMjIzI/v37F2zZsuWNUkOnT5/mdevWrahmCbHGQJCkxh4bLQp/f3/y5s2bhhajVm7cuIHHd66g//utq8xTa0aXmZovX43H0z+Xw99NgRUXuVBMCm8w7pX+Wmm8+YyBju8ubBFKY2P5auEXCPVOQHYhiW/zvDVSaCTH4xEtSIQlj8CxRB+sXP6NHiTVjLhzZ3HuzEG4W6aDDhnu/qOE0evHSJIkxEU0wMgKkZGfYGDQAK2Nq421uWDeBIT5J2P3X0Z4Hj5KI0tsRWEZXA4fwNjuFfj5fDmUpiaN7iuR0VAwdYxGe4ckSWQujoHN0o80bm++aTcKFcw2s6eay77jZzFy9ETY2dkZWpRWAUEQt0iS9De0HAkJCS99fHzETen755w5ThlXr/Id+/cX11USSllRgRsrV9qnnDsntOvVK6/nmjWNr01JQUFBUQf//e9/HV+8eMG6dOnSM0PL0hjkcjns7e29Fy9enDp16tS8+tomJCQIfXx8nGv7jLIs6wChUIi/ijQvC0XRPHSdqdlQca+G5m1LbDagfxBIEjhxbAe8HcT4OIj+5lp5XoTzcYdAEIRWYq61tTab691QXkFiSCP65p25jakdZTjzhNWo0AMTI2Wj3apHebSdPdVcTDhsFBYWUspyG8LYyqr8vU2bntRXEkq9xFTq+fNtz+2CgoJCpyxYsCDTy8vLKzExkVWX+3tLZMeOHXw2m62cMGFCvYpyQ1DKsg4QCoXIL2x7yrIh6vDqI1OzIeNeDcnblthMtVYm9S8BQENmvlKnWb21uTabk9X7r8cEzLhGsOHTNO6ruP8Clh5Eo5Tz0gt3MLbFhAHrAAAgAElEQVRrCXZr2L7w3G1wy0tgyWO2mT3VXExNWJBINA4LpXgLEM2aldlwq0osfXzKWkqdZQoKircHV1fXig0bNrxMSUkxak3KMkmSxJYtW14a1eKR0xgoZVkHcLlcKEGgTCoDh11rlYW3DkPU4dVnpmZDxr0aircpsZm+s3pre7zmeDc8y3OEkqYEkKpx35HuEtx6CnRzZ2isYBOPXsDrPwzwLmrWXpieDJ45gd9uVGBwN6M2saeaiwmHjfz8Zh2QU1BQUFBQNJqJEyfmN9yqZTFp0iSt/MHUTcrENg5BEBBaWiG/oGW5oeqKfQf24cG1zYjq8Qr+bopqijIA0GgE/N3k+KhnCh5c24z9B/c3e0xVpmaVMrL2jjUUk8LBC+4JIzMOCIL4N1PzpHCsvWONnEIl+nqV4HzcITQlVj9iZAQ695iCmHhH3HzGgCWPwNjuFZjWuxxju1fAkldZDigm3gmePae0mFrDTUXd9bf0wh2N+vzr+ku2mCRM+l4ruhivyrvhvgkseTR8KcoCfeshSI7Ho6KwDCRJoqKwDJLj8aBvPYQ5vlnVLLFBg0Y1qm/vLnRcSaqUY5KvBMU/noRCVns+FYVMjuKtJ2Ffkat5+x9PYrKfBB+IjPA4U9hm9lRzKS6VgkZQf7YpKCgoKCj0BWVZ1hHmfAsUFb/9rtjqFjRN0FYdXkNlam5LtbGb4/p78xkDAwaG6lHautH3WtHVeM31bmhs3/aduuLi/bsahx48z2Dg1N9yDAlgNMqtOvKjiQjq90Gb2FPNISc3H8/TcjE84l1Di0JBQUFBQdFmoJRlHcE1NUNp6dvtLqdeh7cxaKMO79m4Ywj1liMzn2xUXdfM/ESIXCpw7MzRJmfTbSu1sd+WxGb6Xiu6HC9iZATizgkQc+YgPKwyIHKpwNju/8aGK5SVltjH2XboPzC82oFUU/ruP7hfYwU78ZUpCmkdcPH+0yYp821hTzUVkiTxR/xtfDBgCExMTAwtDgUFBQUFRZuBUpZ1hKkpDwVpDZZla9WoW9AaS3Pr8L5tmZpbIm9LYjN9rxVdj9cc74bG9m2sgh3dPwhx5842SZmnqJsn/7yEnM5BQEB3Q4tCQUFBQUHRpqCUZR3B5XKRKWtZ2YC1jcqCBjReKWqudfdty9TcUnkbEpvpe63oY7zmeDc0tm9jFey2FKqgLxLu/4MPhoSBRqPilSkoKCgoKPQJpSzrCBMTE5RKyw0thk5RWdCaAp1GNMu6+zZlam7pNMf1tyVA0Ixw84kcZiwjvayVt3FtNlbBbiuhCvpCaGEKsTjH0GJQUFBQUFC0OShlWUdwuVyUveXKcnOts83pr56pWdM6sP9maiZaTKbm1kJrthbKlCb44ddyLP6IQJIe1gq1Nim0jUs7e9xJSkTv3u8ZWhQKCgoKCoo2BeXTpSNMTEzeemW5uRaw5vQPGhCC288ZsOHTwHv1ss4yNSqqMjXzabjz3KjFZGpuTaishSuXf4MVq7dh5de7sGL1NqxYvg69A3u0SEUZAMwFDhjzARMvM0m9rBVqbVJoG0d7W2RlpKKk5O2vsEBRP0qlErdu3WKfOXOGe+vWLbZSqdTLuNHR0XYEQfgRBOFHo9H8zMzMunp5eXWaNm2a/atXr946wwufz/eJjo62a2r/x48fMwmC8Nu/f3/V6eeCBQusY2NjTbUjIYUmz4ggCL9Vq1ZZ6mJ8mUxGLFmyxLpDhw6eHA5HxOfzfby9vT3mz59vo2qTmJjIio6OthOLxXRdyNBYZs+ebduzZ8+OXC5XRBCE3+PHj5k12/zxxx/GoaGhzs7Ozl40Gs0vNDTU2QCitigoZVlHVCrLMkOLoVNUFrSm0Nw6vL0De+BRduXvyMbUdQWAxzl26KWnTM0kSeLy1Xh8tfALLJg3AV/N+bjyvwu/wOWr8U2q90zROMqKMtDHh46XWUq9rJXWsjYpWg90Oh321nw8fvzY0KJQGAilUok1yxZYh77v57FxyhCP4wtHuW+cPMQj5H2/TmuWLbDWh9LM5XIV58+ff3Tu3LlHO3fufD506ND8I0eOWPj4+HheuXLFWOcCtCKcnJwqzp8//6h///7Fqmv/+9//bC5cuEApy28J//3vf53Wrl1rFxYWlnvw4MFn//d//5fcs2fP4jNnzpir2ty/f5+9fv1629zc3BahLO/Zs8dSLpcT3bt3l9TV5vLly9wbN25wfXx8SoRCIZXgB5Qbts5gs9mokCuhUChAp7eIPaJ11OvwNpbmWtBaQ6bmuHNncT7uENwt0xDqLa8W361Ukrj95wOcPG6L/gNHtrg437eFktIyQJYOgiCgJAmYcgidr5XWsDYpWh8uTrZ49DAJvr6+hhaFQs8olUp8MmpEe/O0a+aBJkoa2EDl65ucDqQYp8b9yP4k6Z7xjgPHX+gyCRyDwSD79etX5d4QGhoqmTVrVk7Pnj3do6KiXJ4/f57EYFCvlQDA4XCqzRVFdZRKJaRSKWFsbNwqLQZFRUW0w4cPC+bOnZu2fPnyLNX1sWPHFujy4Kq4uJjgcrlNnrP09PREOp2O/fv38y5cuGBeW5v58+dnL1y4MBsAvLy8OjV1rLcJyrKsIwiCAJfLRWmZ1NCi6Ax1C1pj0YYFbUD/INi4h+PifRNY8mhY0KcY0YJEuBw+APNNu+Fy+ACiBYlY0Ke4ShnRV6bmfQf24cG1zYjq8Qr+bgpkF5LY/ZcRNl5mYfdfRsguJOHvJsdHPVPw4Npm7D+4X+cytUXO/X4BPo5iAMC7nnT8fJGhl7XSktcmReukfTtHPH30EHJ5/W79FG8fa1cssjZPu2buYKKs9Z3NwURJM0+7Zr52xSJrfcsmFAoVq1atSk1JSWH98ssvZqrrpaWlxOTJkx1sbGy8mUymr7u7e+eDBw9Wcyezt7fvMnHiRIf58+fbWFpaepuamnadMGGCg1KpxMGDB3lubm6eJiYmog8++MA1JyenyuogkUhoY8aMcXJ2dvbicDgie3v7LqNHj3bKy8urNj8EQfgtX77c6rPPPrPn8/k+FhYWPqNHj3YqKyurdiJ5+vRprru7e2cWi+Xr6enZ6dy5cxoVM1+/fr3Qzc3Nk81m+/L5fJ9u3bq537x5kw286YZtb2/fpaCggLF+/XpblTu7yiVboVBg/vz5Nk5OTl5MJtPX2dnZ6/vvvxeojxUXF8f18/Nz53K5Ii6XK/Lw8Oi8Y8cOfn3yFRcXE5MnT3aws7PrwmQyfe3t7bt8+umn9qrP5XI5oqOj7WxtbbswmUxfNzc3zy1btlioPt+wYYOAyWT61nQhvnnzJpsgCL8TJ05UWcljYmLMvby8OrFYLF+hUOgzefJkB5lMVjXP0dHRdnw+3ycuLo7r5eXVic1m++7cuZOv+m7dunVz53A4InNz866jRo1ql5+fX+1ZNvUZAUB5eTntv//9ryOPx+tqamradezYsY5SqZQAgKysLDqLxfKtOd9KpRL29vZdxo8f71DbPYuKimhyuZywsbF5w/KqOrCKjY01jYyMdAMADw+PLgRB+Nnb23dRtYuPj+f06NGjI4fDEZmZmXUdNmxY+5SUlKrTJtUa2rx5s8WIESOcTU1NuwYFBXVQyR0ZGdlOIBD4sFgsX5FI5HHhwoUG50QT493bauBrDtQRoA4xMeWitLQMplyN93SroqYFTVO0aUFriZma486dRdaTw+jjWYKcQiW23jZDoZMzjMNFYJiykVskrUz8dPclJvlK0MezBBeSDiHunICyMGuZWzcuIcS78t8dHQhcfGKDmHiaXtZKS1ybFK0XYw4bFjxjvHz5Em5uboYWh0JPKJVKXD9/yuLdOhRlFQ4mStqf509ZKBcsy9J3ibEhQ4YU0el0Mj4+nhsWFiZ5fc01ISHBZM6cOekdOnSQHTx4kB8VFeXm6Oj4oGfPnmWqvidOnLDw8fEp2bx588sbN24Yr1271l6pVBLXr1/nLly4MK20tJQ2Z84cpxkzZtjv27fvFQAUFxfTFAoFFi9enGZlZVWRnJzM/Oabb2yHDRvmevXq1afqsm3atMm6Z8+eRdu3b39x9+5dzurVqx3atWsnW7FiRRYAvHz50igkJKSDt7d3ya5du/5JS0sz+vjjj12kUmm9k3j69Gnu7NmznWbPnp0eGBhYUlhYSIuPj+fm5+fXqmkcOnTo2cCBA90HDx6cP3HiRDEAiESiMgD4+OOPnY4ePSqIjo5O9/f3L42LizP7/PPPnYVCoTwiIqIwLy+PFhYW5ta/f/+CBQsWZJAkiYSEBE5dYwGV62bAgAFud+/e5c6cOTO9W7dupSkpKcyrV69yVW1mzpxpv3nzZuvo6OiM7t27lxw5coQ/ZcqU9gRBYNKkSXkfffRRwezZs9vt3bvXfMaMGbmqfjExMRYWFhbyIUOGFAHA9u3b+ZMmTXKJiIjIWbZsWdrTp09ZK1assFcqlfjxxx9TVf2kUilt/PjxztOnT8/08PCQOTk5lZ89e9Zk6NChHfv371+wa9eu52KxmL506VKHiIgI+pkzZ5435xmprwGRSFSybdu250lJSZw1a9bYs9lscuvWranW1taKoKCg/J9//lk4bdq0qu946tQp0/T0dObEiRNza7unnZ2d3MbGpnzNmjV2XC5XOWzYMAmfz69mUu7Zs2fJokWLUpctW+awe/fuf+zt7SvYbLYSANLT0xkDBgxwd3V1lf74448vioqKaEuXLnXo169fx8TExIdsNrvKerxo0SKHgQMHFuzZs+c5nU4ny8rKiD59+nSUSCSMpUuXptrY2FRs3rzZcujQoR0fPnx4z8nJiTpR1TKUsqxDuFyzt9qyDLxZh7chdGFBa0mZmkmSxLkzB/FRz0pFee0da3AnDQWP9e9WMzLjgBfcEwpZANb+eBJfirLQ16sEe+MOIeiD/pQbrpaQymRQlKVVzSdBELAwkWHh8h24ceuOXtZKS1qbFK2fdnZCPHr4gFKW2xB37txh86QZLGhQst1Mmsm6c+cO28/PT68vHhwOh+Tz+fKsrCwGAJw4ccL00qVLvNjY2MdDhgwpBoCQkBCJv78/e/ny5banT59+rurLYrGUv/322z8MBgNhYWGS3377jb97926rpKSkex4eHuUAkJCQYHz48GEBgFdApaKyd+/eV6p7VFRUwM3NTTZgwACPp0+fMjt06FCVXdXe3r786NGjL4FKt/Fr165xT548yVcpy2vWrLFmsVjk+fPnn5mamioBwMTERDl16tT29X3na9eumbi7u5etXr06U3UtKiqqznqYgYGBZQwGg7S3t69Qd89OSkpi7d2713LDhg0vVcpacHBwUWZmptHKlSvtIiIiCpOSktjFxcX0n3766ZVKIQsJCakz5hQAjh8/bhYfH28WExPzTF2uzz77LBeotExu377dasaMGRlr167NUM1Penq60erVq+0mTZqUJxAIFL169So8cuSIhbqy/Msvv1gMGTIkn8FgQKlUYtGiRQ4jRozIjYmJqXomLBZLOXfu3HbLli3LsLGxUQCVyvLq1atTP/roowJVOz8/P2eRSFR86tSpqjXh6OhYMXz48I43btxgd+vWTdrUZ6TCxMRE8dtvv/1Dp9MRHh4ukclkxMaNG22XLVuWYW1trRg3bpw4JCSk44MHD5idO3cuB4AdO3YIPD09SwMCAsrquu/WrVtffvzxxy4ff/yxK41GQ6dOnUpDQkLy5s+fn81ms0kLCwulh4eHFAC6d+9e6u7uXrUuV6xYYQ0AFy5ceGJhYaEEgE6dOkn79u3baffu3fxJkyblqdp27dq15Oeff66a2/Xr1wufPn3KuX379v0uXbrIAGD48OESFxcXr5UrV9ps3bq16oCCQjtQbtg6hGtqitKyOvfZW0PEyAh07jEFMfGOuPmMAUWNpF8KJYkbzxiIiXeCZ88piBgZoXUZWkqm5j/+vAYPq3QAwNbbZuBOHAo6q/YzKTqLAe7Eodh6u9Jzzd0yHVfir+tFzrbAhUt/oIuduNo1L/tcXPrjaq2J1UiQOkm41lLWJkXrx6W9Ex4kJVCJAdsQOTk5DDYp1cgvkq2U0sRisUGMICRJVv0iO3v2rJlQKKwICgoqrqiogOrnvffekyQmJlZztevRo0eRepyzs7Oz1M7OTqZSlAHAzc1Nmp+fz1C5zgLA//73P4tOnTp1NjY2FjGZTL8BAwZ4AMD9+/dZ6vfv27dvNaXSw8NDmpmZWZUB+Pbt2ybvvvuuRKWEAcDo0aPzG/q+vr6+pQ8fPjQeN26c4+nTp7nqsjWG06dPm9JoNERFReWrz1Xfvn2LHj16xJHL5ejUqZPM2NhYGRoa6hITE2OuSWbl8+fPm/J4PEVdCvzt27c5UqmUFhkZWe27hoWF5ScnJ7PS0tIYAPDhhx/mX7t2zTQjI4MBVLoOJycnsyIjI/MA4N69e6yMjAxmeHh4nrr8gwYNKpLJZMStW7c4qnsTBIGwsLAqeYqKimgJCQnckJCQat89KCiomMFgkNevXzd5LWuTnpGKgQMHFqi7Fo8cObJAKpXSbt++zQGAYcOGFdna2pZv27ZNCAD5+fm0uLg4flRUlLiOW0LV759//rm3devW5x9++KE4Pz+fsXz5cofAwMCOCkX9uXxu375t0qtXL4lKUQaAPn36lNrZ2ZWrW/8BYNCgQdWe4YULF0w9PT1LPTw8ZKo5A4B33nmn+O7du1SiPR1AWZZ1CJfLQ6kkxdBi6AXKglbJ2bhjCPWWIzOfRKGTczWLcm3QWQxIHJ2RmZ8IkUsFjp05it6BPfQk7dvN9Wu/I9iTBPDvmvOwV2Lltm8xyB8tKukaSZL4489rOBt3rNreIRk8BA0IoZRqCgCA0MIcSrkU2dnZsLbWe3gqhQGwtLSUSwm2ojKZV/1IaWylUCjUuwtmaWkpUVBQQLe2tpYDQG5uLkMsFhsxmUy/mm1rxkPyeLxqWgWTySTNzMzeuEaSJGQyGcFms8k9e/aYf/bZZ+2joqJyli5dmioUChVpaWlGY8aMcS0rK6tmBDI3N5fXvFd5eXnVL9OcnBxG586dS9XbcLlc0tjYuN4sTcHBwUUbNmx4uWXLFqudO3daGRsbK4ODg3M3bdqUamZmpnGGJ7FYzFAoFBAIBKLaPk9OTjZydXWtOHHixJOlS5faffLJJy5KpRLvvvuuZNOmTa9UltCa5OXlMSwtLevMZJyammoEAPb29tXa2NraVryWi25vby+PiIgomDlzJrl3717zL774Qrx3714LKyuriqCgoGIAUHkTjBw5skMd8lcdTJiZmSnU3YvFYjFdoVBg7ty5TnPnznWq2TclJYUJNP0ZqbCysqq2Buzs7CrU54BGoyEiIkK8f/9+4bfffpu+a9cuC4VCQYwfPz6vtvupw+fzlRMnTsyfOHFivlKpRHR0tN2GDRts9+/fb65uQa9Jdna2kbu7+xvWNKFQWFFQUFBtk9SMi87NzWUkJCSY1La/HB0d3+4yPAaCUpZ1CNfUFBlZb7cbtjoqC1pbVvYIeSFoNAJxT5gwDq/1b98bcPqKEHf4McZ2rwAhr9OLi6IRlJdXQF6SWk0ZBgAajUA7QRm6tq9Mshb3hIlCKQ08thIDOsrg7yaHv1sKLl7bjLy8XJ14QdSEyppOoSkEQVS6Yj96SCnLbQSRSCQtZNvKgJQGLUYSto1MJBLp/aUjNjbWVKFQEIGBgcUAwOfz5VZWVhWHDx9+povxDh8+zPf29i5Rd/s9deoUt74+dWFpaSkXi8VG6teKi4uJ0tLSBj0vp02bljtt2rTc9PR0xt69e80XLVrkaGZmpti0aVOapuNbWFgo6HQ6ee7cuUe1JVayt7eXA8AHH3xQ8sH/s3feYU2d7R//nmwgJKwQCAiIiKAIMsSBYlFBraO44EXa1+rrqlqtqHXrz9HWzSutA+1blbr3wApqbW0tthVRHHVTlA1hJYyEjPP7A0MB2ZKwzue6uJTkjOc85wD5Pvd9f++hQ58XFRURFy5c4C1btqxTSEiIfWJi4pNajqvMyclh1vQeAFhbWysAID09nalJkwaAjIwMJgAIBAIVAPD5fPV7771XePr0aZNFixaJL1y4YDx69Og8TV28mZmZCgC2bt36qnfv3iXVz+Po6Fgh3giCqJISY2pqqiIIAmFhYeljxox568OPjY2N4s1YmnyPACA7O7uK1klPT2dWngMAmDVrljg8PFwUHR1teOjQIVN/f/8CzRw0FBqNhjVr1mTu2LHD8vHjx3UWTpibmyuqXxMAiMVipqura5V5rL5QbmxsrOrRo0fJrl27XlXfv/JiBEXzQYllLcLlclEqp1qUdSRIdfn9lshpYBg2oMgMAIPHgeSNaaRmf4q32bv/IJKe34c+p9a//xVIiuXwtKo5g8rLkYYVR1QgeAZgmPFBcGjIVqrx+JdCMEtLYMdXgsUsw71n3+LH67Ho09cP06dMbu7LAVDump717CRC+5WXsGXmtw4Br02oKPq70cXOGnce3oev7yBqnjoANBoNfYeOzEuN3cupzQ0bAFKLaeo+w0bm6drcSywW01euXGltY2Mj/+CDDyQA4O/vL923b5+FoaGhWhviXSaT0VgsVhVRcOjQIdPatq8Ld3f34uPHj5tJpVKaJs33+++/r9NlujoikUi5ePFi8fnz542fPHmiV9t2TCaTrJ6uPXz4cMmyZcuIgoICxtixY+usQwbKI6qTJk0qfPDggd7XX39tWdt2/v7+0j179lgcPXqUHxIS8pYQ9fDwKOVwOOojR44Ye3h4ZGheP336tLGtra1cJBJVRGODg4Pzpk2b1uXIkSP81NRUdmhoaEXE1c3NTWZubq5ITk5mL1y4sM605erweDy1m5tb8bNnzzi+vr4ZtW33rvcoJibGSKVSpWkWI44fP27E4XDUHh4eFZFdBwcHhY+Pj2Tt2rWihIQE7qlTp57XekAAcrmckEqlNM1igYZHjx5xAEAoFCoAgM1mkwBQXdh7enoWR0VFCfLz82maOvQbN27op6enswYMGFCEOvDz85OsW7fOukuXLmWaxRQK7UKJZS1iYGCAUlmNGTIU7RSCVi7keGw1xFIZmLxa/25WoJTIwCv/fVqxP8XbTBw7Fhs33UdX/n04Wzf970N3WwY2fQQAcgDZ1d6lv/kCHiarcPK3TEwYG9jkc9VFR3RNp6Lo7461yAK//pGIb/fuxtCAEejcuUEeNxRtmM9Xrsua+vCBPmppH5VaTFMXWPUr2L5yXVZN+zcXSqWS+PHHHw0AQCKR0G/fvq1/4MABQWlpKe3ChQvPNbXHgYGBkgEDBhSOGDHCcd68eRk9e/aUFRYW0u/evasnk8loO3fubHDktSaGDBkiWbZsmc2SJUss+vXrVxwdHc2/efOmYf17vs3SpUuzoqKiBP7+/g7z58/PSktLY4aHh1tqXItrY8GCBaK8vDy6n5+fVCAQKO/cuaN/+/ZtwxUrVtRqrmRvby+7du0aPzo6WsLj8VQ9e/aUubm5ySdNmpQzZcoU+/j4+Exvb+/i0tJS2sOHDznPnz/nHD9+/NWxY8f4+/fvNxszZky+nZ1dWUpKCisqKkrQt2/fWsX1m3sgmT59uv3jx4/Tvby8StLS0pi//vqr4ZEjR14JhULVtGnTsnfs2GHJYDBIb2/vklOnThnduHGDHxkZmVT5WEFBQYVz585Vf/bZZ7ZWVlZlfn5+FZFPOp2ODRs2pMyePbuzRCKhvf/++xI2m61+8eIF++LFi0bR0dFJlWuNq7Nx48bU0aNHOwYGBmLChAn5PB5PlZyczLp8+TJ/06ZNaa6urvKm3iMNxcXF9Pfff7/L9OnTcx48eKAXHh4umjx5crZQKKwidKdMmSKeOnWqvVAoVAQGBta5cJGXl0d3cnJymTBhQu7gwYMlRkZGqsePH3PCw8Mtzc3NFaGhoQUA4OLiIgOAb775RhAaGprH5XLV3t7epStWrMiKiooSDB482HHhwoWZGjfsrl27lk6ePLnOeuzZs2fnfvfddwJfX99un376aaaDg0OZWCym//HHHwYWFhaKNWvWVP9gU8GlS5e42dnZzPj4eH0AOHfuHN/c3Fzp6upaqjEGTE9PZ8TGxhoCQGFhIT01NZWlafM1ZcqUBteKtycosaxFyiPLlFjuSJAMPtRqEsMc5eVCJ7B/vfuUXr+L4Y5yqNQESAa/3u07KsZGPGz8cisOHvoe529fxCjPAtBpzR9ZU6lJHPxRBZExiVHeBB48+qvZSws6omt6R4yiawM6nY5J44bjybMknPh+H8xEdggKDoGhYZO0AkUbgEaj4btjZ//evGG18Ldrl0x4skw2Ry2jyWgctYRjIe8zbGTedh20jCoqKqIPHTrUiSAIGBgYqGxtbeXjx4/PW7x4cVbldjU0Gg2XL19+uXz5css9e/YIMzIyWHw+X+Xs7FwyZ86cWj/IN5RFixblJCUlsfft2yfcuXMnzcfHR3Lw4MG/hwwZ4tTYY3Xu3Flx8uTJF2FhYZ0mT57cxd7eXrZ///6k4ODgOi3nvb29iyMiIoQXLlwwKSkpoVtaWpYtXLgwfeXKlbVe35YtW1Lnzp1rM3HiRAeZTEa7ePHis1GjRkmjoqJeb9iwQRYVFSXYsmWLyMDAQOXg4CCbPHmyGCh3SSYIgly/fr11Xl4ew9jYWDlkyJCC8PDwWhcd3tyDF2FhYVaRkZHCjRs3MgQCgWLcuHEVUeHw8PA0BoNBHjhwwHzbtm0MGxsb+a5du/6eMWNGFUGkr69PDhkypODChQsms2fPzqx+runTp+fz+XzVpk2bLE+cOGFGp9NhbW0tDwgIKKhP0A4bNqwoJibm6Zo1a0SzZs3qrFKpIBKJyvz8/Ao1UdOm3iMNs2fPzkpKSmJPnTrVniRJBAcHiyMiIt6au+Dg4ILp06eTQUFB4vp6DRsbG6vmzJmTeeXKFf65c+dMiouL6ebm5mWDBg0qXL9+fYapqUHYZG4AACAASURBVKkKABwdHctWr16dum/fPvODBw+aC4XCsrS0tAcikUgZExPzdOHChZ2mT5/emcFgkO+9917hrl27UupLpdbX1yd//fXXZ4sWLRJt3LjRKjc3l2FiYqJ0c3MrHjt2bK110gCwdu1aq9u3b1eULGhqxRcsWJDh6emZDpSbv02dOtVes01qair7zz//NASAKVOm3KlzYtopRFt11fTy8iLj4+Nbehh1UlhYiJ3hm/CfSaNaeigUOuLGzTg8/209vBxU2PATF6qZQbW6YQOASq4EPfIEVvoVIf4FA44DVmm95rs9pME+efocu3dtxCi31xDwm2+s2QVqfH2bD4mRGZY5vISAT+DMfTd8sX5rs50DaBvPiYbmeF5ir17BX2/6sVeJog8uj6IrpTKUXL8L/uvyKLqAT8P1hwbo0f8TKsJcB2q1Gtdu/A6BTQ8MHzGipYfT6iAI4g5Jkl4tPY7ExMRkNze3RqWo1oZarcbdu3c5YrGYYWZmpnR3d5fpOvWagqI9cvz4cX5ISIjD/fv3H7q4uFBGWR2MxMREMzc3N7ua3qMiy1pEX18fpXI5SJJs9eKDonnw9emHi2dF8HJIwUwPCTbvvVhr+yiVXImivRexxFMCgIanOSL8p39frY6vvaTBOnXrio2bdmHrtk0wz45Hn67vXhZ3/QkNlyU24M4ZCiOZArEnU7VmutZWXNOb43npiFF0XS1I0Wg0eHu44OQPNzFk6FAwmVQZR3uHRqNB132UKSjaM8nJycxHjx6xV61aZTVo0KBCSihTVIcSy1qEyWSCwWRBXlYGDptd/w4UbR6CIOA/PBg/vYmife6ehcjIE5B0soPeYHcweBwoJTKUXr8LXkoylnhKYMYrj6INHR6sVVHQ3tJg9ThsrFqxGhd/+AFHf/we43qLwWY2fv7kChK74/SQ5e4F/sTuAAAai65V0zVtu6Y3h1hrruflrd7jMxvQe/xNFF3Te7wtOezrekHKiM+DKU8Pjx49Qq9evd75eBQUFBQdiYiICEFERISls7Nzye7du1/XvwdFR4MSy1qGyzVESYmMEssdiGH+AcjLy8VPj07Ar0cxVvoVITP/PmJPPoVEToDHLq9ptnCgASgXypZOQRg21F9rY2rPZlKj338f7r08sG3bOrzn8BK25g0vLXmRReLbhyZghg6DgYBX8bq2Tde06ZreHGKtOZ+XthJFbw5aakGqp5M9fo/7lRLLFBQUFI1k+/bt6du3b09v6XFQtF6oQhctY8A1REnpW33HKdo5IcEh6N7vExyK64T4FwwI+AQm91HgU98yTO6jgIBP4PYLBg7F2aBH/0+0GsHVpMFqhM/mu0KoZgaBH9gfTJ4eCIL4Jw12ZhA23xUip1CNwS7FuBZ7Am3B18BaZIGtm7/G5Uf29W9ciZ0JxjD4dDzYlYQyUNl0jdSK6Vpl13SltGEZlQ0R8EeOHcFft3YjtN9reDmokF1I4uAfTETcYOPgH+W9pb0clPiwfwr+urUbR48ffesYzf28/BNFZ0N/cCOi6M/YoNOINtN7vPoCw4afuNiW54qkoH+hcM6/kRT0L2zLc8WGn7jIKVTDr0cxMp6cQOzVK+987i6dOyE3Ox2ZmW9571BQUFBQUFC8A1RkWctwuYYoKW1ceVF7MGCiKI8wBwz1x69xv+NMzOkq9xIMIwQMH4dp/ftq/V52lDRYGo0GI73GlRoJ9VVQVHPUVsmV4KUkQ+hAQ/wLBoYNH9+cwwSgHdf05ooGN/fz0hF6j7d0XTaNRkP3rp3w5x+/Y8wH2ml1RkFBQUFB0RGhxLKW4fJ4KC5ueFuy9mLA1B4hSRK5CQ9h6uHS4A+2BEHA16dfi4rNjpIGe+/BX7AxalybUS+zIlx7kQluV0sAujNdCxg2Dgm/PYKXgwr8e8lQyb3rdcOuS8A3p1hr7uelI/Qebw0LUq7OXXH43HX4DBgIU1PTdzoWBQUFBQUFRTlUGraWMTTkNTgNu3oKJa1axItGI+pNoaTQHkXJqUjcEIGiV7W2NmyVdJQ02JiY8/Cwb1xf8wFd1VDHPYCisBSSs3GgR57AEo8srZuu+fr0w5NsEQBgpocERXsvQiVX1ritRsDP8pQAAJ7miDCwmoCvItbu8NDjvX6gs2ruE1kh1hLKU881Yk1Dcz8vlaPoJdfvNuh42k6Db26uxJ6Bh70SmflqFNrY1bnwAVReYFDD3V6B2JjT7zwGLtcA3m4O2LVjCy6cPwepVPrOx6RovWzfvFHQ0mOgoKCg6AhQYlnLcLmGkMnr/wBfOYWyITRnvRtFw8j67TYAIPvNv22FjpIGm5/zEhzW28I2u4DEwRvGyMpXv/Ueh0XAJOk5Op84ijDT+1jpV1QhlLVpulbhmv7IAAI+DZ+7Z4EeeQKSs3FQFJaCJMlGCfjKYo1t1gmjDyXCJLOo1vPXJdaa+3kJGDYOCUkMWBjTwH+dXOuigIaKKLoxDXeTmFpJg29uWsuClHtPZ3w4PgClea/w361f4dq1q5DLqS4o7Y2cnBz6xq++sBaLxTWviFFQUFBQNBuUWNYyPB4PkuK6a5YrG+o0hrZkwNQWUZUpkPHzLaRfu4n0azeR8eNvAID0H3/757Wfb0FV1rrFpLbMpFoTfz19DivD7Ldev/WMgz+zffF/G77Fn9m++OXR258tvR0IDLIr06npGlBe027RLahCMK/0K0KY6X3YnzwGo10HYX/yWIMFfGWx1pNrChKAQ2LdZk+1ibXmfl6aO4reGmlNC1L6ehy859MbwaMHIe3FPWzd9AVu3YqDUln3IgVF2+HksUPGg60J4uSxQ0YtPRYKCgqK9g5Vs6xlzM3NkV9YtwiunELZWNqSAVNbQy2T4+X3ZyDPKwCNxQKpLo9MKqTFeLrvKNRlZWCbGMHM0xV0VusVlNowk2ptXLp0Dj5dZADKxYesjMSZ22bwG/YxPhk2DACwavlqXIqJwZErBzGut7giCt3HiY4dF9lw7OqsM9M1DSHBIYi9aopDMcfhZJ4Bd3sFJvf5Rzip1OUC/mm2CP7Dg2r0KVCVKSAsUEL2wgBmuUx0z8wCAcApPg0S0/L6YDWdhpc9hVAx/1ksqE2sNffz0pp7jzcXrbEum88zxPDBPsgR5+G3P37Cb7/8jBmfzAWPx6t/Z4pWza0fY/geFkwi7tplo0/mfpbb0uOhoKCgaM9QYlnLGBsbQyZXQl5WBjaLVeM2GkMdzQf9xlCfARPlrN10mDwu+kasxV9f70fuvb9AvonMkEolCDYLgj690H3eVDD06/9g3JI0t5lUayQv+wUM7Mqf4+RsGm686ILFn6+ByMK8ynYjhw+Hey8PbNmy9k1PZjUMOATsbUXYsH5LSwz9nV3T1TI5uogZKM40hRdBArRy4csuKcOA84/BUKhRzGPjlZNZFbFcm1jTxvPSGnuPNyeteUFKYGaCwPf98EtcPH66/iM+CByrtXNRaB+VSoWi7BQ2jUugKCeFrVarQaPpJkkwIiLCNDIy0jw5OZlDp9NJKyurMh8fH8m3336bCgBpaWmMbdu2mc+cOVPcrVu3xhlIaIGNGzcKYmJi+Pfu3eMWFhbSL168+GzUqFFVivkfPnzI/vLLLy3u3Llj8OLFCz1PT8+iP//882lLjZmCgqL1QYllLUOj0WBuYQFxbj6sLIU1bqNJoWwKddW7Uc7a7w7DQB89l8zGb9M/h7xS7TmTa4CeS2a3iYUGX59+uHhWBC+HFMz0kGDz3ovgzqjZrVdXbtDNyfOXryDgZJaXM9w3BMdiMLZu/gR0es3lfCILc2zdHIGde3bh2f3rGNqzCGacLLz8+zW6dLbR8ejLeRfXdCaPi9+78jBUmgEyQw+EqlwAM1QkFDQa/u5hjutBPaHgVL3ftYk1bT0vzRFFb620hQWp3h498f2pWAz0HQQTExOtn49CO9y6FadnpBSzAMBIkcu6dStOz8dnQMNcRN+BZcuWWWzZssVq1qxZmUOGDEkrLS0l4uPjDU6dOmUCIBUA0tPTGeHh4ZaDBw+WtgaxfPToUVOCIDBw4MDC6OjoGh/6e/fu6V2/fp3v7u5epFAoWv8fdAoKCp1D1SzrAEtLa4hza28f9a71ajXtTzlrNx+yLDHk+RLQWEwQDDpoLCbk+YWQZYlbemgNornNpFob0ZfOwklUgoO/WmLQmBWYN3turUJZA51Ox7w5n8J39EpE3bSEs6gYFy+e0dGIm58h74/HM6t80NhVTczk+gzEftTrLaFcl4mWNp+XYf4B2LL1WzgOWIUz991wKt4WJ/8U4VS8Lc7e74VuA1Zhy9Z9bUooA22jLluPw4aLow1++vGa1s9FoT1Off+dmb2Bkg4AnQ0U9FPff2emi/P+73//Mw8JCcn55ptv0saOHSuZNGlS4fbt29OTk5MfauucRUVF7/THJyEh4cm9e/eerF69OqO2bUJCQgoyMzPvX758OcnR0VHriw4UFBRtDyqyrAOEliK8fvJnre+/a71a9f2b4qx9/eEJxF41bXMfUnVBVlw8oFZDNMQXXT4ajxdRp5EW8zOy4+7Adtzwlh5eg2jPabBxf/yJnM4eWLdhNXiG3Ebt28fLE06OO7Fx03q8SP4Tn2lpjNrG16cfrp0QoXMpAZKmhlpNQM2gQ18ih2FeKaSm+hXbNiQarM3npTX0Hm9u2kpdtoebM6JOxmKQ32CYmelEY1E0kk1frDe/cv6EqdCE97Z9PwBZQTbTmlce59Bn0nDv3k3epOE+3WraNitPQgv4ICh3yYpVb7sfNhKpVEq3sLB4a2VekwL+9OlTlre3dw8AGD16tKPmfZIk7wDAkydPWHPnzu30+++/80iSRJ8+faQREREpLi4uFXbtBEF4rlmzJvX169ess2fPmhgaGqpev379sKSkhAgLC7M6d+6cSV5eHqNz586ydevWpQUHB9dpI1/fomlDt6GgoOjYUGJZB1hYWODeH7ULV029W1NSsav3IdU4a3/Yv/HO2odjTyBgqH+rjyTqGsPONui1ej5M3V0AAE4zQyHwdkNTasxbkvaYBkuSJEIn/RsfvD+syc8tn2eILzdswvkfYkGSZJt8/gmCwEArNyDlAThdpSjtkoenv1jApZgDu9upuD+sa6PFWnt8XrRJW1iQ4rDZcHO2w7UrMQgOCW2Tz3p7J+zzpdm52enMV7d+MPXgFTHp1T8XVPNn68/L40CdV+U1lZpEgoSr8Oz3fm7Y50vfWSgDQPfu3Uv+97//mdvY2JRNnDixwMLCQlX5fRsbG8Xu3bv//uSTTzp/9dVXr3v37l2iea+0tJQYOnRoNwaDQYaHhyczmUzyiy++sBo8eHC3Bw8ePBIKhRXH2rlzp9Db27to3759f6tUKgIARo4c2SUxMdFgyZIl6V27dpUfP37cODQ01KFTp05/9e/fn4oGU1BQaBVKLOsAc3Nz5OZLa/0gXrnerbFUT6GknLWbH1P3HjW85tICI3l33tVMqrVBEAQCR757dL+5jtOSeAYMwc9sGl5LfoSfKYFBY7OQ9YwNxtNcGL2Ma5JYa2/Pi7ZpCwsM7j2dcfrSdXy7dzfGBI6HUFizlwZFy8BkMrF5x+6023/8nrd20Wzb7nitb67X8JXZ7BKQfxG2JWu+3vWqd5++zSYkd+3a9Xr8+PEO8+bNs5s/fz7s7e1lo0aNyl+9enWmiYmJWk9Pj/T09CwBABcXF9mQIUMqVuy//vprs8zMTNb9+/cfdO/evQwABg4cWOzk5NTzv//9r+Crr76q6HNnZmamvHTpUpLm+/Pnzxv+/PPP/Ojo6KcjR44sAoBx48ZJvLy8OOvXr7e8fPlyEigoKCi0CCWWdQCXywVBZ6CkpBQGBvpvvV/ZUKexVE+h1KazNkXTaG2O5O0xDZaifFFnvHsPxF51/EesOcgw0rEiy7FJYo16XhpHa19gYLGY+FdgABIfPsHeXeHw6uOLwUOGgM1mt8h4KGqmd5++pWev//FkxaJ5VrdrizJXQhNNtu33fu7ZrRFpTGbztiPr06dP6fPnzx+ePXuWFxMTw//tt98Md+zYYXnu3DmTxMTEv/h8fo1p4wBw+/ZtA2dn5xKNUAaALl26KDw8PIpu3bpVpXbG39+/oPL3V65c4ZmZmSkCAgKKFIp/Fp4GDRokOXbsGFVLQEFBoXUosawDCIKAhYUI4rz8GsVy9Xq3hlJTCqW2nLW1TWsTlM0F5UhOoWtau1jrCLT2BQaCINCrpzO6drHDr78n4L/b4jFyzDj06NGDei5aEZWjzOvmfthlkHFBrSsavxYay9d8c+hlc0aTq6Onp0dOmjSpcNKkSYUAEB4ebhYWFmYbERFhtmpV7XXRWVlZTIFA8Fa9s0AgUKamplbpqSkUCqs44+Xm5jLEYjGTxWJ5Vt+fqjemoKDQBZRY1hEWImuIc7Ng28mqxver17vVR20plNpw1tY27VVQHjl2BFnPTiK0X/n9zMwnEfuMhUIZDXyOGsMc5fByUMLLIQU/3dqNvLxchASHtPCoKdoDrV2sUbQODPT1MHywD1LSMhFz/hji/7RD4LgJMDIyaumhUVTCzr5LGZtQ1bmKoUeoiM5dHHTarmnBggXitWvXWj958oRT13ZCoVDx9OnTt7bJyclhGBkZVRHHBEGQlb83NjZWmpubK06ePPmieUZNQUFB0TgosawjLEVWeHyn7t/1NdW7VU67UqlJJCQx60yhbG5nbW1TXVBWTx/XtLhqa4KysiN5TqEakQk8FNrYQT/IHQxDDnKlMmy7fhf8e8mY6SGhHMlbmPaa2UBB0RA6WVlg0rhhuH33IfZ88198+PE0WFtbt/SwKN5w8tghYxt6Iauubp+d6AWsk8cOGX0y97NcbYwhLS2NYWVlVUXYpqenM4qKiuiaaDCbzSYBQCaTVfll6e3tXXT27FnTJ0+esJycnMoA4O+//2bevXuXu3DhwjpNVvz9/aX79u2zMDQ0VLu7u8ua96ooKCgo6ocSyzrC3Nwcv0nqjxi/awplczpra5v22uKqsiN5TqEam+8KwZ05Gnz2Pz9uTJ4e+IH9oZJ7Y/Pei/jcPYtyJG8h2mtmAwVFY6DT6ejr5QYzk1fYv28nxk4MhYtL2zQybG/c+jGG78r95/dSdgnIBzLjsp56+SyN+Zcll4a4a5e1JpZdXV17BAQEFAQEBEgsLCwUSUlJrIiICAsOh6OeMWOGGAAcHBzKOByO+uDBg6ZGRkYqFotF+vr6lsydOzd3x44dliNGjOi6YsWKdAaDQX755ZciIyMj5WeffZZT13kDAwMlAwYMKBwxYoTjvHnzMnr27CkrLCyk3717V08mk9F27tyZVtu+v/zyi/7Lly/Zr1+/ZgLATz/9xM3JyWF06dJF7uvrWwIAUqmUdurUKT4AZGZmsoqKiuj79+83BoAJEyYUGhoa1lqLTUFB0TGgxLKOMDc3R15B7Y7YlXmXFMrmdNbWJu25xVVlR/LIBB64M0eDzq75R43OZoA7YzQiI09gpV8R5UiuY6hUeQqKqjjY24JnyMWFU4dRkD8CAwb6tvSQOjQqlQpF2SlsgktUMfE6s3F7+pqlYaLK5l9FOSlstVpd0fu4OVm0aFF6dHS00ZIlSzoVFhYyzMzMFB4eHkXHjh1L0kSL9fX1ye3bt7/atGmTaMSIEd2USiVBkuQdPT098sqVK0/nzZvXaf78+XaaPsunT59+WbltVE3QaDRcvnz55fLlyy337NkjzMjIYPH5fJWzs3PJnDlz6myLtWPHDvMzZ86Yar7fvn27CADGjRuX6+vrmwyUR8enTp1qX3k/zff9+/d/0K1bN52mtlNQULQ+CJIk69+qFeLl5UXGx8e39DAaxaYv1iIwoA+M+Lz6N24iJEli8aJp+LB/4521D9+yweYt+3QiQm/cjMPz39Y3SdTHv2DAccCqVisoV6xahPGuicguJLEtzxX8wP717iM5G4cw0/sQ8Amcue+GL9Zv1cFIOzaxV6/grzemelVS5QeXp8orpTKUXL8L/uvyVHkBv7zdUo/+nzQ6wkyleVO0Nf5MeIC8UgYmT/lPSw+lyRAEcYckSa+WHkdiYmKym5ubuCn73rz5q97/wsZ3E7DUtL8Im5I1W6u2hPrz91t66xbPtu2OFP0cOV09Lfz0Ux+fAVTvYQoKCopGkJiYaObm5mZX03vNv/xIUStCkQji3HytnqPCWfuRQaP2q8lZW5tciT0DD3tl/RvWgLu9ArExp5t5RM2HxpE89hkb+oPdG7SP3mB3xD5jt6gjeUdCk9mgEcqb7wqhmhkEfmB/MHl6IAjin1T5mUHYfFeInEI1BrsU41rsCTRmkTH26hV8vng6nv+2HuNdEzHB6xUmeqdjgtcrjHdNxPPfNmDxommIvXpFi1dMQdFwSkpluPf4b4wYObqlh9LhOX5wn0BcxiThOTHr7PU/nlR3u/bu26/07PU/n8BjYpa4jEEeP7iPaqdEQUFB0YxQadg6xFLUCeLcJDjY22r1PM3lrK1N2mqLq4agcRSXyGlgGNZpEloBg8eBRE5U2Z9Ce+gqVV6Xad5U9JqiuYj78x48evvA3Ny8pYfS4REIRWX/jjz9rK6WUP+0mJqcd/niOd0Zj1BQUFB0ACixrEMsLCyR8PKBTs7VHM7a2qQttrhqKBpHcR5bDbFUBiZPr959lBIZeOVGojp3JO+IXIk9g/GuSmTmkyi0sativlYTdDYDkk52yMy/D3d7Bc7EnK5XLOvSEZ0yKaNoLrJzcpGcUYCwD4e29FAoAKzesDGzodv27tO3VJt9likoKCg6IpRY1iHm5ubILZDq7Hzv6qytTdpai6vGoHEkH+YoLxdDDahZLr1+F8Md5VCpCZ06kndU/kmVZ0E/qBGp8iefYnIfRb2ZDbp0RKdMyiiaC5Ik8XNcAgJGjIaeXv2LfBQUFBQUFO0dSizrEDMzM0ikJVCpVKDT6To557s4a2uTttTiqrFUdiTn30uGSu5da4ovAKjkSvBSkiF0oCH+BUNnjuTapjWnBWs7VV5Xad4t0c+7Nd/XtkJrncMnz/8GwebB09NT5+emoKCgoKBojVBiWYcwmUwYm5ohr0ACgalxSw+nRWkrLa6agq9PP1w8K4KXQwpmekiwee9FcGfULJZUciWK9l7EEk8JABqe5ojwn/59dT/oZqa1pwVrO1VeF2neLdHPu7Xf17ZAa53DsjIF4u48QujHs7TSeoiCgoKCgqItQollHWNhaQVxbn6HF8uVBWVjae2CssKR/E1bos/dsxAZeQKSTnbQG+wOBo8DpUSG0ut3wUtJxhJPCcx4NJ07kmuLtpAWrO1UeW2neQO67+fdFu5rS9HQSHFrnsPbdx/CoZsrbG21a0BJQUFBQUHRlqDEso6xEFkhN+VRSw+jxakuKBtKWxGU1R3JV/oVITP/PmJPPoVEToDHLhdqFg40ALQWcSTXBi2RFtwUtJ0qrwtHdF1ErzW0lfvaEjQ0Uiy06g5G0c1WOYeFEikevkjF/LAPtXoeCgoKCgqKtgaVa6VjhEIL5BU2XBy2Z4b5B8CiW1CDe0K3NUEZEhyC7v0+waG4Toh/wYCAT2ByHwU+9S3D5D4KCPgEbr9g4FCcDXr0/6TNR+F02bv4XfH16Ycn2SIAwEwPCYr2XoRKXnPfb02q/CxPCYDyzIaB9WQ2VE7zVkplDRpTYx3RddXPuy3dV11z5NgR/HVrN0L7vYaXgwrZhSQO/sFExA02Dv7BRHYhCS8HJUL7vcaD+OhWO4e//H4Xvu/5g89vvV4QFBQUFBQULQEllnWMrh2xWzvVBaVKXfVDoUpNtmlBOcw/AFu2fgvHAatw5r4bTsXb4uSfIpyKt8XZ+73QbcAqbNm6r11E395KC66lThuolBacwAOAirRgXVGR2fDIAAI+DZ+7Z4EeeQKSs3FQFJaCJEkoCkshORsHeuQJLPHIalSqfOU075Lrdxs0pn/SvBtmYKerft5t6b7qkurR9g0/cbEtzxVJQf9C4Zx/IynoX9iW54oNP3Fx44EKA13K5721zWGhRIrM3GL4DBiotXNQtH3CwsJEBEF4EgThSaPRPHk8Xi8XFxfnTz/91Or169ftLkvR2NjYLSwsTNTU/Z8+fcoiCMLz6NGjFb/MV65cKYyOjjZsnhFSNOQeEQTh+eWXXwq0cX65XE783//9n7Br16499PT03I2Njd1cXV2dli9fbqHZ5v79++ywsDCRWCzWjatvPSxevNiyf//+jlwu150gCM+nT5+yqm+zceNGgYuLizOPx+ulp6fn7ujo2H3jxo0CtVrdEkNuFbS7X3CtHRMTE5TKFCgrU4DFar3tj3RJa25x1Ry0Vkfy5kaXacHNgTZT5XXhiK6rft5t7b7qgsaaqx3efgEbBmQhM1/d6ubw71epcHLuASaT+nvUFnj27Blr384vhUUSMdOQZ6aYNmd5lqOjY5kuzs3lclXnzp17DgAFBQX0+Ph4/QMHDggOHTpkduHChecDBw4s0cU42gI2NjaKa9euPXFzc6tILdq5c6dFSUlJzqhRo6iISTtgypQpNufOnTOZP39+Rr9+/Yrz8/Ppt27d4sbExBh9+eWXmQDw6NEjTnh4uOXMmTPFZmZmjXe0bWaioqIEtra28j59+kiuX79uVNM2+fn59JEjR+a7ubmVGhgYqK9evcpbvny5TUlJCW3dunVZuh5za6BesUwQRCcAUQAsAKgB7CVJcgdBEFsAjAZQBuAlgCkkSRYQBGEH4DGAp28O8TtJkrPeHMsTwAEAegB+ADCfJEmSIAj2m3N4AsgFEEySZHIzXWOrgkajQSC0QG5+ASyFWlnsapN0FEHZntGFqVVzExIcgtirpjgUcxxO5hlwt1dgcp9/Iq4qdXmq/NNsEfyHBzU4A0AXjui66ufdFu+rtmmsuZp12BjsizyBTvryVjeHrzNy0Me3t9aOT9E8yOVy4rNZQXbM4tuGg5wKUmY1RAAAIABJREFUmVwLAkWlJL5ZecVYYdBb+t89J5LZbLZW8/UZDAY5ZMiQijqy8ePHSxYuXJjTv3//bqGhofZJSUkPGQwqBgMAenp6VeaKoipqtRoymYzQ19dvk3U6UqmUdvLkSdOlS5emrV+/vkJATp48uUCbEdiioiKCy+U2ec7S09Pv0+l0HD16lF+bWN60aVNm5e8/+OAD6evXr1nHjh0z7ahiuSFp2EoAC0mSdAbQF8AcgiC6A7gKwIUkSVcAzwAsq7TPS5Ike735mlXp9d0AZgDo+uZr+JvX/wMgnyRJBwDhADa9y0W1dizfOGJTULQndJUW3NxoI1Ve22newJvodRIDFsY08F8n11pzraEiem1Ma1T7tbZ6X7XJldgz8LBXVkSK68oaAP6JFGdJiVY1hyqVCumZeejSpYtWjk/RfHw2K8iut+mPJiPdJUyuXvlzwdUjMNJdwuxt+qPJgk+C7FpiXGZmZqovv/wyNSUlhX3u3Dme5vWSkhJi1qxZ1hYWFq4sFsujW7du3Y8fP15lhc7KyqrnjBkzrJcvX24hEAhcDQ0Ne02fPt1arVbj+PHjfAcHhx4GBgbuQ4cO7ZKTk1ORxiqRSGj//ve/bezs7Fz09PTcraysen700Uc2eXl5VT7TEgThuX79evO5c+daGRsbu5mYmLh99NFHNqWlpVV+wV6+fJnbrVu37mw226NHjx7OV69ebZCRSnh4uJmDg0MPDofjYWxs7Na7d+9u8fHxHODtNGwrK6ueBQUFjPDwcEtNOrsmJVulUmH58uUWNjY2LiwWy8POzs7l66+/Nq18rtjYWK6np2c3LpfrzuVy3Z2cnLp/9913dbZVKSoqImbNmmUtEol6slgsDysrq55z5syx0ryvVCoRFhYmsrS07MlisTwcHBx67Nmzx0Tz/o4dO0xZLJZH9RTi+Ph4DkEQnufPn69IKT906JCRi4uLM5vN9jAzM3ObNWuWtVwur5jnsLAwkbGxsVtsbCzXxcXFmcPheOzfv99Yc229e/fupqen525kZNTrX//6l21+fn6Ve9nUewQAZWVltClTpnTi8/m9DA0Ne02ePLmTTCYjACArK4vOZrM9qs+3Wq2GlZVVz2nTplnXdEypVEpTKpWEhYXFW7+cNa33oqOjDSdNmuQAAE5OTj0JgvC0srLqqdkuLi5Or1+/fo56enruPB6v15gxYzqnpKRU/DHRPEO7d+82GTt2rJ2hoWGvgICArppxT5o0ydbU1NSNzWZ7uLu7O12/fr3eOaHTm5YNbmJiolQoFG0zvbMZqHcJkCTJDAAZb/4vJQjiMQArkiSvVNrsdwAT6joOQRCWAHgkSd56830UgEAAlwF8AOD/3mx6CsA3BEEQZDt1htHT50Je1P6iLRQdG12lBWsDbWQ2aNsRXVf9vNvyfdUWTY22iyOeQ68VzWF6Zg5MzS1hYNDgz50ULcDTp09ZzOI/Da0ca37fyhS49+pPw2fPnrF0lZJdmZEjR0rpdDoZFxfHnTBhguTNa10SExMNlixZkt61a1f58ePHjUNDQx06der0V//+/Us1+54/f97Ezc2tePfu3cm3b9/W37x5s5VarSZ+//137qpVq9JKSkpoS5YssZk/f77VkSNHXgNAUVERTaVSYc2aNWnm5uaKV69esbZu3Wo5ZsyYLjdv3nxeeWy7du0S9u/fX/rtt9/+fe/ePb2vvvrK2tbWVr5hw4YsAEhOTmaOGzeuq6ura/GBAwdepqWlMT/++GN7mUxWZzDp8uXL3MWLF9ssXrw43cfHp7iwsJAWFxfHzc/Pr1GNnDhx4sXw4cO7vf/++/kzZswQA4C7u3spAHz88cc2p0+fNg0LC0v38vIqiY2N5X322Wd2ZmZmypCQkMK8vDzahAkTHPz9/QtWrlyZQZIkEhMT9Wo7F1Au9oYNG+Zw79497oIFC9J79+5dkpKSwrp58yZXs82CBQusdu/eLQwLC8vo06dP8alTp4w/+eSTzgRBYObMmXkffvhhweLFi20PHz5sNH/+/FzNfocOHTIxMTFRjhw5UgoA3377rfHMmTPtQ0JCctatW5f2/Plz9oYNG6zUajX27t2bqtlPJpPRpk2bZjdv3rxMJycnuY2NTdmVK1cMRo8e7ejv719w4MCBJLFYTF+7dq11SEgIPSYmJuld7lHlZ8Dd3b143759SQ8fPtTbuHGjFYfDISMjI1OFQqEqICAg//vvvzf79NNPK67x0qVLhunp6awZM2bk1nRMkUiktLCwKNu4caOIy+Wqx4wZIzE2Nq4SUu7fv3/x6tWrU9etW2d98ODBl1ZWVgoOh6MGgPT0dMawYcO6denSRbZ3796/pVIpbe3atdZDhgxxvH///mMOh1Ohf1avXm09fPjwgqioqCQ6nU6WlpYSfn5+jhKJhLF27dpUCwsLxe7duwWjR492fPz48QMbG5u6V84biEKhQElJCS02NpZ7+vRp06VLl6Y3x3HbIo3Kl3mTYu0O4I9qb00FcLzS950JgrgLQAJgJUmSvwKwApBaaZvUN6/hzb8pAECSpJIgiEIApgDE1c4/A+WRadjY2DRm6K0KJpOJElWzPMsUFK0GXaUFtyW0leYN6K6fN3Vf36ap0XZTjhLiVjSHya/T4OTcQyvHpmg+vt31lXCQk4QJ1P4zO8hZwvx255fCzTsOpOhwaADKU46NjY2VWVlZDAA4f/684c8//8yPjo5+OnLkyCIAGDdunMTLy4uzfv16y8uXLydp9mWz2eoffvjhJYPBwIQJEyQ//PCD8cGDB80fPnz4wMnJqQwAEhMT9U+ePGkK4DVQLlQOHz78WnMMhUIBBwcH+bBhw5yeP3/O6tq1a8WCgZWVVdnp06eTgfK08Vu3bnEvXrxorBHLGzduFLLZbPLatWsvDA0N1QBgYGCgnj17due6rvnWrVsG3bp1K/3qq68qUlZDQ0NrjYL4+PiUMhgM0srKSlE5Pfvhw4fsw4cPC3bs2JGsEWuBgYHSzMxM5hdffCEKCQkpfPjwIaeoqIj+v//977VGkI0bN05S1/jOnj3Li4uL4x06dOhF5XHNnTs3FyiPTH777bfm8+fPz9i8eXOGZn7S09OZX331lWjmzJl5pqamqoEDBxaeOnXKpLJYPnfunMnIkSPzGQwG1Go1Vq9ebT127NjcQ4cOVdwTNputXrp0qe26desyLCwsVEC5WP7qq69SP/zwwwLNdp6ennbu7u5Fly5dqngmOnXqpPjggw8cb9++zendu7esqfdIg4GBgeqHH354SafTERQUJJHL5URERITlunXrMoRCoeo///mPeNy4cY5//fUXq3v37mUA8N1335n26NGjxNvbu7S240ZGRiZ//PHH9h9//HEXGo0GZ2fnknHjxuUtX748m8PhkCYmJmonJycZAPTp06ekW7duFc/lhg0bhABw/fr1ZyYmJmoAcHZ2lg0ePNj54MGDxjNnzszTbNurV6/i77//vmJuw8PDzZ4/f66XkJDwqGfPnnIA+OCDDyT29vYuX3zxhUVkZGRlrdUkXr9+zbC1tXXTfD9v3ryMFStWZL/rcdsqDXbDJgiCC+A0gM9IkpRUen0FylO1D795KQOADUmS7gDCABwhCIKHmn/La1ZO6nrvnxdIci9Jkl4kSXoJBG233pfBZEKpbPE6fwqKZkVXacFtDW06olduvybg07DSrwhhpvdhf/IYjHYdhP3JYwgzvY+VfkUVQrmx7dfa2n0lSRI3bsZhxapFWLlsOlYs+bj831WLcONmXLO0YWpqa7B3mUNtXFduQRE62dg2ej8K3VIkEVekXtcGV4+AVJLbYmkcJElWDPDKlSs8MzMzRUBAQJFCoYDma9CgQZL79+9XSWPo16+ftHKds52dnUwkEsk1QhkAHBwcZPn5+QxN6iwA7Ny508TZ2bm7vr6+O4vF8hw2bJgTADx69Ihd+fiDBw+uIiqdnJxkmZmZFQ7ACQkJBgMGDJBoRBgAfPTRR/XWyXl4eJQ8fvxY/z//+U+ny5cvcyuPrTFcvnzZkEajITQ0NL/yXA0ePFj65MkTPaVSCWdnZ7m+vr56/Pjx9ocOHTJqiLPytWvXDPl8vqo2AZ+QkKAnk8lokyZNqnKtEyZMyH/16hU7LS2NAQATJ07Mv3XrlmFGRgYDKE8dfvXqFXvSpEl5APDgwQN2RkYGKygoKK/y+EeMGCGVy+XEnTt3KtJoCILAhAkTKsYjlUppiYmJ3HHjxlW59oCAgCIGg0H+/vvvBm/G2qR7pGH48OEFldOPg4ODC2QyGS0hIUEPAMaMGSO1tLQs27dvnxkA5Ofn02JjY41DQ0PFtRwSmv1evnz5IDIyMmnixIni/Px8xvr16619fHwcVaq6P+MnJCQYDBw4UKIRygDg5+dXIhKJyipH/wFgxIgRVe7h9evXDXv06FHi5OQk18wZAPTt27fo3r17+g2alHqwtLRU3rhx4/HFixefLViwIGPPnj0WK1assKh/z/ZJgyLLBEEwUS6UD5MkeabS65MBjAIwRJMyTZKkHID8zf/vEATxEoAjyiPJlXP/rQFoQvqpADoBSCUIggGADyAP7RQmkwm1ul1mmFN0YHSVFtwW0aaBXfXoda/OZXAzkyHhuQq0MuBKPIkSOYEcKQcDBg3Bv4L+1ajjt6X7Gnv1Cq7FnkA3QRrGuypBo/3z+VWtJpHw21+4eNYS/sOD36ldW1Oi7bmXEzDbUQ4aTd7oObQuluLzxdOb/bqkxaUwMqrR44WiFcHlmSmKSknUJZiLSkkY8kxbxCCgpKSEKCgooAuFQiUA5ObmMsRiMZPFYnlW37Z6zSSfz6+iKlgsFsnj8d56jSRJyOVygsPhkFFRUUZz587tHBoamrN27dpUMzMzVVpaGvPf//53l9LS0ipBICMjI2X1Y5WVlVVMZE5ODqN79+5VXLy5XC6pr69fp0tTYGCgdMeOHcl79uwx379/v7m+vr46MDAwd9euXak8Hq/BDk9isZihUqlgampaYz3Hq1evmF26dFGcP3/+2dq1a0VTp061V6vVGDBggGTXrl2vNZHQ6uTl5TEEAkGtz0NqaioTAKysrKpsY2lpqXgzLrqVlZUyJCSkYMGCBeThw4eNFi1aJD58+LCJubm5IiAgoAgANNkEwcHBXWsZf8XCBI/HU1VOLxaLxXSVSoWlS5faLF269K100ZSUFBbQ9HukwdzcvMozIBKJFJXngEajISQkRHz06FGzbdu2pR84cMBEpVIR06ZNq1eHGBsbq2fMmJE/Y8aMfLVajbCwMNGOHTssjx49alQ5gl6d7OxsZrdu3d6KWpuZmSkKCgqq/JBUr4vOzc1lJCYmGtT089WpUyd5fWNuCEwmE76+viUAMGrUKCmNRiO3bdsmWrp0aXblRYuOQkPcsAkA/wPwmCTJ7ZVeHw5gCYBBJEmWVHpdACCPJEkVQRD2KDfySiJJMo8gCClBEH1Rnsb9bwBfv9ntAoDJAG6hvPb5enutVwbKfzDV7ffyKDooukoLpngbTfu1iF27EH7uIgY4K/BxALOaqFIhIekHLF50t1Giqq3c1yPHjiDr2UmE9ivPcMzMJxH7jIVCGQ18jhrDHOXwclDCyyEFP93ajby83Cb3bW9KazD9v5NxX66CvwezUXOoz++Ex7/vrriu6olYNBrR5OsqKi4Fn9/+0uTbG9PnLM/6ZmWs8Uh3aa2R4xuPeYq5XyxvEafa6OhoQ5VKRfj4+BQBgLGxsdLc3Fxx8uTJF9o438mTJ41dXV2LK6f9Xrp0iVvXPrUhEAiUYrG4yrwWFRURJSUl9WZefvrpp7mffvppbnp6OuPw4cNGq1ev7sTj8VS7du1Ka+j5TUxMVHQ6nbx69eqTmsyXrKyslAAwdOjQ4qFDhz4vKioiLly4wFu2bFmnkJAQ+8TExCe1HFeZk5NT6/NibW2tAID09HSmJk0aADIyMpgAIBAIVADA5/PV7733XuHp06dNFi1aJL5w4YLx6NGj8zQmVpp2SFu3bn3Vu3fvt1qHOTo6Vog3giCqfPA1NTVVEQSBsLCw9DFjxrwVAbexsVG8GUuT7xEAZGdnV/nlnJ6ezqw8BwAwa9YscXh4uCg6Otrw0KFDpv7+/gWaOWgoNBoNa9asydyxY4fl48eP66zPMTc3V1S/JgAQi8VMV1fXKvNY/W+osbGxqkePHiW7du16VX3/yosRzYmnp2eJXC4nXr16xXRxcWkWQd6WaEhk2QfARwAeEARx781rywFEAGADuPrmRmpaRPkCWEcQhBKACsAskiQ1qzOf4J/WUZfffAHlYvx7giBeoDyi3LjQRxtDLpeDQW9wBjwFRZtB26ZWFLVz9PhRqHOvYfF4NQA6MvPVzSYWW/t9jb16BVnPTsKvR3nf48gEHgpt7KAf5A6GIQe5Ull5BPheMmZ6SODXoxjXH55A7FXTJkWYmxRt95Xi3kvg4h9qjO5Da9AcFtJ6wYi8B78eDetA05jrksnlIOgMsNnsOrejaHkcHR3LFAbe0rTcH02sTN9+Py0XUHC9pS1h7iUWi+krV660trGxkX/wwQcSAPD395fu27fPwtDQUO3u7t6wOoVGIJPJaCwWq4ooOHToUA0zUz/u7u7Fx48fN5NKpTRNxOz777+v02W6OiKRSLl48WLx+fPnjZ88eVKrex+TySSrp2sPHz5csmzZMqKgoIAxduzYOuuQgfKI6qRJkwofPHig9/XXX1vWtp2/v790z549FkePHuWHhIS8JUQ9PDxKORyO+siRI8YeHh4ZmtdPnz5tbGtrKxeJRBXR2ODg4Lxp06Z1OXLkCD81NZUdGhpaEXF1c3OTmZubK5KTk9kLFy6sM225OjweT+3m5lb87Nkzjq+vb0Zt273rPYqJiTFSqVRpmsWI48ePG3E4HLWHh0dFZNfBwUHh4+MjWbt2rSghIYF76tSp57UeEOWt3KRSKa167+RHjx5xAEAoFCoAQNPOrbqw9/T0LI6KihLk5+fTNHXoN27c0E9PT2cNGDCgqK5z+/n5SdatW2fdpUuXMs1iira5efMml8Vikba2tu2vvUUDaIgb9k3UXFP8Qy3bn0Z5ynZN78UDcKnhdRmAifWNpb0gKy0Fm8Wqf0MKijaINk2tKGpGF2Kxtd5XkiRxNeY4Puxffu2b7wrBnTka/ErClcnTAz+wP1Ryb2zeexGfu2dhsEsxDseeQMBQ/0ZHv5sabacxDcExHYhDcY/qncOhwybiWuwJjO3fuFatDb0uqbQYfL4xldHRRvjvnhPJCz4Jwr1XfxoOci5vHyUtJfHLY55Caegt/e+eE8naHoNSqSR+/PFHAwCQSCT027dv6x84cEBQWlpKu3DhwnNN7XFgYKBkwIABhSNGjHCcN29eRs+ePWWFhYX0u3fv6slkMtrOnTsbHHmtiSFDhkiWLVtms2TJEot+/foVR0dH82/evGlY/55vs3Tp0qyoqCiBv7+/w/z587PS0tKY4eHhlhrX4tpYsGCBKC8vj+7n5ycVCATKO3fu6N++fdtwxYoVtZor2dvby65du8aPjo6W8Hg8Vc+ePWVubm7ySZMm5UyZMsU+Pj4+09vbu7i0tJT28OFDzvPnzznHjx9/dezYMf7+/fvNxowZk29nZ1eWkpLCioqKEvTt27dWcf3mHkimT59u//jx43QvL6+StLQ05q+//mp45MiRV0KhUDVt2rTsHTt2WDIYDNLb27vk1KlTRjdu3OBHRkYmVT5WUFBQ4dy5c9WfffaZrZWVVZmfn19F5JNOp2PDhg0ps2fP7iyRSGjvv/++hM1mq1+8eMG+ePGiUXR0dFJdabsbN25MHT16tGNgYCAmTJiQz+PxVMnJyazLly/zN23alObq6ipv6j3SUFxcTH///fe7TJ8+PefBgwd64eHhosmTJ2cLhcIqQnfKlCniqVOn2guFQkVgYGCdCxd5eXl0JycnlwkTJuQOHjxYYmRkpHr8+DEnPDzc0tzcXBEaGloAAC4uLjIA+OabbwShoaF5XC5X7e3tXbpixYqsqKgoweDBgx0XLlyYqXHD7tq1a+nkyZPrrMeePXt27nfffSfw9fXt9umnn2Y6ODiUicVi+h9//GFgYWGhWLNmTa1GXJcuXeJmZ2cz4+Pj9QHg3LlzfHNzc6Wrq2upp6en7M2YnSdNmiR2dnaWl5WVEVeuXOEdPHhQMGPGjKyOmIINNNINm6J5kMtKoc9qf+1UKCg0aNKCf437HWdiToNQFoJUK8qNkRhGCBg+DtP696U+qDcDuhSLrfG+/vLbLTiZl9tfRCbwwJ1Zc4QXKO93zJ0xGpGRJ7DSrwjdBOn4Ne73JtWSNzXaHhIcApIk653DytfVWBpyXRJpEYxMGhVAo2hB2Gw2ueu7838/e/aM9e3OL4XSlFymIc9UMfeL5Vm6iigXFRXRhw4d6kQQBAwMDFS2trby8ePH5y1evDircrsaGo2Gy5cvv1y+fLnlnj17hBkZGSw+n69ydnYumTNnzjs76i5atCgnKSmJvW/fPuHOnTtpPj4+koMHD/49ZMgQp8Yeq3PnzoqTJ0++CAsL6zR58uQu9vb2sv379ycFBwc71LWft7d3cUREhPDChQsmJSUldEtLy7KFCxemr1y5stbr27JlS+rcuXNtJk6c6CCTyWgXL158NmrUKGlUVNTrDRs2yKKiogRbtmwRGRgYqBwcHGSTJ08WA+UuyQRBkOvXr7fOy8tjGBsbK4cMGVIQHh5e66LDm3vwIiwszCoyMlK4ceNGhkAgUIwbN64iKhweHp7GYDDIAwcOmG/bto1hY2Mj37Vr198zZsyoItb09fXJIUOGFFy4cMFk9uzZmdXPNX369Hw+n6/atGmT5YkTJ8zodDqsra3lAQEBBfUJ2mHDhhXFxMQ8XbNmjWjWrFmdVSoVRCJRmZ+fX6EmatrUe6Rh9uzZWUlJSeypU6fakySJ4OBgcURExFtzFxwcXDB9+nQyKChIXF8/YmNjY9WcOXMyr1y5wj937pxJcXEx3dzcvGzQoEGF69evzzA1NVUB5Vkhq1evTt23b5/5wYMHzYVCYVlaWtoDkUikjImJebpw4cJO06dP78xgMMj33nuvcNeuXSn1pVLr6+uTv/7667NFixaJNm7caJWbm8swMTFRurm5FY8dO7bWOmkAWLt2rdXt27crShY0teILFizI8PT0TAcAFxeXkr179wqzsrKYHA5HbWtrK4+IiEieNWtWu/WSqg+irZYGe3l5kfHx8S09jCZx9PD3EBkRcOpq39JDoaCgaOPcuBmH57+th5eDCht+4kI1M6je+ln6G7EY/4IBxwGrtGI8pitWrFqE8a6JyC4ksS3PtUFmW5KzcQgzvQ8Bn8CZ+274Yv3WJp8/9uoVXK0UbadXqhNXqUkkJDGbFG3XXFfluvOGolKT9V7X3fuPIWMYIzBwXKOP31YgCOIOSZJeLT2OxMTEZDc3t0alqFJQUOiW48eP80NCQhzu37//sCPW5XZ0EhMTzdzc3Oxqeo+KLLcAMlkp2CzKgZSCguLduRJ7BuNdlcjMJ1FoY1clolwTdDYDkk52yMy/D3d7Bc7EnG7TYplQFoJGIxD7jAX9oBoNZd9Cb7A7Yk8+xeQ+ChDKquV8JEnil99u4UrsmSpRX5LBR8CwcfD16Vclcq6taLvmupoCnUa8dV3VkRYVw7xzgwIzFBQUFO2W5ORk5qNHj9irVq2yGjRoUCEllCmqQ4nlFkAmKwWL1Xb7RFNQULQemlsstjVIdXnNr0ROA8OwTgPSChg8DiRyosr+QNNbT2mjNVjlcWlj/6ISORyptlEUFBQdnIiICEFERISls7Nzye7du1/XvwdFR4MSyy2AXCYDqwMbfDU2ckNBQVE7zSkW2yIErdz/gcdWQyyVgcmr1Yy2AqVEBl65SWnF/rpsPdUQNOPS1v50GgG5nAqgUFBQdGy2b9+evn379qYZRFB0CCix3ALIZTKwO6jBV1MjNxQUFDXTXGKxrUIy+FCry820tl2/26Ca5dLrdzHcUQ6VmgDJ4Ou89VRjrqupNcsko+7+yZZCU7z6+yW8vb2bOkQKCgoKCop2D9XstwUolZWC1QHF8pFjR/DXrd0I7fcaXg6qtz4E0mgEvByU+LB/Cv66tRtHjx9toZFSULQdKovFkut3G7TPP2KxflHV2gkYNg4JSQxYGNPAf50MlbzutpMquRK8lGQIjWm4m8REwLBxuBpzvEIob74rhGpmEPiB/cHk6YEgiH/cxGcGYfNdIXIK1RjsUoxrsSegLZNMzXU1hbtJTAwbPr7ObawshUj++2WTjk9BQUFBQdFRoMSyjlGr1VCUlXW4PsuVIzcNwa9HMTKenEDs1StaHhkFRdvmXcVifaKqtePr0w9PskUAgJkeEhTtvVjrHKjkShTtvYhZnuUtNJ/mlO9XpfXUjAa0nkrgAfinRZM2qHxdjeVpjggD+/etcxsTYz5Ki6WQSOpsJ0pBQUFBQdGhocSyjikrKwOTQe9QNbmaPrANFcoatB25oaBoD7yrWKxPVLV2CIKA//Bg/PTIAAI+DZ+7Z4EeeQKSs3FQFJaCJEkoCkshORsHeuQJLPHIghmvvO/x0OHBuBJ7Bh72SmTmq1FoY1dn2y2gspu4Gu72CsTGnNb6dTUGzXXV9zeGIAhYCIyQkpLyLsOkaCH+u/0ryiWUgoKCQgdQNcs6Ri6Xg8XsWCnYv/x2qyJy01g0kZu23NqGohySJJGb8BCmHi61fpCnzN8aT4WourUb/8/efYc1dbZ/AP+eLBL2CHsKKAgqMgQVtT8HoHVWrRZpa9u3zlqtq446XlcdtVJpHWh9q9a9Bw7U2inYQlFwgQORvUdYCSQ5vz8wGpBNIAl5Ptf1Xn1Jzjl5ck7A3Oe5n/se7F6OLz1zEB5+AgJbB/CGeIKlz4VYIETlzTvQT0vBEm9BrWCxM5zPoIBAFBYW4NcHJzB8nmFAAAAgAElEQVTYvRwrBpchuygBkSeTIBBR0NeqSVO3cGYAqHnvlq6TEDQsAH/+ckJlq4nXfV9NkX9fzWHBN8SLlBS4u7u3dahEB8rLy2Nu3vS1zfsfTivk8/kSZY+HIAiiMyPBcgeTSCSgWtk7U13J+sACLX/fnaEPLFGjLCUd8evD4Bu6GnoONm88T4q/tV5bgsXOInhyMCKvm+DQ1eNwNcuCp2M1pvq9rvQtkVKIecpCUq4VAoZPevUZUvVq4vW9L6bc74ZESiMumf3G+2oOaytz3L73GMDIdhg50V7OnDxkFPKWmDpz8pDh9FlfFCh7PARBEJ0ZCZY7mIGBASqFVaiuFoPN1ozTL+sD2xpMBqX2fWCJGjm3YgAAubdi3giWVa1tjzpqbbDYmQQFBCJwWAD+jLqNM1dP18pOAMsQgcPH49P+fWvNpqtDNfHWvK/msDDjIzcrGtXV1WBrWMaTOouNumwwvjeDOnPrEgmWCYIg2plmRGsqhMlkwoRvhsKiYpib8ZU9nA7R1pkXde8Dq6kkVdXIjYoFLa7JEsz65RYAIPOXW+CZ1yy3o1hMJFQWq1zbHnXVXkGVOqEoCoP8+zU7G0URrac6QkvfF9E5SSQSVJWmaTEYFKpK07SkUikYjI4pPxMWFmYSHh5ulpKSwmUymbS1tXWVv7+/4Mcff0wHgIyMDNa3335rNmPGjHwXF5eqDhlUIzZt2mR69epVg7t37+qWlJQwL168+HjUqFGl8tv89NNPRmFhYebPnz/nVlZWMiwtLasmTZpUsHbt2mwul0sKphAEQYJlZTC3tERBoeYEy22deVH3PrCaSioU4dnPZyAqLAaDwwEtlQIAqkvLkbT3KKRVVeAYG+I3vUJMHvi6bY/ujNEwkCuy9Kptj8gXW/ZcxJeeORjSoxyHI08gcFhApw78WoMEVS0TGDQecbcewMdZAoO7KZCIfBst8vWqmrgzA7FPWWpdTbygsBgmZmZkVlmNREdH8ewMcjkAYGeQy4mOjuL5+w+obO/XXbZsmcU333xjPXPmzOyhQ4dmVFZWUrGxsTqnTp0yBpAOAJmZmazQ0FDLIUOGlKpCsHz06FETiqIwcODAkoiICOP6tsnPz2cOGDCgdP78+dlGRkaS27dv63z77bdW2dnZ7IMHD6Z29JgJglA9JFhWAgtLG+SlJCh7GB1GNnPTmlTsztAHVlOx9XXRN2wNHn7/EwruPgQtrqnQTIvFoLQ4MPXrjcI+7nCK3QzgZdueGc1o2xN+AisGl5Hib4RCDPLvh4tnreDjnIYZXgJs2XOxwfZRsmriS7wFABhIyrPCf9S4mnhOXgFsbByUPQyiBc6f3Mfv6yBiAhQ8HETMCyf38f39B7R7SfN9+/aZBQcH5/3www8ZssemTJlSsnXr1tZV72yGsrIySldXt9Wzu3FxcYlMJhMxMTHchoLlxYsX58v/PHr06FKBQMDcv3+/qVQqTe2oWXuCIFQXCZaVwMzMDI8TWtZGSZ3Jz9y0VGfoA6vJWDra6LlkNm5N+xIi0euJBrauDnoumY0VqxZjQi8xsotolNg51JpRrs/rtj0JpPibmlHVSufKrCau7HOSV1AExx7d2+34RMtt3bzW7NfI4ybW5vrS+p6XVOawdf1qPhN6PAr5CX/oTw/u51Lfthk5AsbgoMkFi5asym3ruEpLS5kWFhZvrImSBZNJSUkcX19fdwAYPXp0N9nzNE3/CwCJiYmcOXPm2N6+fVufpmn4+fmVhoWFpfXo0UMk25aiKO/Vq1enp6amcs6ePWusp6cnSU1NvV9RUUEtWLDA+ty5c8aFhYWsLl26CNeuXZsxefLkRguaMJnMVr1XExMTsVgsJilLBEEAIMGyUpiZmaGoRHOCZfmZm5ZS95kbAhDm5ENUJACDwwYtlYJiMCAqKoEwJ/9V8TdVbNtDKI6qVzpXRjVxVTgneUVlGGBl1S7HJlpn3oJlucUFmezi5xdN3vYoZjOZjcdsk/xyuEBOrcckEhqX7xpWe/qMLpi3YFmbA2UAcHNzq9i3b5+ZnZ1d1bvvvltsYWFR6+63nZ1d9a5du57PmjWry8aNG1P79OlTIXuusrKSGjZsmAuLxaJDQ0NT2Gw2vWHDBushQ4a43Lt374G5ufmrY+3YscPc19e3bO/evc8lEgkFACNHjnSKj4/XWbJkSWbXrl1Fx48fNwoJCXG2tbV92L9/f4WkoIvFYlRWVjKioqK09+7da/b+++/nkVllgiAAEiwrhZGREcorRRpTEbvuzE1zdaY+sJosJyoWkEphNXQQnD6YgKcHTyPj6m/IjfpX5dv2EG2nLpXOO7KaeN1zUretHoNBtfs5kUqlKCwqhbm5uUKPS7QNm83G+i27M2JjPirc8t+Z9gEuz7TtTOlm/yP4Io+ibyQ5V3z5390vfPr0Vdha5p07d6ZOmDDBee7cuQ7z5s2Do6OjcNSoUUWrVq3KNjY2lvJ4PNrb27sCAHr06CEcOnToq3/sv//+e352djYnISHhnpubWxUADBw4sNzV1bXnd999Z7px48Zs2bZ8Pl986dKlZNnP58+f1/vtt98MIiIikkaOHFkGAOPHjxf4+Phw161bZ3nlypVkKICOjo5XVVUVBQDvvPNOwe7du9MVcVyCINRf54/UVJAmVsSuO3PTlM7YB1aZlJnuqdfFDr1XzYOJZw8AgOuMEJj6egCgQMWoftseVaXsFN7miLx+Ta0qnXdENXH5c9Ic7XVOCopKYGhsAi0tLYUdk1Acnz59Kw+fi0lc89Xn1vFxTc8yy2aTDR1HFxw+932Goou2+fn5VT558uT+2bNn9a9evWpw69Ytve3bt1ueO3fOOD4+/qGBgUG9aeMAEBMTo9O9e/cKWaAMAE5OTtVeXl5l0dHRuvLbBgQEFMv/fO3aNX0+n18dGBhYVl39+ubVW2+9JTh27JjCvkD98ssvieXl5Yzo6Gidb7/91nLq1Kl2hw4dIgW+CIIgwbKyWFhZIb+wSGOCZaD+mRumXOqhREojLpndqfvAKoOy0z1NPN3reawmcKbPqEfbHlWj7GvaHDRN4/rV43i/v3pVOm/PauLy56Ql2uOc5Oblw9rWXiHHItqH/Czzd/+d4vTBgNwG72wcjjITzV9z9JkiZ5Pr4vF49JQpU0qmTJlSAgChoaH8BQsW2IeFhfFXrlzZYLp3Tk4O29TU9I00IFNTU3F6ejpH/jFzc3Ox/M8FBQWs/Px8NofD8a67f2vXJNdnwIABFQAQFBRUxufzxZ9//rnDsmXLctzd3UVN7UsQROdGgmUlMbew1qiK2DKkD2zHUoV0z8aoUtsedZipBdQnrfmPW9FwNasplEsqndeQPyctpehzkpNXCDtXX4Uci2hf9g5OVbpa1Y3+8dHjiSmHLs4d2q5p/vz5+WvWrLFJTExsdA2Nubl5dVJS0hvb5OXlsQwNDWsFxxRF1ap+bWRkJDYzM6s+efLkU8WMuml+fn7lAPDkyRMOCZYJgiDBspJoWkVseZrcB7YjAzJVSfdsjKq07VGHmVrZONUlrfla5BlS6bwO2Tmpe9OqORR9TvKLytCXFPdSC2dOHjLqZVPIaexz09O6kHPm5CHD6bO+KGiPMWRkZLCsra1rBbaZmZmssrIypmw2WEurZn2MUCisNVBfX9+ys2fPmiQmJnJcXV2rAOD58+fsO3fu6C5cuLDRu0cBAQGle/futdDT05N6enoKFfuu6vfbb7/pAkDXrl2V3iuaIAjlI8GykpiZmaGwpEzZwyA6UEcGZKqU7tkYZbbtkVGXmVp1S2smlc7fJDsnrcFkUAo7JzRNI79IAAsLC4Ucj2hfsVGXDSa4vf75RR5F33hgWhXgnseRFf9ysgBO37rUbsFyr1693AMDA4sDAwMFFhYW1cnJyZywsDALLpcrnT59ej4AODs7V3G5XOmBAwdMDA0NJRwOhx40aFDFnDlzCrZv3245YsSIrl999VUmi8Wiv/76aytDQ0PxF198kdfY644bN04wYMCAkhEjRnSbO3duVs+ePYUlJSXMO3fu8IRCIWPHjh0ZDe37xx9/aD979kwrNTWVDQC//vqrbl5eHsvJyUk0aNCgCgAYOHBg18GDBwt69OhRyWKx8Oeff+qGh4ebjxw5sojMKhMEAZBgWWmMjY1RJaZRXlEJHe2mixoR6q2j06FVKd2zKcpo2yOjTjO16pbWTCqdv6mt70lR56SwqAR6+obg8ci/PapOIpGgqjRNi6KoWkW8DpwLzdywer6VfPGvqtI0LalUivZoebRo0aLMiIgIwyVLltiWlJSw+Hx+tZeXV9mxY8eSZbPF2tra9LZt215s3rzZasSIES5isZiiafpfHo9HX7t2LWnu3Lm28+bNc5D1WT59+vQz+bZR9WEwGLhy5cqz5cuXW+7evds8KyuLY2BgIOnevXvFZ5991mhbrO3bt5udOXPGRPbztm3brABg/PjxBYMGDUoBAC8vr/KjR4/yMzIyOEwmk7a1tRV99dVXGYsWLWo0iCcIQnOQYFlJGAwG3Hv0RlzCIwzs66Xs4RDtSBnp0KqU7tkcHdm2R0bdZmrVLa1ZVqmcVDp/ra3vSVHnJDevANY2dgo5FtG+oqOjeHYGuZz6WkKt37I7I+afqYVb1syyD3R5pm1nkMuJjo7i+fsPUHiRr2XLluUtW7asyQBy1qxZhbNmzSqs+7ibm1vVjRs3njW2L03T/9b3OI/Ho0NDQzNDQ0NbdAf49OnTKQBSGttm+/btmdu3b2/dnWWCIDQC6biuRIHDRyAxOQsFhcVNb0yoJVlA1pL+0kBNOvSNyBOgabrpjeuhKumeLREUEIhvtv6IbgNW4kyCB07F2uPkP1Y4FWuPswm94TJgJb7ZuldhM7pvzNQ2sFYakJupjdMH8Hr2vSO9TmvWgvaQFqQ1P9ZSyjWlWa8rnVfcvNOsfV5XOqc7ZaVz2TlpDUWek9z8QlIJW02cPb7HNDWfQ6eyQnIOn4tJrFvtuo9vv8oj52ISX7BCclLzOfTZY3s0p8UGQRBEByAzy0qkp6eHoUEj8dutXzB+1BCVqLRLKJay0qFVJd2zpTqy+Ju6zdSqW1qzKlU6VxXy56Sl7iSzFXZO8opK4UWKe6kFE1OrquAPzz1urCWUfIupa1fOdr67TARBEEpEZpaVzM+vLyQsHSQ9fa7soRDt4FrkGXg5ipvesB6ejtWIvHq6VfuqSrqnKlO3mVr5tGZxafOKwiozrXmQfz8k5tYEZDO8BCjbcxESUf2/C7JK5zO9BQCApDwrDFRQpXNVIn9OWkpR54SmaeQVkuJe6mL5qs3Zze2d7NOnb+XyVZuz23tMBEEQmoTMLCsZg8HAmHETcOin3XC0twWH0/mDFE2irHRoWbpna167s6bA1qVKM7XNaSkmn9b87c07MBjXv8njvk5rpjr8mqpCpXNVU/ecNJciz0mJoBQ8ng50dXXbfCyCIAiC6OxIsKwC7O3t4eruidv/JmBQP29lD4dQIGWlQ6tKuqcqU5UCVM1tKWbj6IW4ZPVKa1ZmpXNVVfecNEWR50QsFuP3qH/h4t6zzcciCIIgCE1A0rBVRNCIt5H0PJsU++pklJUOrQrpnqpOFQpQHTl2BA+jdyGkXyp8nCXILaFx4G82wn7XwoG/2cgtoeHjLMb7/dNAF9zAzYSaGXB1SmsOnhwMt36zcCjKFrFPWTA1oDDVrxqfD6rCVL9qmBrUVDo/FGUH9/6zlNLDuqPVPSeSOkW/JFJa4edEVFWFc1d+g6G5I0aPHtvm4xEEQRCEJiAzyypCV1eXFPvqhJSVDq0K6Z6qTtkFqFrT41kkYmP/DSY+Gga1SmsOCghE4LAA/Bl1G2eunq6Vag6WIQKHj8en/ftqxOdOpiPPSaVQhLOXf4WjqydGjxnbLn14CYIgCKIzIsGyCvHz64vYf24j6elzuHZ1VPZwCAVQZjq0MtM91cEg/364eNYKPs5pmOElwJY9FxtsHyWbqV3iLQDAQFKeFf7Thpna1vZ4Hu5Vje8v6+LmfSmG9KhQq7Tmjqx0ri464pyUl1fgzJXf0MPTH0HDh2vUDQmCIAiCaCtye1mFyIp93Yp9iKoq5bTuIRRL2enQykj3VBevZt8f6MDUgIEvPXPADD8BwdkoVJdUgqZpVJdUQnA2CszwE1jilaOwmdq29Hju100IhkkASWsmmlQiKMWJizfRp/9QEigTBEEQRCuQmWUVY29vj27dPUixr05CFdKhSQpsw5RVgKrNPZ4TnuObrT+Sa9pKzak+ru7nrqCwGOeu/okhQWPQtx+ZzSfaZsGCBVahoaGWQM2/a7q6uhI7OzvR4MGDBYsXL86xs7NrXY9EFWVkZOTx8ccf523bti2zNfsnJSVxXF1dex45cuRpcHBwCQCsWLHCvG/fvhWjRo0qVexoNVNzrhFFUd4bNmxIXb58eZ6iX18kElEbN240O3z4MD89PZ3D5XKltra2olGjRhV//fXX2QCQkJCgtX//fpPly5fn8Pn8lqcYKtjixYstb926pZeQkKBTXl7OSExMvOfi4lIlv43877q8kydPPpk4caKg40arOkiwrIKGvz0S323dCHeXYpgYGyp7OEQbqUI6NEmBbVjw5GBEXjfBoavH4WqWBU/Hakz1e53ZIZHWzNQm5VohYPgkBAUEtvk1X/d45kB7Ugt6PJ9MwlS/alDiEnJNW6m51ccDhk9WyLVWhty8Apy/fgsjx06Gp2fzPl8E0RRdXV3JuXPnngBAcXExMzY2Vnv//v2mhw4d4l+4cOHJwIEDK5Q9RlVhZ2dXfePGjUQPDw+h7LEdO3ZYVFRU5JFguXP4+OOP7c6dO2c8b968rH79+pUXFRUxo6Ojda9evWooC5YfPHjADQ0NtZwxY0a+KgTLBw8eNLW3txf5+fkJbt682WCAIf+7LtO7d29hQ9t3diRYVkGk2FfbqOKsUX0BGVPuS7pESiMuma3QgIxovo6efVelHs+a5MixI8h5fBIh/WQ3rWpfTwaDgo+zGD7Oafg1ehcKCwvUKo2dpmk8fpaCP/6+j3cmfQB3d3dlD4lQIJFIRG34bovZ7w/+MapiSBgcKVM6yK1P8Yr5S3K0tLTopo/QNiwWix46dOirO74TJkwQLFy4MK9///4uISEhjsnJyfdZLPK1EgB4PF6tc0XUJpVKIRQKKW1t7Xb/3LaH0tJSxsmTJ02WLl2asW7duhzZ41OnTi2WSqXt9rplZWWUrq5uq89ZZmZmApPJxNGjRw0aC5br/q5rOrJmWUX5+fWFhKWDpKfPlT0UtRJ5/Rq+XDwNT26tw4Re8Zjo8wLv+mZios8LTOgVjye31mPxok8Ref1ah48tKCAQ32z9Ed0GrMSZBA+cirXHyX+scCrWHmcTesNlwEp8s3UvCZSVRDZTu2HdVqzfuBcbNu/H+o17sX7dNwq/wSLf41lc2rybte3R41mTyFcfb47B7uXISjyhlL8VLSWRSHD/0WMcPHkF95Pz8f7HM0ig3MmIRCJqzCeTnS/rPLGRTuqqw5roypNO6qpzRe+Z1ZhPJjuLRCKl3FXn8/mSr7/+Oj0tLU3r3Llz+rLHKyoqqJkzZ9pYWFj04nA4Xi4uLm7Hjx+v1d7B2tq65/Tp022WL19uYWpq2ktPT6/3tGnTbKRSKY4fP27g7OzsrqOj4zls2DCnvLw8pmw/gUDA+PDDD+0cHBx68Hg8T2tr654ffPCBXWFhYa3vtBRFea9bt85szpw51kZGRh7GxsYeH3zwgV1lZWWtc3XlyhVdFxcXNy0tLS93d/fu169f12nOew8NDeU7Ozu7c7lcLyMjI48+ffq4xMbGcoGaNGyKoryPHj1qIHuvxcXFrNDQUEuKorwpivKOiIjQA2p+f5cvX25hZ2fXg8PheDk4OPT4/vvvTeRfKzIyUtfb29tFV1fXU1dX19PV1dXtf//7n1Fj4ysrK6NmzpxpY2Vl1ZPD4XhZW1v3/Oyzz6xlz4vFYixYsMDK0tKyJ4fD8XJ2dnbfvXu3sez57du3m3A4HK/8/Hym/HFjY2O5FEV5nz9/Xk/22KFDhwx79OjRXUtLy4vP53vMnDnTRv4zuWDBAisjIyOPyMhI3R49enTncrleP/30k5HsvfXp08eFx+N5Ghoa9n7vvffsi4qKal3L1l4jAKiqqmJ8/PHHtgYGBr319PR6T5061VYoFFIAkJOTw9TS0vKqe76lUimsra17fvrppzb1HbO0tJQhFospCwuLN+5cy7oNRERE6E2ZMsUZAFxdXXtSFOVtbW39qsl9VFQUr1+/ft14PJ6nvr5+7zFjxnRJS0t7dbdJ9hnatWuX8TvvvOOgp6fXOzAwsKts3FOmTLE3MTHx0NLS8vL09HS9efNmk+eEyWQ2tQlRD3ILUEXJin0d3h8OJwc7sNnkUjVFHWaNSOosAdTu8fztzTswGNe/yX1e93imFNLjWZPIVx9viSE9ynE48gQChwWoZIZPdbUY9x4m4c7D5zC3dsDEKZ+gS5cuKjlWom02fLfFrKCfvj7PgV/rcZ69CVUA6G34bovZ2iUrcxrYvV2NHDmylMlk0lFRUbqyNY0jR450io+P11myZElm165dRcePHzcKCQlxtrW1fdi/f/9K2b7nz5839vDwKN+1a1dKTEyM9pYtW6ylUil1+/Zt3ZUrV2ZUVFQwlixZYjdv3jzrI0eOpAJAWVkZQyKRYPXq1RlmZmbVL1684GzdutVyzJgxTn/99Vet1NGdO3ea9+/fv/THH398fvfuXd7GjRtt7O3tRevXr88BgJSUFPb48eO79urVq3z//v3PMjIy2B999JGjUChsdDLpypUruosXL7ZbvHhxpr+/f3lJSQkjKipKt6ioqN5o5MSJE0+HDx/u8vbbbxdNnz49HwA8PT0rAeCjjz6yO336tMmCBQsyfXx8KiIjI/W/+OILBz6fLw4ODi4pLCxkTJw40TkgIKB4xYoVWTRNIz4+ntfQawE1wV5QUJDz3bt3defPn5/Zp0+firS0NM5ff/2lK9tm/vz51rt27TJfsGBBlp+fX/mpU6eMZs2a1YWiKMyYMaPw/fffL168eLH94cOHDefNm1cg2+/QoUPGxsbG4pEjR5YCwI8//mg0Y8YMx+Dg4Ly1a9dmPHnyRGv9+vXWUqkUe/bsSZftJxQKGZ9++qnD3Llzs11dXUV2dnZV165d0xk9enS3gICA4v379yfn5+cz16xZYxMcHMy8evVqcluukfxnwNPTs3zv3r3J9+/f523atMmay+XS4eHh6ebm5pLAwMCin3/+mf/555+/eo+XLl3Sy8zM5EyfPr2gvmNaWVmJLSwsqjZt2mSlq6srHTNmjMDIyKjWlHL//v3LV61alb527VqbAwcOPLO2tq7mcrlSAMjMzGQFBQW5ODk5Cffs2fO8tLSUsWbNGpuhQ4d2S0hIeMTlcl/NHq9atcpm+PDhxQcPHkxmMpl0ZWUlNXjw4G4CgYC1Zs2adAsLi+pdu3aZjh49utujR4/uKaJ+QGlpKcvIyMijtLSU2bVrV+HSpUszp06dWtzW46orEoGpMHt7e+gaGKGwqBjmZvymd9BgrZk1unn/BCKvm5CZXKLDKbvHs6aRrz7eUi6mmfgz6rZK3eCSSqX4J+4eEhJT4NjNHR/+ZzZsbOqdACE6id8f/GPEm9S13ud49ibU7yf+MQKglGCZx+PRRkZG4pycHBYAnD9/Xu+3334ziIiISBo5cmQZAIwfP17g4+PDXbduneWVK1eSZftqaWlJL1++/IzFYmHixImCy5cvGx04cMDs/v3791xdXasAID4+XvvkyZMmAFKBmkDl8OHDqbJjVFdXw9nZWRQUFOT65MkTTteuXV8VLLK2tq46ffp0ClCTNh4dHa178eJFI1mwvGnTJnMtLS36xo0bT/X09KQAoKOjI509e3aXxt5zdHS0jouLS+XGjRuzZY+FhISUNLS9v79/JYvFoq2travl01vv37+vdfjwYdPt27enyIK1cePGlWZnZ7M3bNhgFRwcXHL//n1uWVkZc9++famygGz8+PGNFlo6e/asflRUlP6hQ4eeyo9rzpw5BUDNzOSPP/5oNm/evKwtW7Zkyc5PZmYme+PGjVYzZswoNDExkQwcOLDk1KlTxvLB8rlz54xHjhxZxGKxIJVKsWrVKpt33nmn4NChQ6+uiZaWlnTp0qX2a9euzbKwsJAANcHyxo0b099///1XQZe3t7eDp6dn2aVLl159JmxtbavHjh3bLSYmhtunTx9ha6+RjI6OjuTy5cvPmEwmJk2aJBCJRFRYWJjl2rVrs8zNzSX/+c9/8sePH9/t4cOHHDc3tyoA+N///mfi7u5e4evrW9nQccPDw1M++ugjx48++siJwWCge/fuFePHjy9cvnx5LpfLpY2NjaWurq5CAPDz86uQL6S1fv16cwC4efPmY2NjYykAdO/eXThkyJDuBw4cMJoxY0ahbNvevXuX//zzz6/ObWhoKP/Jkye8uLi4Bz179hQBwNixYwWOjo49NmzYYBEeHv7qBkVrODs7C1esWJHu5eVVUVpayti7d6/pRx995ATgmaYGzCQNW8XxuNoQkTZSjZLNGrWk2jRQM2t0I/IEaFotl8wQSkbTNH7/KwpfrVyEFcum4aslH9X8d+Ui/P5XVKOfK/mWYjO8BCjbcxESUf03g2U9nmd613w3UkRLMU1zLfIMvBxbd7Pd07EakVdPK3hEbZOemYPkTAFmzFmIkPc/JIGyBqhiSBr9vtbU8+2NpulX6QzXrl3T5/P51YGBgWXV1dWQ/e+tt94SJCQk1EoV7devX6n8OmcHBwehlZWVSBYoAzVf3ouKiliy1FkA2LFjh3H37t3dtLW1PTkcjndQUJArADx48EBL/vhDhgypFVS6uroKs7OzObKf4+LidAYMGCCQBWEA8MEHHxQ19X69vLwqHj16pCMinEAAACAASURBVP2f//zH9sqVK7ryY2uJK1eu6DEYDISEhBTJn6shQ4aUJiYm8sRiMbp37y7S1taWTpgwwfHQoUOGddOi63Pjxg09AwMDSUMBfFxcHE8oFDKmTJlS671OnDix6MWLF1oZGRksAHj33XeLoqOj9bKyslhATerwixcvtKZMmVIIAPfu3dPKysriTJo0qVB+/CNGjCgViUTUv//+y5Mdm6IoTJw48dV4SktLGfHx8brjx4+v9d4DAwPLWCwWffv2bZ2XY23VNZIZPnx4sXz68eTJk4uFQiEjLi6OBwBjxowptbS0rNq7dy8fAIqKihiRkZFGISEh+Y0dd8yYMaXPnj27Fx4envzuu+/mFxUVsdatW2fj7+/fTSJpvJZXXFyczsCBAwWyQBkABg8eXGFlZVUlP/sPACNGjKh1DW/evKnn7u5e4erqKpKdMwDo27dv2d27d7WbdVIaMXv27ML//ve/OWPGjCkNCQkpuXnz5lMPD4/yjRs3tq4PaidAZpZVnBaXh6qqqqY31GCdbdaIUH1trahct6XYl545CA8/AYGtA3hDPMHS50IsEKLy5h3op6VgibdAYT2e25MqFtcDXlcfbw0mgwIlbnDCSCkKi4rh0MUJZmZmyh4K0UE4UmajZYM4Umb7VRVqQkVFBVVcXMw0NzcXA0BBQQErPz+fzeFw3uh/WXfNpIGBQa2ogsPh0Pr6+m88RtM0RCIRxeVy6YMHDxrOmTOnS0hISN6aNWvS+Xy+JCMjg/3hhx86VVZW1rppYGhoKK57rKqqqld/DPLy8lhubm61qnjr6urS2trajZ7PcePGlW7fvj1l9+7dZj/99JOZtra2dNy4cQU7d+5M19fXb/a1yM/PZ0kkEpiYmNRbtv7FixdsJyen6vPnzz9es2aN1SeffOIolUoxYMAAwc6dO1NlM6F1FRYWskxNTRucaUlPT2cDgLW1da1tLC0tq1+Oi2ltbS0ODg4unj9/Pn348GHDRYsW5R8+fNjYzMysOjAwsAwAZNkEkydPrjft4cWLF69uTOjr60vk04vz8/OZEokES5cutVu6dKld3X3T0tI4QOuvkYyZmVmtz4CVlVW1/DlgMBgIDg7OP3r0KP/bb7/N3L9/v7FEIqE+/fTTwvqOJ8/IyEg6ffr0ounTpxdJpVIsWLDAavv27ZZHjx41lJ9Brys3N5ft4uLyxqw1n8+vLi4urvVLUndddEFBASs+Pl6nvt8vW1tbUVNjbikGg4HRo0cXbdiwwUYsFkMTi/hp3jtWM1weDyISLDdK1rO27hrl5vB0rMaZq6dJsEw0W9218dlFNCIfc1AiZMCAK0VQN1Gz1sYrq8dze1HllkxtrR6uatXH8wtL4ODmquxhEB3oLXffossvnmrz7E3e+Ieu8kUB/ba7b7Nn2hQtIiJCTyKRUP7+/mUAYGRkJDYzM6s+efLk0/Z4vZMnTxr16tWrXD7t99KlS7qN7dMQU1NTcX5+fq2KiWVlZVRFRUWTM/Wff/55weeff16QmZnJOnz4sOGqVats9fX1JTt37sxo7usbGxtLmEwmff369cT6ii9ZW1uLAWDYsGHlw4YNe1JWVkZduHBBf9myZbbBwcGO8fHxiQ0cV5yXl9dgJUgbG5tqAMjMzGTL0qQBICsriw0ApqamEgAwMDCQ/t///V/J6dOnjRctWpR/4cIFo9GjRxfKiljJ2iFt3br1RZ8+fd5oHdatW7dXwRtFUbXSrUxMTCQURWHBggWZY8aMeeOOpJ2dXfXLsbT6GgFAbm5urVgnMzOTLX8OAGDmzJn5oaGhVhEREXqHDh0yCQgIKJadg+ZiMBhYvXp19vbt2y0fPXrUaJsLMzOz6rrvCQDy8/PZvXr1qnUe695gNjIykri7u1fs3LnzRd395W9GKJqq3qTvCCRYVnH2Do64H/sb3F3rX6tEdL5ZI0J1ya+NzyuRIjxOHyV2DtCe5AmWHhcFpcKagl13UzDDS9Dk2nhl9HhuD6peXK+t1cNVqfq4VCrF8/RcDB9PgmVN8tUXX+b+/clk/QJATz5grnxRQJtElZSu3L9UKeuV8/PzmStWrLCxs7MTjR07VgAAAQEBpXv37rXQ09OTenp6Krw3q1AoZHA4nFpBwaFDh0wa2r4xnp6e5cePH+eXlpYyZGm+P//8c6NVpuuysrISL168OP/8+fNGiYmJvIa2Y7PZdN107eHDhwuWLVtGFRcXs955551G1yEDNTOqU6ZMKbl37x7v+++/t2xou4CAgNLdu3dbHD161CA4OPiNLzleXl6VXC5XeuTIESMvL68s2eOnT582sre3F1lZWb2ajZ08eXLhp59+6nTkyBGD9PR0rZCQkFczrh4eHkIzM7PqlJQUrYULFzaatlyXvr6+1MPDo/zx48fcQYMGZTW0XVuv0dWrVw0lEkmG7GbE8ePHDblcrtTLy+vVzK6zs3O1v7+/YM2aNVZxcXG6p06detLgAVFTnb60tJRRt3fygwcPuABgbm5eDQCylm51A3tvb+/ygwcPmhYVFTFk69B///137czMTM6AAQPKGnvtwYMHC9auXWvj5ORUJbuZ0p6kUikiIiKMXFxcKjRxVhkgwbLK8/DwQOSlcygvr4COTpuXInRKnW3WiFBN8hWV80qk2HLHHLozRsNArjAXW58Hg3H9IRH5Ysuei/jSM6fJisod3eNZ0ZRZXK+5ad+y6uOtuakmkdIqVX08LSMLRnwLmJi0KjYg1JSWlhZ94X/Hn274bovZ7yde91l+2923aOX+pTlsdvvf0BGLxdQvv/yiAwACgYAZExOjvX//ftPKykrGhQsXnsi+SI8bN04wYMCAkhEjRnSbO3duVs+ePYUlJSXMO3fu8IRCIWPHjh3Nnnmtz9ChQwXLli2zW7JkiUW/fv3KIyIiDP766y+9pvd809KlS3MOHjxoGhAQ4Dxv3rycjIwMdmhoqKWsanFD5s+fb1VYWMgcPHhwqampqfjff//VjomJ0fvqq68aLK7k6OgovHHjhkFERIRAX19f0rNnT6GHh4doypQpeR9//LFjbGxstq+vb3llZSXj/v373CdPnnCPHz/+4tixYwY//fQTf8yYMUUODg5VaWlpnIMHD5r27du3weD65TUQTJs2zfHRo0eZPj4+FRkZGew///xT78iRIy/Mzc0ln376ae727dstWSwW7evrW3Hq1CnD33//3SA8PDxZ/liTJk0qmTNnjvSLL76wt7a2rho8ePCrmU8mk4n169enzZ49u4tAIGC8/fbbAi0tLenTp0+1Ll68aBgREZEsv9a4rk2bNqWPHj2627hx4zBx4sQifX19SUpKCufKlSsGmzdvzujVq5eotddIpry8nPn22287TZs2Le/evXu80NBQq6lTp+aam5vXCnQ//vjj/E8++cTR3Ny8ety4cY3euCgsLGS6urr2mDhxYsGQIUMEhoaGkkePHnFDQ0MtzczMqkNCQooBoEePHkIA+OGHH0xDQkIKdXV1pb6+vpVfffVVzsGDB02HDBnSbeHChdmyathdu3atnDp1aqNZIrNnzy743//+Zzpo0CCXzz//PNvZ2bkqPz+f+ffff+tYWFhUr169OrehfS9duqSbm5vLjo2N1QaAc+fOGZiZmYl79epV6e3tLQSAPn36uIwdO7bIzc1NWFZWxti3bx8/Pj5e5+eff26XTBF1QIJlFcflctGztzceJD2Dr1fPpnfQQJ1p1ohQXfJr48Pj9KE7Y3SDFayZWizoTh+N8PATWDG4rMm18eraUkyZLZlakvYtX328pe4ks1Wq+njS01T09iIF3jSRlpYW/bI9lFJmkcvKypjDhg1zpSgKOjo6Ent7e9GECRMKFy9enCPfrobBYODKlSvPli9fbrl7927zrKwsjoGBgaR79+4Vn332WYNf5Jtr0aJFecnJyVp79+4137FjB8Pf319w4MCB50OHDm1xukWXLl2qT548+XTBggW2U6dOdXJ0dBT+9NNPyZMnT3ZubD9fX9/ysLAw8wsXLhhXVFQwLS0tqxYuXJi5YsWKBt/fN998kz5nzhy7d99911koFDIuXrz4eNSoUaUHDx5MXb9+vfDgwYOm33zzjZWOjo7E2dlZOHXq1HygpkoyRVH0unXrbAoLC1lGRkbioUOHFoeGhjZ40+HlNXi6YMEC6/DwcPNNmzaxTE1Nq8ePH/9qVjg0NDSDxWLR+/fvN/v2229ZdnZ2op07dz6fPn16rWBNW1ubHjp0aPGFCxeMZ8+enV33taZNm1ZkYGAg2bx5s+WJEyf4TCYTNjY2osDAwOKmAtqgoKCyq1evJq1evdpq5syZXSQSCaysrKoGDx5cIps1be01kpk9e3ZOcnKy1ieffOJI0zQmT56cHxYW9sa5mzx5cvG0adPoSZMm5TfVj9jIyEjy2WefZV+7ds3g3LlzxuXl5UwzM7Oqt956q2TdunVZJiYmEgDo1q1b1apVq9L37t1rduDAATNzc/OqjIyMe1ZWVuKrV68mLVy40HbatGldWCwW/X//938lO3fuTGsqlVpbW5v+888/Hy9atMhq06ZN1gUFBSxjY2Oxh4dH+TvvvNNoteo1a9ZYx8TEvFqyIFsrPn/+/Cxvb+9MAOjSpYtw9+7d5vn5+WyKomg3N7eKY8eOPZk0aVKTmQ+dFaWulYB9fHzo2NhYZQ+jQ6Snp+PwT7swddLbKju7pExfrVyECb3iWz1rdCbBAxvWbW2HkRGdiexzlltC49vCXs3qjSw4G4UFJgkwNaA65efs97+i8OTWulYFobFPWeg2YGWrbhDI0r6bM5v96wMdmHebhLiYG3i/f1qLX+twtB22fLNXJf72isVi/Hj0Er5YtBwGBqoz262qKIr6l6ZpH2WPIz4+PsXDw6NFKaoEQXSs48ePGwQHBzsnJCTc79Gjh8ILZRGqLT4+nu/h4eFQ33OkdZQasLa2hraeMVLTW1fxubMLDBqPuOTWJUmo2qwRobpka+MjH2tBe0i9hUvfwBviicjHWp12bbwyWjK1Ju07O+kEzK3d8OsDnaZ3kKNq1cdTUjNgZWNPAmWCIAgFSUlJYV+6dEl35cqV1m+99VYJCZSJukiwrAYoioJvvwG4l5jc9MYaSL5nbUuRnrVEc8nWtgtEDLD0Gi10+QpLnwuBiKq1f2fS0cX12tJTPTfzEcy7vdvsgFkVq48/Tk6Dh6fSJ0oJgiA6jbCwMNOxY8e6aGlp0bt27Upteg9C05BgWU14eHggI6cY5RVvtGXTeK961qr5rBGh2mRr2/W1pBCXNq/Aq1gghH5NMcxOuTa+o4vrtbWnuo1tF7j1m4VDUbaIfcqCRFp7GZJESiPmKQuHouzg3n9Wh1bsbkpVVTVSswrg7u6u7KEQBEF0Gtu2bcsUi8X/3rt375Grqyvp1Uq8gRT4UhNcLheWVjYoKCyGjnaDnQk0Vt2etU1RxVkjZWtuZWFNJauoHNRNVNMeqhlrlitv3sHwbiJIpJRKVVRWlI4urqeInuob1m1Vy+rjz1LSYNfFGTo6LbspSBAEQRBE65FgWY2wORxIJC0vpKMp6utZy5RLEZVIacQls1W+Z60ytKSysKaeN/mKygZ3UyAR+TZYDRsAJCIx9NNSYO7MQOxTVqdcG9/RLZkUlfatjtXHnySnwWfgcGUPgyAIgiA0CgmW1QiLxYZYTILlxqh7z1plkFUWDuknm5GvfW4YDAo+zmL4OKfh1+hdKCwsUKn01I4yyL8fLp61go9zGmZ4CbBlz0XoTq+/fZREJEbZnotY4i0AwEBSnhX+0wnXxnd0SyZV76neXtkZQpEIGXnF+KB793YYNUEQBEEQDSHBshphc9gQi1tXeVaTqOOskbK0prLwzfsnEHndRONmmF+tjY/ehcHu5fjSMwfh4ScgsHUAb4gnWPpciAVCVN68A/20FCzxFoCvz+jUa+PlbyC0VGtuIKhyT/X2zM548uwFurq4gcttXmE5ovPb8t1W0y+/WJSn7HEQBEF0dqTAlxphs9gQkzRsQkHaUln4RuQJqGuP9rYICgiEhcsk/PpAB6YGDKwYXIYFJglwPHkMhjsPwPHkMSwwScCKwWWvAuXOvDa+o4vrydK+W6M1ad/NdeTYETyM3oWQfqnwcZa8kSouy854v38aHkbvwtHjR1t0/CfPM9CbVMEmXsrLy2N+vXmTTX5+PlPZYyEIgujsyMyyGmFztFAqIDeSCcVoa2XhP6Nua+TsfX1r46f6vU7vlUgpxDxl1Vob35mLp3Vkcb2OTvtujvbOziivqEReURm6devW1qESncTRMyeMLN7zoY6eOWH4+fTZBcoeD0EQRGdGgmU10q+/P8J3fAdHextYmJsqeziEmlNEZWFNDJaBlq2N14TiaR1VXK+j076bIsvOeL9/y7MzDkeeQOCwgCZvkiQ9fY7u7r3AZne+1mNE69yI+dOAP6Y7df3CHyRYJgiCaGckWFYjfD4f77w7BedOHMR74wJICymiTRRVWVhTNWdtfN3iadlFNCIfc1AiZMCAK0VQN1GnKZ7WEcX16q4bb672WjfeEdkZT59nImjse616DaLzkUgkyKkq1uIwrJBbVawllUrBYHTMirqwsDCT8PBws5SUFC6TyaStra2r/P39BT/++GM6AGRkZLC+/fZbsxkzZuS7uLgovV/tpk2bTK9evWpw9+5d3ZKSEubFixcfjxo1qlR+m7CwMJN58+Y51N138+bNqV9++SVJ5SMIggTL6sbNzQ3p/Qbjyi9RGD9ycIf9I0l0PqpeWbjB11WTlGb59Ny8EinC4/RRYucA7UmeYOlxUVAqrOnXfDcFM7wEnaJ4WkcU11OlnurtnZ1B0zRyCorRpUuXNoyS6Eyio6N5IhsehwNAaMPjREdH8/z9/Svb+3WXLVtm8c0331jPnDkze+jQoRmVlZVUbGyszqlTp4wBpANAZmYmKzQ01HLIkCGlqhAsHz161ISiKAwcOLAkIiLCuLFtL1y48FhbW1sq+9nV1VXU/iMkCEIdkGBZDQ0LCEBGeir++vsOBvXzVvZwCDWlypWFG6IuKc3y6bl5JVJsuWMO3RmjYSDXZoqtz4PBuP6QiHyxZc9FfOmZ06L0XE2mKj3V2zs7g6IoaHO5KC8vh6GhYateh+hcDp4/zud5WzIBgNfLknnw/HG+v79/y9cltNC+ffvMgoOD83744YcM2WNTpkwp2bp1a+tSK5qhrKyM0tXVbXUlybi4uEQmk4mYmBhuU8HyoEGDyg0MDKSNbUMQhGYiwbIaYjAYmBwcgh1hoTB/+hwuzmTWgWg5WWXh1nzZb8/Kwg1RVD9omqZREHcfJl492i0glU/PDY/Th+6M+vsxAwBTiwXd6aMRHn4CKwaXaXTxtJZQhZ7qHZGdoa/HQ1FREQmWNcSGrZvMzt28bGJkbVpv4FYkLmdzdd0AACxdLuLyHuoHTpvgUu+2GXmMcUPeLvhq0dLcto6rtLSUaWFh8cYHVpbdlpSUxPH19XUHgNGjR7+qRkfT9L8AkJiYyJkzZ47t7du39Wmahp+fX2lYWFhajx49Xs3gUhTlvXr16vTU1FTO2bNnjfX09CSpqan3KyoqqAULFlifO3fOuLCwkNWlSxfh2rVrMyZPntzo3SYmkxQLJwii7UiwrKa0tbUR8uHH2Bf+PUyMDcE3NlL2kAg1o4qVhRuiyIrDZSnpiF8fBt/Q1dBzsGmP4b5Kz80uolFi51BrRrk+TC0WBLYOyC5K0PjiaS2h7J7qHZGdoa+jjaKiIpKKrSG+nLcwN6con/1X0SMT7aCubIpZe6lV3U7b3Alu3Lo52LREioqrT6oHePoWfDlvYZsDZQBwc3Or2Ldvn5mdnV3Vu+++W2xhYVHrHw47O7vqXbt2PZ81a1aXjRs3pvbp06dC9lxlZSU1bNgwFxaLRYeGhqaw2Wx6w4YN1kOGDHG5d+/eA3Nz81fH2rFjh7mvr2/Z3r17n0skEgoARo4c6RQfH6+zZMmSzK5du4qOHz9uFBIS4mxra/uwf//+CklBd3R07FlSUsKysbERffbZZ9mLFy/OV8RxCYJQfyRYVmNWVlYYOfZdXLp8GlPeCQKbTS4n0XyqVlm4IYquOJxzKwYAkHsr5o1gWVHroWXpuZGPOdCe5Nms8fKGeCLyZBKm+lVrfPE0ddER2Rl6ulwUFpCCx5qCzWYjbMPWjL9j/ylcsHmlvWiIlTbX1qjZHzBhaiHN+TWrYteSdS/8fHwVtpZ5586dqRMmTHCeO3euw7x58+Do6CgcNWpU0apVq7KNjY2lPB6P9vb2rgCAHj16CIcOHfrqD/b333/Pz87O5iQkJNxzc3OrAoCBAweWu7q69vzuu+9MN27cmC3bls/niy9dupQs+/n8+fN6v/32m0FERETSyJEjywBg/PjxAh8fH+66dessr1y5kow2sLa2rl68eHFm3759y8ViMY4ePWr85Zdf2ldUVDBWr16tkBsNBEGoNxJdqTkvLy/8G3MbaRlZcHSwVfZwVIa6FIFSJlWrLNyQtlYc/uOPv9CNZoEW10xeZP1yCwCQ+cst8F62YKNYTCRUFuPGL6cVsh5all4rEDHA0qs7F1Q/lj4XAhFVa39CtXVEdoahvh5yC8h3dk3j5+Nb+duRiMSF/11m/de9+meZ5b2aTTbuXvDtkb0Zim415ufnV/nkyZP7Z8+e1b969arBrVu39LZv32557tw54/j4+IeNrfeNiYnR6d69e4UsUAYAJyenai8vr7Lo6Ghd+W0DAgKK5X++du2aPp/Prw4MDCyrrn79d/Gtt94SHDt2jN/W9zVhwgTBhAkTBLKfJ02aJBg5ciQjNDTUasWKFbkklZsgCBIsdwJdXboj7XkCCZZfUpciUKpAlSoLN6StFYcvXD0LZi4TosJiMDgc0NKa73TVpeVI2nsU0qoqSHgcJDlnIaRfGYC2t3iSpdfqa0mRXyoEW7/pNm9igRD6WnSt/QnV1hHZGQYGeniU+qI1wyPUnPws86xty510pvTSamjb8mP3RLsXbnymyNnkung8Hj1lypSSKVOmlABAaGgof8GCBfZhYWH8lStXNnhHJycnh21qavrGHUBTU1Nxeno6R/4xc3NzsfzPBQUFrPz8fDaHw3mjmml7BbITJkwounz5slFSUhJHPsAnCEIzkWC5E+jSxRF3/v5d2cNQCYoqAqVJVKWycEPaWnFYglL0DduOh9//hIK7D0GLa76L0WIxKC0OpF2s8EjvHt7qVaawFk+y9NygbqKafcf1b3KslTfvYHg3ESRSqsOLpxGt0xHZGYYG+igsIMsnNZmjfZcq6LIb/bAw9DiUk4NjhwZ28+fPz1+zZo1NYmJio+kz5ubm1UlJSW9sk5eXxzI0NKwVHFMUVav6tZGRkdjMzKz65MmTTxUz6uYjrTkJggAA8pdAjVVWViI1NRU5OTnILxRAVKXZN0BbUwQqK/EEIq9fa+eRqb6ggEB8s/VHdBuwEmcSPHAq1h4n/7HCqVh7nE3oDZcBK/HN1r1KmYlXRMVhlo42ei6ZDbaudq3n2Lo6iET6q0B5yx1zSGZMgsG4/mDr80BR1OsWTzMmYcsdc+SVSDGkRzluRJ4ATdff1SQwaDziklmwMGLAIDUFEpG43u1kJCIx9NNSYG7E6PDiaUTbBAUEwsJlEn59oNOs7VuanaHN46K6SgShUNiWYRJq7OiZE0bowec0tg3tzuccPXOi3UqmZ2RkvDG5kpmZySorK2PKZoO1tGpSY4RCYa3A3tfXt+zhw4c6iYmJr97D8+fP2Xfu3NHt1+9lOk8DAgICSgsKCth6enrSQYMGVdT9n2LeXW1nzpwxMjQ0FHft2lWzv1QRBAGAzCyrrUePHuHIwX0wMdKDkb4O/L1dwWZp7uVUdBEoTaTsysINUVTFYWFOPkRFAjA4bNBSKSgGA6LCYvSwzQGg2BZP8um5M7wE2LLnInSn139siUiMsj0XscRbAIDRocXTCMVoz+wMiqKgr6uN4uJiWFhYtMfwCRV3I+ZPA+2xlq9+FqYW0uKbL6pYQx04suJf2o58XD//h+Hn02e3SzW4Xr16uQcGBhYHBgYKLCwsqpOTkzlhYWEWXC5XOn369HwAcHZ2ruJyudIDBw6YGBoaSjgcDj1o0KCKOXPmFGzfvt1yxIgRXb/66qtMFotFf/3111aGhobiL774Iq+x1x03bpxgwIABJSNGjOg2d+7crJ49ewpLSkqYd+7c4QmFQsaOHTsyGtr3jz/+0H727JlWamoqGwB+/fVX3by8PJaTk5NIFmgHBQU5+fj4lHt4eFRIJBLq+PHjxpcuXTJav359GlmvTBAEQIJltWVqagquFhvvjR2m8UEe0PYiUKSvrepSVMXhnKhYQCqF1dBBcPpgAp4ePI2Mq7+hK7SQXSRUaIunuum5X3rmIDz8BAS2DuAN8QRLnwuxQIjKm3egn5aCJd4C8PUZHV48TR2pavG+9uz7rK9b02uZBMuaRyKRIKeqWItDWdUq4rX5512ZS9avtJIv/pVbVawllUrbJX140aJFmREREYZLliyxLSkpYfH5/GovL6+yY8eOJbu6ulYBgLa2Nr1t27YXmzdvthoxYoSLWCymaJr+l8fj0deuXUuaO3eu7bx58xxkfZZPnz79TL5tVH0YDAauXLnybPny5Za7d+82z8rK4hgYGEi6d+9e8dlnnzVa+W779u1mZ86cMZH9vG3bNisAGD9+fMGgQYNSAKBr167Cw4cP87dt28amaZpycnKq/OGHH55/9tlnhW0+aQRBdApUQ2mEqs7Hx4eOjY1V9jCUhqZpbPtmIwL9e8LM1KTpHTq5r1YuwoRe8a0OqM4keGDDuq3tMLL6qeoXflX0+19ReHJrXasqDsc+ZaHbgJUY5N8PBXceAKBh4tnj1fPbPp+GAd1ycDRNguRJ7zWrEFd1SSUcTx7DVL9qnIq1x/qNexvcN9PSZwAAIABJREFU9ujxo8hOel08LbtIisjHWhCIKOhr1axptjCq+WIrS8/V9DX0jZEv3uflWE/xvmQ2EnM7X/G+327FwKabD/z9/ZU9FLVCUdS/NE37KHsc8fHxKR4eHq1aeP7XX3/x5lz+1oVtY8Dg/JpVsa1OS6jbMX/zFm5eaV811Fq7Oq1YumPkoiR/f/92K/JFEATRGcXHx/M9PDwc6nuOzCyrKYqi4OrWC89fpJFgGW0vAtWRfW1Jte6WUVTFYRNP9zeeL9CuBsdKCMFTrXZp8VRfeu5Uv9f7SKQUYp6ylFY8TZ1ocvE+fT0dUuRLQ+0/c8RUnFdCD6KccuprCdW3j1/lb0cvJS787zLrm2kv+PvPHOH7+/u3/I8lQRAEUS8SLKsxK2trJKQnKnsYKkERRaA6giZ/4W+t9qw43BEtntozPVdTtKZ4X1MVy9WJiZEh4pJI+yhNZME3q9o35aPHjbWEkm8xdfHaZVJKnyAIQoFIsKzG+Hw+ikvbpRik2lFUEaj2pOlf+NuivfpBd1SLJ1UtnqYOSPE+wNrSDJd//QcVFRXQ1tZuegei01i//L/Zzd3Wz8e3sj37LBMEQWgi0jpKjZmYmKCopKzB9jWaRBb0tIZ8Eaj2IvvC35KZUQBNtijSJMGTg+HWbxYORdki9ikLkjrXWyKlEfOUhUNRdnDvP6tZM/KkxZPqU0TxPnXHYrFgbW6MJ0+eKHsoBEEQBKFRSLCsxng8HpgsNioqSf9NWdDTGh0R9JAv/Iqh6H7Qg/z7ITHXCgAww0uAsj0XGwyYZS2eZnoLANSshx5IWjy1u2uRZ+Dl2PhNjIZ4OlYj8uppBY9IORxszJH46IGyh0G0jlQqlap3egNBEEQn9fLvs7Sh50kathqjKAp8U3MUFZdAR7vptZadmaKKQLWXa5FnMKGXGHXXKDdHYy2KWkudq3ErMqW5s7Z4UufrW5c6Fe9rT7o62oi+mwCaptXm2hE1KIrKrqysNNDR0SEp0gRBECqmsrKSS1FUg0teSLCs5szMzFFYVAIbK83uv9meRaAUQZW+8JNq3LXVXQ+9YnAZsosSEHkyqXaLJ2cGAEaz10MrS2e7vupSvK890DSNlNQM/JuQhDIRjYDhI5U9JKIVxGLxmpSUlB8cHBzA4/GEDAaDrKshCIJQMqlUSlVWVnJTUlI4YrF4TUPbkWBZzZmaWyIn+a6yh6ES2qsIlCKoyhd+Uo27fp2lxVNnvL7qULxP0SQSCRKfJOPO/WfgaBtg4NDR6NmzJ5hMprKHRrSCl5dXZFxc3Jxnz56tpmnaAmQJHEEQhCqQUhSVLRaL13h5eUU2tBEJltUcn89HUjypiC1TX9DDlJtZk0hpxCWzOzzoUYUv/KQad+PUvcVTZ72+suJ9rcnM6IjifYokqqpCwoPHiH/0HJa2XTB20odwcnJS2c8c0Xwvv4g1+GWMIAiCUE0kWFZzJiYmpH1UHaoY9Cj7C78mtt9pzbpddW3x1Jmvb2DQeMTdegAfZ0mL91WHiuVSqRTpmTl4+jwVT1Ky4erugU9mzIWlpaWyh0YQBEEQGo8Ey2rO2NgYpaUVkEqlYDBIZpeMqgU9yv7Cr4hq3KpyLpujs63bbYqqXN/2KCym6sX7WkMsFiM1PQtPn6cjJSMPRiZm6OHhiRETPGFoaKjs4REEQRAE8RIJltUcm82GqYUVEh8nw83VWdnDIRqg7C/8qlaNuz11xnW7TVGF69teNyg6qnhfe1cQr6qqRvKLNDxLyUBaVgEsre3Rw6MfRk3qDiMjo1YflyAIgiCI9kOC5U5g0nsh2LNzO0z5xjDlGyt7OEQ9lF2tW5WqcbenzrputynKvr7tfYOivYv3tVegX1EpRHJKKp69yEJmbjEcnLqip+8QTOreHbq6us0+DkEQBEEQytFk3i5FUbYURf1KUdQjiqIeUBQ17+XjxhRFXaco6snL/xrJ7bOMoqinFEUlURQVJPe4N0VR914+F0a9jAAoitKiKOr4y8f/pijKQfFvtfMyNzfH2Anv4eL1KFQKRcoeDtGAoIBAWLhMwq8PdJq1vSKrdatKNe72JFu325KbEUDNut0bkSdA0+rbzUWZ17c1NyiyEk8g8vq1Fr1O8ORguPWbhUNRtoh9yoJEWvt6SaQ0Yp6ycCjKDu79ZzU7GD9y7AgeRu9CSL9U+DhL3rjpIAv03++fhofRu3D0+NFGj1daVo64hIc4FXETB09dQ04ZA33/bySWrliDjz7+FH369CGBMkEQBEGoiebMLIsBLKRpOo6iKD0A/1IUdR3ARwB+oWl6E0VRSwEsBbCEoig3AO8BcAdgBeAGRVHdaJqWANgFYDqA2wAuAxgO4AqA/wAoomnamaKo9wBsBjBZkW+0s+vVqxeePn2Mu/cfoZ9Pb2UPh2iAsqp1q0I17vamKut2lUFZ17ejC4spunifojIRKoUi3HuQhOS0HAgqquDm7oEhI/zh7OwMNlv1f3cIgiAIgqhfk8EyTdNZALJe/v9SiqIeAbAGMBbA/73c7ACA3wAsefn4MZqmRQCeUxT1FIAvRVEpAPRpmo4GAIqiDgIYh5pgeSyA/7481ikAP1AURdHqPNWjBJ6e3jh34gD6+Sh7JERjlFGtW9nVuDuCKqzbVRZlXV9l3KBQVPE+RQX6QpEIZy7dhI2jO0ZNCICDgwPph0wQBEEQnUSL1iy/TI/2BPA3APOXgTRoms6iKMrs5WbWqJk5lkl/+Vj1y/9f93HZPmkvjyWmKKoEgAmA/JaMT9PZ2dmhrLIapWXl0NNtXqovoRwdXa1b2dW4O4Ky1+0qk7KurzrfoFBEoN+3jw/OXfkdLj198fbIUSrbfosgCIIgiNZpdrBMUZQugNMAvqBpWtDIl4L6nqAbebyxfeqOYTpq0rhhZ2fX1JA1DpPJRHe3nnj2PBW9e3bv0Ndu70qyRNsouxp3R9CEddkNUdb1VecbFG0N9E9dPoXcwnLYd+1FAmWCIAiC6KSaFSxTFMVGTaB8mKbpMy8fzqEoyvLlrLIlgNyXj6cDsJXb3QZA5svHbep5XH6fdIqiWAAMABTWHQdN03sA7AEAHx8fkqJdj+7uPfHH9fMdGixrWk9bdaSoatxisRjXf/kDf0ffRnlxIWipBBSDCR1DY/j164uAoYPAYimnyL4mrMtuiLKqravzDYq2BvqlRRkws3XBmLHjSKBMEARBEJ1Uk99qX1as3gfgEU3T2+SeugBgKoBNL/97Xu7xIxRFbUNNga+uAP6haVpCUVQpRVF9UZPG/SGA7+scKxrARAA3yXrl1nF0dMTJvCLQNN0hX+A0saetumpL+x2JRILwPT/h3j9RsJLkwUEXrwuTSQFJLo1/j9zGhWOH0NO3P2ZM/7jD121qwrrsxrR3e6X6KOoGhTIyU9oaqDNZDEyY+C4YjCabShAEQRAEoaaaMwXkD+ADAPcoirr78rHlqAmST1AU9R8AqQDeBQCaph9QFHXi/9m78/C2yjNv/N+jI8mWJe+7bCdOHGd3QiDxGgxNcELoQgotDN0gAySBGfpeM9c06btgIDNzvUP6znQGmGYS2oHflEmBAm2gBYLrkrrYkZ2FhOzBcRbvsS3Li7xI5+j5/WE7JGSzpSNr8fdzXVzEss9zbss46NZzP/cN4DhGOmn/1WgnbAB4AsCrAEwYaez1wejjvwDwy9FmYHaMdNMmL5hMJkSYotDX70RMtH/Hk0zVmbahzJtu3M2t7dhS/hxmqY0oigLOONzY0+aCySSg0wEeDzA4KGG6yYiiuA6079uFJw8eRPmWZ5CRnjpp39tUOJd9M5f/fOckt0DGMA6d8cAw+je9EAKdfTrAkILvfOcvcfeq1Tde8Ca0eIMiUJUpvib68QkpTJSJiIjC3Hi6YX+C6x/qWnmda/4RwD9e4/H9ABZe4/EhjCbb5LvUNCs6u7r9mixP9sgY0s5EunE3t7ajfNNmlFi60DDgwgmnCwULJdw7V74qqak74cKeo8OwGowoiGlE+abN2LL1+UlLmKfCuezxWF22CkIAu975TyzK7MQjq67+WR1s6MMfdr8JSZJ8SkB9fYPCZE4cnXE8+ZUpvib6UkSSJnEQERFR8JJCtdp56dKlYv/+/YEOIyj9/ne/g+hvxrJb8/x2jz99UoPPq//eqxfJ++v1mL386ZAd0zNVqKqKJzb8NQoNTTjWPYSkLBVrCm9ejPKBTUHXBRnzEyJhc2di2/aXJq0ke3fFRzjuxbndBSVPel2OHGzN7caORoznOfj4mBlpcx7wOgEVQuBHf/cYvlc88TcofvpeLG6ZqUz8Z1X8hCY7zL78HXagIQL53/4l7lp1j89xkP9IknRACMFhikRE5DXWkIWhtPR0dDn6/HqPj3a/g1tnKl5du2SmG7s/fFvjiEhr23e8glxPExp6XeNOlAFgTaEeCdNUNPS6kOtpwo6XX/VvoJdZXbYKaXMewMfHxjc6zddzu7srPsKmHz2Oz6v/HvcvOoxvLT2Pb+e34FtLz+P+RYfxefU/4Ed/9xh2V3zk1frexDPRoxGtJ9/0Or5LjcXG+XyPqTwShQijNKFEGRipTPnD7jehxZu8pSVFOHnR6tW19Y6ZWFm2xucYiIiIKLgxWQ5DycnJ6O6d2IvQiQrlkTF0c4qi4EhdDVJNQIvbNe5Eecw9hXq0KC6kmoDDtmooindvrHjjoQcfwvyiJ/BaTRb21+uheq5MrFSPwL56PV6rmYYFxU94vau68/WdoyXEF7B0lnrV78NYCfH3ihtxfO82/OqNX3n9PY3H2NGIyU5AvXmDwhlRgPwc797QG5tx7CtvE/09J+Jw70N/y2MkREREUwCT5TCUkpKCbkefJrsv1xPKI2Po5ioqq2BVO3DG4UZBnndJQf4CCQ0ONzJFJyoqqzSO8MZWl63CT/7fzzF7+dN457PFeGv/dPy6zoq39k/Hbz67BXOWP42f/L+XvS7nnewd3PGoqt6LuSktN//Ca/A1AZ3oGxTDA11BUZky0UR/z4k45BT/De69jx39iYiIpoLADEQlv4qMjIQpyoLevn7ExkT75R5TeabtVFC714ZsC7CnzYV753p33njZPBkvHnLhjjQD6my1WLN6hVfreHsmWJIklJYUaX42Plib2320+x3cv0jB9fsxXt+SmW688+HbuL240Ovz1xNpHPfnP/46aCpTLu8gnpvYhKW5nqs6xO//XMaRViu+t6Ec9973Hc3uTURERMGNyXKYSk0f6Yjtr2R5qs+0DXdOhx2yThodD+V9UmMyCeh1EvodXV6tEaixQjeixQ6uP5rb+Xo0os/eiE0/etyn53q8b1AEW2XKWKL/cVU1drzxKmQ4ER8Xg6FhBX2DEu78yldxT+lsJspERERTDJPlMKIoCoaHhzE8PAxLTBy67HbkzJjml3txpm14E56Rn6uvY2THrhfqxEtux7o6B2Ks0I1osYPrj2TZ1wRyeOAi/nJF9+hH/n2ug7EyRZIkrLhjOVbcsRxHT5xG9YFTuPtr38THf/gQer0bbvfknbsnIiKi4MAzy2Gira0Nz5X/L/zzP23B9pf+GRfqj8EUFem3+/nSSfZUhxW3h8lM23Al6UZKrz0e39YZu16SJ/a+XDCeCR4TrM3tfE0gLZHj63GgxXM9VpniDX9Vpgy7XPjs2Cl8+Mca7Pvsc+hkPS62t2HN19aiqbULM3NmaX5PIiIiCm7cWQ4jcdEmfO/+1ZNyr0udZL2YaXvX3Q+yk2yQM8clQL0oMDgo+VRuPzgoQYkVsMQljvu6YD0TPCbYSogvrevj0YiJbJz6+lwHY2XKRx/boLckY8Ftd+Ce7GwkJSVBkiQIIWA0x6Fqzx7c5eWIMSIiIgpN3FkOEyaTCcPDk9therJn2tLkKSgqRJNTwnSTEftOTjyhAYB9J1Rkm4xodkrILywY93WB7Oo8HsFYQgyMJqAN3r3/eeBzFbflTqyRmy/PdbBVppw+cw79Lh2+9/2HsWzZMiQnJ196E0CSJDz8yF8iIzNL03sSERFR8GOyHCYiIyMx7J78cUyTNdOWJlfZylI065KQE2dA7RHvymXrjgnMjDOgWZeEspWl477uo93vBMVYoesJxhJiwLcE9HCDB4tmTux/B748197OOPZHZcrZ8034k+0IvvmtB6HXX/vNhlmzZmHDxo2a3ZOIiIhCA8uww4TRaISqCqiqCln2btSPtyYyMoZCg16vR15+Mdr37YLVYMQHNjfWFI7/r4v3bQqseiPaB4FFBSXXTUKuJVjPBI8JxhJiwPujER8dcGPxTN2Efz99fa5Xl62C3d6Fj4+9Oa54ta5MGXa58Kfq/WjrHsZ3Hn4c06dP12RdIiIiCh9MlsOEJEkwRUVhaGgYZnNUQO7vj5m2FDgb1q/DkwcPoiCmEccvePABlHElzO/bFNgvyJifYEStkoWfPf7IhO4brGeCx5SWFOG931ixdFbjhK891WHFo35sbjfRBPQ9mwpTBJA/x7v/Ffj6XF8+43huSiuWzHRfNeP4YIMBpy5aUXb3A5qNBzvf2ILKTw5g3qKleOCRryEiIkKTdYmIiCi8MFkOI1FRURgcDkyyTOFHlmWUb3kG5Zs2oyShCw0tLrzwhgv5CyUsmydfldTUnVCx76iA1WDE/AQjqvsTsWXrMxOudAjWM8GX1g/y5nYTSUC7e3rx1BqH1/fS4rmezMoUt1vBn20HcKG9D/c/tA6zZ8/2eU0iIiIKX0yWw0ikKQrDw65Ah0FhJCM9FVu2Po/nnn4WuRFNmB1nRMMpN1485ILJJKDTjYyHGhqSMD3SiDuTDWgfBGzuTGzZ+iwy0lMnfE9fuzr760zw5QJdQnwz401A/0/5j+DxdAf8uZ6MypTm1nZUVO1HzpxF+OF3vgGTyeS3exEREVF4YLIcRqJGy7CJtJSRnopt21/CjpdfRY2tGpn6TtyRZoD+sgRL8Qg0OyXUOJOwuLAE2x5/xOuz88F6JvjLAlVCPF7jSUBD5bn2haIoqKk7hPqmLtx7/3cxf/78QIdEREREIYLJchiJMpsxNMxkmbQnyzKe2PgolMceRkVlFepsteh3dEGoCiRZD0tcIvILC/DjlaUTauZ1LcF8JvjLQr25XSg9195oa+/AR3/ah8wZc/DDv3kUZvPEum8TERHR1MZkOYxERVkwPNgW6DAojOn1eqxZvQJrVq/w2z2C/Uzwl4Vyc7tQe64nwu1W8JsPP8F9D34feXl5QR0rERERBSfOWQ4jpigzBlmGTWFgddkqpM15YNxzeCf7THA4CdfnuqmlDdbMbCxatIiJMhEREXmFO8thJCoqCu0u/47NIZoswX4mOJyE43N99kIz5i64NdBhEBERUQhjshxGTCYThl0Tb9RDoUFRFFRUVqF2rw1Ohx3Co0LSyTDHJaCgqBBlGpwXDjahcCZYCIGq6r34aPc7V8Qn9LFYtfo+lJYUhcTOZig81xNxoaUTX/nqnECHQURERCEsvF5ZT3GRkZFwuZVAh0EaU1UV23e8giN1NbCqHci24ItdPw+gXhQ4sNOGd19/DXn5xdiwfp3Xnai1pFUSGcxngndXfIQ/7H4Tc5Kbcf8i5YoRTB6PwMHq43jvN+kou/vBkNiNDebneiLs3T0QkhGpqRMfXUZEREQ0hslyGDGZTBhycc5yOGlubceW8ucwS21EURRwxuHGnrYrZxwPDkqYbjKiKK4D7ft24cmDB1G+5RmvZhxrJdySyGvZ+fpOtJ/+Nb5bNNYY68rEX6eTsHSWgqWzGvHx3m2w27vw0IMPTX6gU9DZ842Yu2BhyOyCExERUXBishxGTCYThod5ZjlcNLe2o3zTZpRYutAw4MIJpwsFCyXcO1e+KvmsO+HCnqPDsBqMKIhpRPmmzdiy9fmAJMxTIYncXfER2k//etwdpL+ywIk/Hn0TuysSQ/bNgVDS3G5H0VeKAx0GERERhTh2ww4jJpMJQ0yWw4Kqqnju6WdRYunCse4hmK1u/PABAwrm669IlIGR5LNwgR4/fNAAs9WN4/YhlFi68NzTz0JVJ/cMuzdJZOvJN7G74iM/R6YdIQQqPnxjQqOWAGDFQif+sPtNCCH8FBmNUVUPIiMjAx0GERERhTgmy2Fk5Myymy/Gw8D2Ha8g19OEhl4XkrJUrCkcXxHImkI9EqapaOh1IdfThB0vv+rfQC8zVZLIquq9mJvS4tW1c5Jb8Ocam8YR0ZcpHg9LsImIiMhnTJbDiF6vh06nh5tNvkKaoig4UleDVBPQ4naNO1Eec0+hHi2KC6km4LCtGooyOf89TJUk8qPd7+DWmd49p0tmurH7w7c1joguJ4RAl70XKSkpgQ6FiIiIQhyT5TATFRWFoeHhQIdBPqiorIJV7cAZhxsFed7tjuUvkNDgcCNTdKKiskrjCK9tqiSRktJzVSn8eMk6CZLSo3FEdLnevn4YI02Ijo4OdChEREQU4tjgK8yYoqIwNDSMmGhLoEMhL9XutSHbAuxpc+Heud6NgFo2T8aLh1y4I82AOlst1qxeoXGUV5sqSaTw+NYXwNfrJ1MozpBu7+hCRub0QIdBREREYYDJcpgxmaIwNBxa46NC8QW5Pzkddsg6aXQ8lPfJp8kkoNdJ6Hd0aRzhtU2VJFLSGQJ6/WQJ1fFf7Re7kDltfqDDICIiojDAZDnMmKLMIVWGHaovyP1JeEY6WOt8PCQxdr1QJ+fM8lRJIoU+Fh6Pd29kqB4BoY/1Q1TaCuXxX53dfcgrzAx0GERERBQGeGY5zMTFJ6Cvrz/QYYzLztd34vjebfhu0QUsnaVecyTS0lkKvlfciON7t+FXb/wqQJFOLkk3Unrt8fi2ztj1kjw574mNJZHeCJUkEgBWrb4PBxu8e04/bTBg9d33axyRtkJ5/JcQAhe7epCenh7oUIiIiCgMMFkOM6lp6bA7gj9ZDuUX5P5mjkuA6hEYHJR8Sj4HByUoHgFLXKLGEV5buCeRY0pLinDyotWra091WHF7caHGEWkn1Md/9fU7YYiIZHMvIiIi0gST5TCTnJyM7t6JvdCdbKH+gtzfCooK0eSUMN1kxL6Tqldr7DuhIttkRLNTQn5hgcYRXls4J5GXkyQJZXc/iI+PmSd03R+PmnHX3Q8G9fn7UB//1XaxE9aMaUH9HBMREVHoYLIcZpKSkmB39Ad1QhnqL8j9rWxlKZp1SciJM6D2iHc/x7pjAjPjDGjWJaFsZanGEV5bOCeRX7a6bBXS5jww7u/1j0fNSJ/7AFbfVebnyHwT6uO/LnZ0IWtadkBjICIiovDBZDnMmM1m6PR6DAwOBTqU6wr1F+T+ptfrkZdfjPZBwGow4gPbxJ6r920KrHoj2geBRQUl0Osnr49fuCaR1/LQgw9hftETeK0mC/vr9VC/VDKvegT21evxWs00LCh+ImgaYN1IqI//umjvgzUjI6AxEBERUfhgN+wwI0kSUlPT0WV3wBxlCnQ41xTqL8gnw4b16/DkwYMoiGnE8QsefAAFawpv/uv6vk2B/YKM+QlG1CpZ+Nnjj/g/2C956MGHsLsiEa99+AbmprRiyUw35Mt+3qpH4GCDAacuWlF29wMh3eV8ddkqrLqrDH+useGdD9++YvQZ9HFYdfd9eKy4MGR2zUN1/FdPbx8+PXISHd1OZDBZJiIiIo0wWQ5DKelWdNm7MS0zODvChuoL8skkyzLKtzyD8k2bUZLQhYYWF154w4X8hRKWzZOvSj7rTqjYd1TAajBifoIR1f2J2LL1GciyHJD4wy2JvBFJklBaUoTSkqJAh+KzUBv/1dJ2EQc/O4WWzl4sK1iO/3HfI2zuRURERJphshyGUlLScO74+UCHcV2h9oI8UDLSU7Fl6/N47ulnkRvRhNlxRjSccuPFQy6YTAI63ch4qKEhCdMjjbgz2YD2QcDmzsSWrc8iIz01oPGHUxI5VYTCDGmPx4P6sxdw6OjnGFJlLL9jJb53662IiIjw+72JiIhoamGyHIZSUlJwqHYg0GFcVyi8IA8WGemp2Lb9Jex4+VXU2KqRqe/EHWkG6C977hSPQLNTQo0zCYsLS7Dt8UcCtqNMoW3V6vtwsPoYls6aeBd2f4//crncOHriNA6fOIu4pHR8Zc39mD9/PnQ6tt4gIiIi/2CyHIaSk5PR3RO8s5aD+QV5MJJlGU9sfBTKYw+jorIKdbZa9Du6IFQFkqyHJS4R+YUF+PHK0klt5kXhp7SkCO/9xoqlsxonfO2pDise9cP4r75+Jz797ARONrRg1tyF+O66J5CVlaX5fYiIiIi+jK+sw1BMTAzcisDQ8DAig7A0MRhfkIcCvV6PNatXYM3qFYEOhcLUpfFfe7dNaA66P8Z/tV/sxIEjJ9HU5sBt+cX463u/j/j4eM3WJyIiIroZJsthSJIkJKemosvuCPi51Wvx9QU5AHQeOILEWxeGRYMoomCyumwV7PYufHzszXH9fmo5/ksIgTNnL+DTo5/D6QJKSr+Ch9YtQ2RkpM9rExEREU0Uk+UwlZZmhb27JyiTZcC3F+R9Zxtx+B9eQP5Pn0F0diYAQFEUVFRWoXavDU6HHcKjQtLJMMcloKCoEGUsUSYat0CM/zrf2Iw9NYdgiU9B6aq1WLBgAc/eExERUUAxewhTKWlWtNYfDHQYN+TtC/L26n0AgIvV+xCVlY7tO17BkboaWNUOZFvwxRoeQL0ocGCnDe++/hry8ouxYf06vgAnGofJHP8lhMCevYdxzzcfwoIFC1gxQkREREFBEkIEOgavLF26VOzfvz/QYQStU6dO4eMP38Y319wZ6FBuSgiBP9fYsPs6L8iLl96Gjr0HIJSRhmBn/vs3cDl6IcdEw+YZQIrHjmijwLHhPpwbunKs0uCghOkmI3LiRsYq1ctZKN/yTNDuuE8lLpcbg0NDGBwcwsDg0Oifh+HxeJAQH4vEhHjExljY7XgKaDjXiAMnm/FXT/0NE2XSjCRJB4QtiPakAAAgAElEQVQQSwMdBxERhS7uLIepkY7Y4z8PHEg3m8fr7u3HmV++g2G7AzqjEcLjAQC4entxGwQkxGBwQEXGom58Y6F8xUgqj0eg7oQLe44Ow2owoiCmEeWbNmPL1ueZME8iIQT+UFWLDnsvBodcGBp2AdDBYrEgymKBxRINs8UCsyUJep2E+tZW1ByqR39vL+KiTVizshjxcTGB/jbITw4d+xwld36ViTIREREFFSbLYSouLg5Dw264XG4YjYZAh+MTQ4wFhS88h+MvvoKuQ8chFAUAIEOCAoFesxM5X7Ujy3j1DqROJ6FwgR6FC4APbG4cv+BBSUIXnnv6WWzb/hJLsieJvbsHzR39+N7Dj8NsNiMqKgpGo/Gm17lcLrz33rs4Wd+AoqW3TEKkNNk6urrhcLqRl5cX6FCIiIiIrsD6xjCl0+mQmJyMbkdPoEPRhN4chbzNT8JgibricVVWMWttF3TGmx8nWFOoR8I0FQ29LuR6mrDj5Vf9FC19WcO5RsxbsAgZGRmIi4sbV6IMAEajEYsX34LGli4/R0iB8ulnJ1FUcicb8BEREVHQYbIcxlLTrOiyOwIdhmaG2jsx3N0LBQICAgo8iPDo4ekf/4vsewr1aFFcSDUBh23VUEZ3qcm/zrd0YM7ceV5dO336dHQ5+jE0PKxxVBQMGtu6sJC7ykRERBSEmCyHsdS0DHR1h8fOMgC01+wHPB50GAZQY2pGf1IfICQMX4i6+cWXyV8gocHhRqboREVllZ+ipTFDw8Po6O7DjBkzvLreYDBg+swcNDa1aRwZBQNTpBEulyvQYRARERFdhclyGEtOTkZ3b2g0+RqP6BnTcGRGKpSkPjQMDWPGqm5Er2iHPn5iL7SXzZNxbtCFDLNAna3WT9HSmPONLciemTvu0utrmT1nAc43tWoYFQWLqMgI9Pf3T+gaVVWxd+9eJtlERETkV0yWw1hycjIcYZQsJy5ZgGbPEGSdNDoeSoLROgSjdWhC64xdr9dJ6HfwLKy/nb3QinnzfSuznTVrFhrbuhCqo+7o+hJizTh//ty4v76/vx//+fMdeO83b8LpDJ+/34iIiCj4sKNKGEtMTERf/yBUVQ2brs/CMzJr2dfRu2PXCzV4ziwrioKKyirU7rXB6bBDeFRIOhnmuAQUFBWibGVpSDZBUlUVgwO+JTUpKSmAZEC3oxcJ8bEaRUbBYN6cHPz+YxtWrrzrpjO1m5ub8d//9QpyMuJwQR4ZPUZERETkL6H3ypvGTZZlxCcmwe7oRXJifKDD0YSkkwEPMDpq2Wtj10ty4H8FVFXF9h2v4EhdDaxqB7ItI7vfAAAPoF4UOLDThndffw15+cXYsH5dSL35cXvhEry+6yPMX7BwJOn1giRJmD13Ac41NjNZDjPJifGIkD04c+YMcnNzr/t1n376KX732zfxlcJFyLCm4nhDKwyG0B6LR0RERMGNZdhhLjk1DV327kCHoRlzXAJUj8DgoASPx7uS3LHrFY+AJS5R4wgnprm1HU9ufArOfbtQFNUBRXVjT5sTNd19sPX0oaa7D3vanHArLhRFdcC5bxee3PgUmlvbAxr3RMREW5C/OBfvvPUGPD68y5E7Zy4aWzo0jIyCxbxZWTiwv+6an1NVFb//3XvY/d6vcd+a5cjNmQ6ncwAxMXGTHCURERFNNYHfViO/SkvLgL39dKDD0ExBUSEO7LRhusmIfSddKJg/8f+E951QkW0yotkpIb+wwA9Rjk9zazvKN21GiaULDQMunHC6ULBQwr1zZejGdpYBeDwCdSdc2HN0GFaDEQUxjSjftBlbtj6PjPTUm94nGMq7Fy+ci8/PVmJvTQ1Kli/3ao2cnBy8/UZ3WB0roBFzZ8/Eq2/uxsDAAKKivuhu73Q68frO1+Du78BD3yxDZEQEAKDfOYCYWFYYEBERkX9xZznMpaSmorsnfJrglK0sRbMuCTlxBtQe8W5nue6YwMw4A5p1SShbWapxhOOjqiqee/pZlFi6cKx7CGarGz98wICC+forEmUA0OkkFC7Q44cPGmC2unHcPoQSSxeee/pZqKp6w3v8bNvP8dTj67H/v3+K7It7sUg5jcWeM1iknEb2xb04sPNf8dTj6/GzbT+/4Vq+kiQJ+Uvm4fChA16vERUVheRUK5pbL2oYGQWDyIgITLMm4LPPPrv0WEtLC/79hZ8iNsKNe9fceSlRBkaS5dhY7iwTERGRfzFZDnPhNj5Kr9cjL78Y7YOA1WDEB7aJNeh636bAqjeifRBYVFASsIZZ23e8glxPExp6XUjKUrGmcHxxrCnUI2GaioZeF3I9Tdjx8qvX/LpgLO929PQhLc3q0xpz5y3A+cYWjSKiYLJg9gzsr60BABw6dAi/2P4iChfPwO2Ft17V+GtkZzk8+jAQERFR8GKyHOYSExPR0+v06axosNmwfh3q5SzMjDGi64I87oT5fZsC+wUZM2OMqJezsP7xR/wb6HUoioIjdTVINQEtbte4E+Ux9xTq0aK4kGoCDtuqoShXfv9j5d0F+kb0DLuwp7Mf1rku/PAhGRvuM+DxtQZsuM+AHz4kI32OC3s6+tEz7EKBfqS8218Jc1d3D9IzMn1aY1bubDS2ctxXOJqWaUVfTyfeeON1fPjum/jm3csxZ9aMa37twOAQy7CJiIjI75gshzmj0Yjo2Fg4evoCHYpmZFlG+ZZnUN2fiPkJkXC2GPDCG27YjilQv9T0S/UI7D2m4IU33BhoMWB+QiSq+xNRvuWZgJ17raisglXtwBmHGwV50s0vuIb8BRIaHG5kik5UVFZdenwyyru91dndj/T0dJ/WyMzMRN+gC86BQY2iomAhSRLy5mTD0XoGf7G27IYd/J2DLkRHR09idERERDQVMVmeAlJSrbB3OwIdhqYy0lOxZevzsLkzERthxJ3JFrSdMuLFX6nY/o4bL//Wje3vuPHS6yraT418PjbCCJs7c9yNsfyldq8NWRbg/KALy+Z6l7Avmyfj3KALGWaBOlvtpcf9Xd7tLSEEuhx9SE317XmXZRk5s+bgAkuxw9KyJQux9p6vwBQZccOvcw4Oc8YyERER+R2T5SkgNd2KLnt4JcvASMK8bftLsOSvRY0zGXq9EXekmVEcH43C2GgUx0ejNNUMvd6IGmcyLPlrsW37SwFNlAHA6bBD1kkwmcRVu73jNXa9Xieh3zFSluzv8m5fOHr6EBVlgclk8nmt3DnzcK6pTYOoKFQNDAxzZ5mIiIj8jqOjpoCUlFQcOXss0GH4hSzLeGLjo1AeexgVlVWos9Wi39EFoSqQZD0scYnILyzAjydhPNJ4Cc9IibPOx7eqxq4X6khSq1l59yk3MvUj5d1rVq/wLchRFzu7kJ6Rpclas2bNwke/fwdCCEiSd99nOOu0d+P4yTNoaGxHRIQR8dFmxMVGISE+DonxcYiLjQ7p0VtCCAwOc2eZiIiI/C84sgfyq+TkZNh7+wMdhl/p9XqsWb1Cs+TOnySdDHgAX3uujV0vySO/xrV7bci2AHvaXLjXh/LuFw+5cEeaAXW2Ws2ez45OOzKy5muyVkJCAkzmGHR2dSM5KUGTNUPd0PAwTp5uwMkzTRh0CSxZWogfrP42FEVBZ2cn2tvbcLatFXVHDqGn245oiwlxMWbERUchIT4GCfFxSIiPvWI8U7ByOgcQERkVNG9+ERERUfjiq40pIDk5GY5eJ3figoQ5LgHqRYHBQQkej3el2Kpn5HolVsASlwjAf+XdWuh09GP+Mt/GRl1u9twFOHu+acony0II/Kl6P06ebcXseQtxzze/g5ycnCtGLWVlXbmjrygK7HY7Ojs70dHRgY72Vpw4dBadF9uhl4G4WAvio6OQEBeNhPhYJMTHIdpiDpq/O9o7umD1sas6ERER0XgwWZ4CIiMjYTKZ0dfvREw0SxcDraCoEAd22jDdZMS+ky4UzJ/4r+G+EyqyTUY0OyXkFxYA8F95txa6uvuQlpam2Xqz58xF5ftHka/ZiqFHCIE91fvQ547Aj/5nOaKiosZ1nV6vR0pKClJSUq5ar7e3F52dnejs7MTF9jYcPduKDttxDAz0Iz7WgrhoM2LMkbD3OhEXHYX82/ImfTe6ufUiZuQsnNR7EhER0dTEZHmKSElLR5fdwWQ5CJStLMW7r7+GorgO7DkyjAIvqpPrjgncmWTA3oEk/HhlKQD/lXf7amBwCG5VIC4uTpP1ACA7OxvtnT1wudwwGg2arXs9iqLA5VYQZYr0+71upqe3D4qi4szZRlzsVfH4hkc0aZwmSRJiY2MRGxuLnJycKz43NDSErq4udHR0wG63Y3ZyMs7Un8Yv3/oIeXOykJWRjtTkxEkpjW7r7MGtt0/3+32IiIiImCxPESmp6eiyt2HGdJYvBpper0defjHa9+2C1WDEBzb3hDpXv29TYNUb0T4ILCoouZSg+Ku821cdnXakp2doWsYbERGBzGnZaGppw8xsbRqHXc/g0DB++8EedPcNYe6MNBTctgjmKN+T0zHnLjShy+4YeX4kCTpJgjT6j043+mdIkHQ6DAwM4MCxc4g0maDTGfD4xic1SZRvJjIyEhkZGcjIyLj0WF5eHgqLSrCvrhY1h8+go60GCfEWpCXFIT01Cda0FERbzJrGoSgKOu29yMzk32NERETkf0yWp4jUtHSc+rQ+0GHQqA3r1+HJgwdRENOI4xc8+ADKuBLm920K7BdkzE8wolbJws8ef+TS5/xV3u2rjk47rJnTNFnrcnPmLcD5+k/9miw7Bwbxm/c/xrzFhSi940689dabqN3/GVaUavPcDAwO4cM/HcDSguXwCAEhBFSPCngEhEfAo6jwCA+EADyqCklnwWMbn0J6enpQ9CBIS0vD179xLwDA5XKhubkZjY2NONdwBlX7qqCDitSkWKQnxyM9LQWpyYk+deJu7+hCcpoVESHQiIyIiIhCH5PlKSI5ORm2Xmegw6BRsiyjfMszKN+0GSUJXWhoceGFN1zIXyhh2TwZ8mW7wqpHoO6Ein1HBawGI+YnGFHdn4gtW5+5IvHwV3m3rzrtvcjLXarJWpebNSsXtj//QfN1gZHzu+cbm1FlO4xb8u/AXWVlkCQJA/29mDc34+YLjNPhYyexaMkyfPVrX5/wtYFOlL/MaDRixowZmDFjBkpLSyGEgN1uR1NTE86fO4vqT8+go70aGanxuOeu5TAYJv6/n+aWdsyYOcsP0RMRERFdjcnyFJGSkgJ7Tz8UReHIlSCRkZ6KLVufx3NPP4vciCbMjjOi4ZQbLx5yjXa0Hjk/PDQkYXqkEXcmG9A+CNjcmdiy9VlkpKdesZ6/yrt91enQtrnXmPT0dLgUoLevX7Oz+M6BQRw7WY9jp8/DEpuEsq99G7fccguAkXO7LS0tiJCG0dvnRPa0DJ/uqygKjp6+gMefuF+T2IONJElITExEYmIiFi9eDAAYHh7Gu7t+iz9U2XD3ipIJJ/ytHd0ozlvuj3CJiIiIruJj31wKFVFRUcjMmoGG802BDoUuk5Geim3bX4Ilfy1qnMnQ6424I82M4vhoFMZGozg+GqWpZuj1RtQ4k2HJX4tt21+6KlEes2H9OtTLWZgZY0TXBRkf2MbX0XqsvHtmjBH1chbWX1be7QtFUdDT67yq87IWJEnCnLnzce5Cs0/rCCHQ2NyG3//hE/zynQooxkR8/9G/wl/98G8uJcrAyLndH23+37i1eBUcrkj8+v1P8P+9+T4qq2w4feYchoaHJ3TfU/VnYc3KQWrqtX+W4SgiIgJrv3kf+t0GfHrkxISuFUKgrcOBadO0L+knIiIiuhZuMU4ht9y2DAdrKjA7JzvQodBlZFnGExsfhfLYw6iorEKdrRb9ji4IVYEk62GJS0R+YQF+vLL0pru9/ijv9kVLWwdS0qx+q2bInTMP+z/5EIsWzJnwtUPDwzh+sh5HT1+A0RSNguJSPLR48Q0bZsXGxmLJkiVYsmQJhBBob2/HmTNncPrUcVRWf4j42ChkpiZgWqYVGekp130ehRA4dOwMvv6t70847lBnMBjw3e8/gp+9+C9ITkxAVsb4qg7s3T0wmaMRExPj5wiJiIiIRjBZnkIWLFiA9377JgaHhmGKZIOcYKPX67Fm9QqsWb3Cp3W0Lu/2xZET9VhacIdm631ZTk4Odr3dDY/HA904BkwLIdB2sROfHfscZ5s7MG/BYjzwvccwbdq0CZcES5KEtLQ0pKWloaSkBIqioLGxEWfqP0fdsePo+GMtkhNiEB1lQpTJCLPZBIs5ChZzFPr6ndAZzZg1a2qev42Pj8eD33kYr7/2c/zFN1aOq2t2cyvPKxMREdHkYrI8hURGRmLOvDycrj+LxQvnBjoc8qOx8u4dL7+KGls1MvWduCPNAP1lO8uKR6DZKaHGmYTFhSXY9vgjmu0oA4DTOYCmdge+c1kps9aio6ORkJiMtoudsKZdv9Tb5XLjxOkzOHb6PFTJiILi23H/92+D2azdaCO9Xn+pwdVdZaswODiI5uZm9PX1obe3F709Dpy7aEdvbzv6e3txzzfuC7omXZNp1qxZuGPFGvyu4o/49tdX3rT6oKW9C/Nu1abpHBEREdF4MFmeYm5Zchsq33+LyfIUoGV5tzc+O3Eai5YsQ2RkpOZrXy53zgKcvdBwzWS5o9OOz46fRv35i8iZMw9f/9b3kZOTMylJqslkmrI7x+O1/PZSNDc1Yk/1ftx1R+ENv7a904G7p0+fpMiIiIiImCxPObm5uXij24mh4WFE+nlWqaIoqKisQu1eG5wOO4RHhaSTYY5LQEFRIcr8lKQFWwyBplV590R4PB4c/7wJ69Z/0+/3mj1nDn739r5LHyuKglP1Z3H05DkMKhLyC0vwtQeW8axrEJIkCd+8/9v4139+Hs2t7VccAVBVFX+q2Y/0lCTMm5MDnU6H4Qk2USMiIiLyRXhnCXQVvV6P5NRU2Lt7bli26gtVVbF9xys4UlcDq9qBbAu+aCzlAdSLAgd22vDu668hL78YG9av07T8N1himMoazjUiITkd6enpfr/XtGnTYO9xorW9A6fqz+FUQwumzZyNVd94ELNnzx7XWWYKnIiICKxa83VUfbQLD64dmWc97HLhvd1VMMdn4M/7TyAyMgKzstPw2eFD7IZNREREk4avIqeg1NR0dNkdflm7ubUdT258Cs59u1Bs7kR2jHRFB2ZgJGmdHg0Umzvh3LcLT258Cs2t7WEVw1T32YkGFBbfPin30uv1yJk9F+/vOYB461w89bc/xiPrHsXcuXOZKIeIW265BfqoOJyqPwuXy41fv1uJrFmL8INH1uE7P3gUnxysx9nzLfjs0H54PJ5Ah0tERERTBF9JTkEpaVZ0O3o1X7e5tR3lmzajQN+ItKjxnQlNi5JQoG9E+abNmiSrwRDDVNft6EVX7xAWLlw4afd84MHvYNP/LMeq1asRHx8/afclbUiShHu+di8+2XcMza3tGBhyIb+gEDqdDjk5Ofgff/sjLLytFMPDbjQ3+zZXm4iIiGi8mCxPQcnJyejuHdB0TVVV8dzTz6LE0gWDPLHmSQZZQomlC889/SxUVQ3pGAj47NhpLCsomdSz4BEREWF/9jzczZgxA/c9+APsqTuBvt4e/PtLL8DpdAIYmc1ctmoV/m7z/5qU0n4iIiIigMnylJSUlITunn5N19y+4xXkepomnKSOMcgScj1N2PHyqyEdw1Tndis42dCMZfn5gQ6FQtC8efPwd5v/Nx56eAMkSNi6desVn4+OjuabIkRERDRp+KpjCkpISIBzcBiKomjywlNRFBypq0Gx2bdxPGlREqpt1VAee3jCcQVDDAQ0nG9EZnYOEhISAh0KhSi9Xo8lS5ZgyZIlrPIgIiKigLrpzrIkSf8pSdJFSZKOXvbYG5IkHRr955wkSYdGH8+WJGnwss/9x2XX3CZJ0hFJkuolSXpBGh10KklSxOh69ZIk1UqSlK39t0mXk2UZ8QmJmp1brqisglXt0GStTNGJisqqkIyBAKdzACkpaYEOg8IEO9QTERFRII2nDPtVAHdf/oAQ4kEhxC1CiFsAvA3gncs+fWbsc0KIjZc9vg3AegC5o/+MrfkogG4hxCwAPwXwvFffCU1ISmo6urq16Yhdu9eGLIsmSyHDLFBnqw3JGAhwud2IiIgMdBhERERERD67aZ2pEKLqeru9o7vDDwBYcaM1JElKBxAjhNg7+vF/AVgL4AMA9wJ4dvRL3wLwkiRJkhBCjO9bIG+kpllhbz+tyVpOh/2q0Uze0usk9Du6QjKGyaAoCioqq1C71wanww7hUSHpZJjjElBQVIiylaUBLR93u1UYIyICdn8iIiIiIq34+qr6dgDtQojPL3tshiRJnwLoBfB/hBB/BpABoOmyr2kafQyj/24EACGEIklSD4BEAJ1fvpkkSesxsjuNadOm+Rj61JackoILpz/VZC3h0fZcoVCVkIzBn1RVxfYdr+BIXQ2sageyLfjizQEPoF4UOLDThndffw15+cXYsH5dQEpYFVVFBJNlIiIiIgoDvnbDfgjAry77uBXANCHEEgB/C2CnJEkxAK615Te2c3yjz135oBA7hBBLhRBLk5OTfQibkpOT4ehzarKWpNM2KZPkib+HEwwx+Etzazue3PgUnPt2oSiqA4rqxp42J2q6+2Dr6UNNdx/2tDnhVlwoiuqAc98uPLnxqYDMjHYrKgwGw6Tfl4iIiIhIa15nBJIk6QHcB+C2sceEEMMAhkf/fECSpDMAZmNkJznzssszAbSM/rkJQBaAptE1YwHYvY2LxicxMRGOXieEEBjtteY1c1wC1ItCkzJoxSNgiUsMyRj8obm1HeWbNqPE0oWGARdOOF0oWCjh3rkydJd9rx6PQN0JF/YcHYbVYERBTCPKN23Glq3PIyM9ddLidSseGI3GSbsfEREREZG/+LKzfBeAk0KIS+XVkiQlS5Ikj/55JkYaeTUIIVoB9EmSVDh6zvkHAHaNXvYugIdH//wtAH/keWX/i4iIgNkcjZ7ePp/XKigqRJNTm/PCzU4J+YUFIRmD1lRVxXNPP4sSSxeOdQ/BbHXjhw8YUDBff0WiDAA6nYTCBXr88EEDzFY3jtuHUGLpwnNPPzup43fcisJkmYiIiIjCwnhGR/0KwF4AcyRJapIk6dHRT/0FrizBBoBSAJ9JknQYI826NgohxnaJnwDwcwD1AM5gpLkXAPwCQKIkSfUYKd3+sQ/fD01ASlo67N09Pq9TtrIUzbokDSICmnVJKFtZGpIxaG37jleQ62lCQ68LSVkq1hSOrxBkTaEeCdNUNPS6kOtpwo6XX/VvoJdxKyqTZSIiIiIKCzdNloUQDwkh0oUQBiFEphDiF6OPPyKE+I8vfe3bQogFQojFQohbhRDvXfa5/UKIhUKIHCHEX4/tHgshhoQQ3xZCzBJC5AshGrT+JunaUtMy0NHpe8W7Xq9HXn4x2gZ8KwhoGxBYVFDiVTfnYIhBS4qi4EhdDVJNQIvbNe5Eecw9hXq0KC6kmoDDtmooyuQ0LHO7mSwTERERUXjwtcEXhbDsGTPQ0tGtyVob1q9DvZwFt+pdsupWBerlLKx//JGQjkErFZVVsKodOONwoyDPu/Ly/AUSGhxuZIpOVFRWaRzhtSkswyYiIiKiMMFkeQqbPn062i52w+Px+LyWLMso3/IMqvsTJ5ysulWB6v5ElG95xqdxR8EQg1Zq99qQZQHOD7qwbK538SybJ+PcoAsZZoE6W63GEV4bd5aJiIiIKFwwWZ7CzGYz4pNScLGjS5P1MtJTsWXr87C5M8ddDt02IGBzZ2rWtTkYYtCC02GHrJNgMomrmnmN19j1ep2Efoc2P+ObYYMvIiIiIgoXTJanuJxZc9DY3KbZehnpqdi2/SVY8teiuj8J5/tGRjFdTvEInO8DqvuTYMlfi23bX9I0SQ2GGHwlPCMdrHU+/oaOXS/UyTmzrKjcWSYiIiKi8BDYLkYUcDNm5uCTymNYpuGasizjiY2PQnnsYVRUVqHOVot+RxeEqkCS9bDEJSK/sAA/Xlnqt0ZawRCDLySdDHgAXyvkx66XZP9/j6qqApIUFGXsRERERES+Cr4sgSZVdnY23ho9t6zzdRvzS/R6PdasXoE1q1doum6oxeANc1wC1IsCg4MSPB7vSrFVz8j1SqyAJS7RD1FeyeVWYDBwV5mIiIiIwgPLsKc4s9mM2PgkTUZIkXYKigrR5JQw3WTEvpOqV2vsO6Ei22REs1NCfmGBxhFeze12I8IY4ff7EBERERFNBibLhJxcbc8tk+/KVpaiWZeEnDgDao94Nwqr7pjAzDgDmnVJKFtZqnGEV3O53TBGMFkmIiIiovDAZJkwY2YOmtsnp1syjY9er0defjHaBwGrwYgPbBNr0PW+TYFVb0T7ILCooGRSzmW73QqM3FkmIiIiojDBZJlG5i13OAIdBn3JhvXrUC9nYWaMEV0X5HEnzO/bFNgvyJgZY0S9nIX1jz/i30BHuVxuRHBnmYiIiIjCBBt8ESwWC4Skw+DQMEyRTHaChSzLKN/yDMo3bUZJQhcaWlx44Q0X8hdKWDZPhnxZ0y/VI1B3QsW+owJWgxHzE4yo7k/Elq3PjKs7taIoqKisQu1eG5wOO4RHhaSTYY5LQEFRIcrG0TXc7XbDGBHp8/dNRERERBQMmCwTJElCUlIKuh09MKWlBDocukxGeiq2bH0ezz39LHIjmjA7zoiGU268eMgFk0lApxsZDzU0JGF6pBF3JhvQPgjY3JnYsvXZm86OVlUV23e8giN1NbCqHci24Isk3AOoFwUO7LTh3ddfQ15+MTasX3fd5NutqIjgmy1EREREFCZYhk0AgKSUVDgcvYEOg64hIz0V27a/BEv+WtQ4k6HXG3FHmhnF8dEojI1GcXw0SlPN0OuNqHEmw5K/Ftu2v3TTRLm5tR1PbnwKzn27UGzuRLl1AMIAACAASURBVHaMdMVuNTCSOE+PBorNnXDu24UnNz6F5tb2a6430g2bO8tEREREFB64s0wAgOSUVNibTwQ6DLoOWZbxxMZHoTz2MCoqq1Bnq0W/owtCVSDJeljiEpFfWIAfj6NcGhhJlMs3bUaJpQuGiPHNcE6LkpCoNqJ802Zs2fr8Vcm42+2G0cxkmYiIiIjCA5NlAgAkJibh/MnBQIdBN6HX67Fm9QqsWb3C6zVUVcVzTz87kijL40uUxxhkCSWWLjz39LPYtv2lK0qyXW4Flgij13EREREREQUTlmETACAxMRGOvoFAh0GTYPuOV5DraZpwojzGIEvI9TRhx8uvXvG4260ggg2+iIiIiChMMFkmACPJck9vP4QQgQ6F/EhRFBypq0FalHeJ8pi0KAmHbdVQlC/GWSmqCqORO8tEREREFB6YLBMAwGQyQTYYMTA4FOhQyI8qKqtgVTs0WStTdKKisurSx263h8kyEREREYUNJst0SVJyKrodPYEOg/yodq8NWRZt1sowC9TZai997FYUJstEREREFDaYLNMlKSmp6Ob4qLDmdNivGg/lLb1OQr+j69LHboVl2EREREQUPpgs0yWJyalw9PQFOgzyI+FRtV1PvfzMMsuwiYiIiCh8MFmmS5KSktDDjthhTdLJN/+iiawnfzF9jmXYRERERBROmCzTJQkJCejpZ7IczsxxCVA92nQ8VzwClrjESx+73SzDJiIiIqLwwWSZLklMTISj18nxUWGsoKgQTU5tziw3OyXkFxZc+pg7y0REREQUTpgs0yUREREwRZnR7+TucrgqW1mKZl2SJms165JQtrL00sduRYXBYNBkbSIiIiKiQGOyTFdITExmR+wwptfrkZdfjLYB36oH2gYEFhWUQK8fObMshIDbzZ1lIiIiIgofTJbpCskpaZy1HOY2rF+HejkLbtW7hNmtCtTLWVj/+COXHlMUFbKsh07Hv1KIiIiIKDzwlS1dISmF46PCnSzLKN/yDKr7EyecMLtVger+RJRveQay/EVnbZfbDVmW0d7ezjPvRERERBQWmCzTFRITE9HTPxjoMMjPMtJTsWXr87C5M8ddkt02IGBzZ2LL1ueRkZ56xeciI4yYOzMNv/iPf8Mbv/pvDA8P+yNsIiIiIqJJI4XqLtDSpUvF/v37Ax1G2Glvb8d//eLf8YNv3R3oUHyiKAoqKqtQu9cGp8MO4VEh6WSY4xJQUFSIspWll87bTmWqqmLHy6/isK0amaITGWYBve6LbtmKR6DZKaFJSsLiwhKsf/yRK3aUv0xRFPypZj/aul1Y99gGxMfHT8a3QUR0FUmSDgghlgY6DiIiCl1MlukKbrcbf1/+P/HEw2tD8vypqqrYvuMVHKmrgVXtQJYFkC9L/lSPQJNTQrMuCXn5xdiwft0Nk7+pYuzNhTpbLfodXRCqAknWwxKXiPzCggm/ufDxJ7WIz5iH1atD+00XIgpdTJaJiMhX3FqjK+j1ehgjI9HvHEBMtCXQ4UxIc2s7tpQ/h1lqI4rNEoCr5wnLOgnTo4Hp6ETbvl148uBBlG955qqy4qlGr9djzeoVWLN6hSbr5c6cjk8OHkFRUTFiYmIuPS6EgCRpM+eZiIiIiMifmCzTFf5c9SdEm/SwmKMCHcqENLe2o3zTZpRYumCIGF8ylhYlIVFtRPmmzdc8h0ves6alICn6HH76k39EmjUTeYtvw7x58/D2r9+AvfMips+chewZOZg+fTpSUlJCsoqBiIiIiMIby7DpkrNnz+K/X92Ov7h3JaIt5kCHM26qquKJDX+NQkMTDPLEdy3d6kjjqm3bX2JJtsZUVcWFplacPnMBZ5s6kJxgwVdKlqK5tR2t7V1o7XRgcFjB3HkLUVi8HNOmTePOMxFpgmXYRETkKybLBADo6+vDv//bP2NF0QJMz8oIdDgT8rNtP4dz3y6kRXmfZLUNCFjy1+KJjY9qGBldTlVVALjqDQnnwCBO1Z/FkRNnYY5LQvHyO5GXl8cGbETkEybLRETkK9Y+EgDg1KlTSEmICrlEWVEUHKmr8SlRBkZKsg/bqqEoikaR0ZfJsnzNnXtzlAm3LpqPHzxwD26dY4Vtz/v4yT/9Pf5Y+Qf09XHmNxEREREFBrduCAAgSRKMhtD7z6GisgpWtQPXauY1UZmiExWVVZo1uaKJkSQJM7OzMDM7C532bhw++hl++qc/YP7CJSgqWY6MjNB6I4eIiIiIQht3lgnASKISiiX5tXttyNKoaXeGWaDOVqvNYuSTpIR4rCwtxMPfXo1I0YP/+sW/4z9+9iKOHDlyqZybiIiIiMifQm8rkfxCkiQg9HJlOB32K+Yo+0Kvk9Dv6NJkLdJGZEQEli1ZiNsWz0f92Qv400e/xfvv/QaFxaVYumwZzObQaURHRERERKGFyTIBGN1ZDnQQXhAebXcZhcozy8FIp9Nhdk42Zudk42JHFz49sh97/vghFt2yFMUltyM1lWO/iIiIiEhbTJYJQOiWYUs6GfBouJ7MX4lgl5KciNUriuEcGMSR46fx823/irSM6ShefgfmzJnDmc1EREREpAlmBgRgLFme2DWKoqCisgq1e21wOuwQHhWSToY5LgEFRYUoW1nq9/E/5rgEqBeFJqXYikfAEpeoQVQ0GcxRJhQuXYxlSxbi9JnzqHjvTfxul4zi2+/ErbfeBpPJFOgQiYiIiCiEMVkmABPbWVZVFdt3vIIjdTWwqh3ItuCLZNUDqBcFDuy04d3XX0NefjE2rF93zZFBWigoKsSBnTZMj/Z9rWanhPzCAt8XokklyzLmzZ6JebNnorW9A59+VoPK3b/HkqWFKCouQVJSUqBDJCIiIqIQxHpFAjD+M8vNre14cuNTcO7bhWJzJ7JjpKt2dWWdhOnRQLG5E859u/DkxqfQ3Nrul7jLVpaiWadNMtSsS0LZylJN1qLASE9Nxj0rl+O7a1fA3dOEbS/8BK/858/R2toa6NCIiIiIKMQwWSYAY92wb5wuN7e2o3zTZhToG5EWNb6y57QoCQX6RpRv2uyXhFmv1yMvvxhtA76dt24bEFhUUOL3snGaHBaLGSUFS/CXf/FVpFo8eGPnL+HxaHi4nYiIiIjCHpNlAnDzM8uqquK5p59FiaULBnli54MNsoQSSxeee/pZv8zI3bB+HerlLLhV7xJmtypQL2dh/eOPaBsYBZxer8etixdAL4bw6aefwuFwYPvPXsIvfr4dx48f58xmIiIiIrouJssEYKwM+/rJ5vYdryDX0zThRHmMQZaQ62nCjpdf9TLC65NlGeVbnkF1f+KEE2a3KlDdn4jyLc/47Vw1BZYkSSjJX4SKD3+H/3jpX5GZZEROmhmV77+Fn/zff8DHf6xEX19foMMkIiIioiDDZJkA3HhnWVEUHKmrGXfp9fWkRUk4bKuGomg/yzgjPRVbtj4Pmztz3CXZbQMCNncmtmx9HhnpnNMbzqxpKcidloQ78udh6S0LMW/2TDzwjbvwtRW3obXhMP5l6z/gVztfw9mzZ0NyhBoRERERaY/JMgG4cTfsisoqWNUOTe6TKTpRUVmlyVpflpGeim3bX4Ilfy2q+5Nwvm9kHNTlFI/A+T6guj8Jlvy12Lb9JSbKU8TygiWYmZ11xWPJSQlYWVqIdQ+uQZxxCG/t/E+88NOf4NChQ0yaiYiIiKY4djMiAKMNvq6jdq8N2RZt7pNhFqiz1WLN6hXaLPglsizjiY2PQnnsYVRUVqHOVot+RxeEqkCS9bDEJSK/sAA/noQZ0BQ6IoxG3LpoPpbkzcOFplbs2f0b2Kr/jK9+Yy2ysrJuvgARERERhR1mCwTgxjvLTof9qvFQ3tLrJPQ7ujRZ64b30euxZvUKvyXlFJ4kScL0LCumZabj+Kl6/NcvfobZ8xZj1d1rEBsbG+jwvOZ0OtHQ0ABZlpGamor4+HjodCwsIiIiIroRJssE4MbJsvBo2zFYqNc+s6woCioqq1C71wanww7hUSHpZJjjElBQVIgy7gbTJJEkCQvm5iJ3ZjbqDh7Bv/3LP+H2O+7C8ttLYTAYAh3eTamqiqamJtR/fhonTxxFZ3srrKkJEELA3uPE4JAbKWlpsFqzkGbNQFpaGlJSUmA2mwMdOhEREVHQYOZBAMa6YV/nczoZ0HBErSRf+Z+dqqrYvuMVHKmrgVXtQLYFX+xkewD1osCBnTa8+/pryMsvxob169i5miaF0WjA8sJbkTc/F5/U7kedrRp3f/VeLFq06IZHFwKhp6cHn3/+OU6fOo760ycRbTLi/2fv3uObPM+7gf9uST5KNsYHfMY2wQRIgKQhtjEtSUMJ0CYNWdPzOsI4k9L17fYm2fuWk7duC93WdmWhkPQNW9Ms67assKRpQp2DE4NscwiBEA7maAufz5KwrefR/f4hWzGxMZL1yI8k/76fD5+Yx9KtC2OT59J1X9edm5mC4jvzkPWF+Tf8zPT196O1rQMtre249NFVHD3kQGtHD2Ji45CRmY3M7FxkZmZhypQpSEtL45tURERENCHxDogAjF5ZNiclQ22WmmzFVtwSlqQU7+9tDU0o27oD09U6lJoFgOGvYTQI5CUAeWhFY81+bDp2DFvLtnEwF42bSYkJ+NKSz6H+WiPeev0VWA+9hy89vAI5OTm6xaQoCq5cuYJzZ8/i7Men0N3ZhtzMFOTlpKNkxQMwm+Nv+tyY6GhkZ6bf8DMkpUSP3YGW1na0tF3CsYun0NbZg+4eJ5JTpyAzOweZWTlIT09Heno6Jk2aFHJvGBARERFpickyARj96KjiBSU4+pIVeQmBv47NIVBUUuz5uKEJW598CgstbYiK8e2mOyNeIEWtw9Ynn+KRTzTucrIy8M1H0/HRmfPY9/wuzJx9Nx5cthyJiYlBf20pJdrb23H+/Hmc/fgjXL54HpMT45GblYr7i25HelpKQH3IQggkJliQmGDBbQVTvdcVRUF7Rxda2zrQdPEDnD5mR1tnDxQ3kDlQhc7IzEJ6ejqmTJmC2NhYLf64RERERLoT4Xo8yvz58+WRI0f0DiNiXL58Ga+98iIee2j4QCxFUbB57TqUmlsDfp1DjlT8/Lm9EEJg4/rvoiSqHlFG/6tTLtVzRvLuPbu4JZt00d/vQtXRD3H64jUsun8JShaUap4o9vX14dKlSzh/zlM97rtux9TMVOTlZmBqThbiYmM0fT1/OK/3orWtA61t7Wht70Zblx0dXXZYEhKRnpGNrOxcZGRmIj09HSkpgSXyRGMhhDgqpZyvdxxERBS+WFkmAKNXlk0mE+YUlaKxZj8y4se+7bLRKTG3eCFMJhOe3f08Ct1jS5QBIMooUNhXj73P7cPGDavHHBPRWEVHR+FzC+7B3Dtm4P2qGrz9h9dhNicgPTMbmVnZSM/IxJQpU5CamurzUDApJZqamgaqx6dQd+US0lMnYWpmKpYtugupyUkhs/U5Pi4WU3MyMTUn03tNSonOrh60tLWjpekcLp89irYOO5y9/Uibko7MrBxkZOUgIyMD2dnZrEITERFRSGOyTABG71kGgPXrVmHTsWNIUevGXAmuNebi2bWPQ1EUnKw+NNCjPHYZ8QKV1kooa1ZyABHpZrCfWUqJru6egWrrRRy7cBLtXXZ0dTuQlJyCjMxsZGRlIz3dM3k6OTkZRqMRTqcTFy9exLkzH+PsmVMwSAW5mamYnZeJpaWzER0d+tO3BwkhMDkpEZOTEjHjtnzv9f5+F9o6OtHS2o6rZ6px9FA3YhNSsW7DE/oFS0RERHQLzDAIgOcm1z1Ksmw0GrG1bNsnPcZ+JMwuVaLSnoKyndtgNBrx+htvIUttwUjDvPyVI1txsLyC5ymT7oQQSJqUiKRJiZg+Lc97XVVVdHR1e5Jo28e4ePoI2jt7YHf2IXFSEuw9XchMm4yp2Wl49MEFmJwU/P7n8RYdHYXM9DRkpqcB8HxNnvv1/8But8NisegcHREREdHImCwTgFtXlgEgOzMdZTufwY4t21HYV+/TluxGp8R5Qw7Kdm73DuOqOmxFvkb3x9lmiWprFZNlCllGoxGpyZORmjz5husul4Kunh4kJSZMuJ0RRqMR2RnJqK2txV133aV3OEREREQj4sQVAjB6z/JQ2Znp2L1nFyxFK1BpT8WVHs9xUEMpbokrPUClPRWWohXYvWfXDVOrHZ3tmhxDBQAmg4C9s02TtYjGU1SUCanJkydcojyoIDcDH58+pXcYRERERDc1Me/SaBjP0CDfJqMbjUZs3LAaypqVOFhegWprFeydbZCqAmE0wZKUgqKSYjy9eNGIiYB0q5rGLlVF0/WIKPgKpuag8rdvQVVVTrQnIiKikMRkmQD4tg3700wmE5YvfcDvLdDCYATcfj1l9PWM/DYmCjdmczwS4qNx9epVFBQU6B0OERER0TDchk0AfN+GrQVzUjJUtzYvprglLEkpmqxFROMrLzsNZ8+c0TsMIiIiohExWSYAY6ssj1XxghLUO7TpWbY5BIpKijVZi4jG17S8HJw5fVLvMIiIiIhGxGSZAAwky+P0WksWL4LNkKrJWjZDKpYsXqTJWkQ0vjKmpMLe3Y6Ojg69QyEiIiIahskyARgY8DVOlWWTyYQ5RaVodAb2eo1OibnFCyfsNGGicCeEQH72FBw+dEjvUIiIiIiGYbJMAMa3ZxkA1q9bhVpjLlzq2F7UpUrUGnOxbu3j2gZGROPqsyV348SR93H69Gm9QyEiIiK6AZNlAjC+PcuA5/iprWXbUGlP8TthdqkSlfYUbC3bxiNniMJcXGwM7r5jOj48cVzvUIiIiIhuwP2rBGB8e5YHZWemo2znM9ixZTsK++qREX/roV+NTonzhhyU7dyO7Mx0n19LURQcLK9A1WErHJ3tkG4VwmCEOSkZxQtKsOQmZ0ITUfA1trRj9j336R0GERER0Q2YHRCA8a8sD8rOTMfuPbuw97l9qLRWIke2ItssYTJ8kjgrbgmbQ6BepGJeyULsXvu4zxVlVVWxZ+8LOFl9CFlqC/ItgHFwbTegNkscfcmKAy+/iDlFpVi/bhWr1UTjSEqJ+sY2fHn6dL1DISIiIroBk2UCoF+yDHi2ZG/csBrKmpU4WF6BamsV7J1tkKoCYTTBkpSCopJiPO1n9dfW0ISyrTswXa1DqVkAGF65NhoE8hKAPLSisWY/Nh07hq1l2/yqWhPR2LW0tiPOnIjk5GS9QyEiIiK6AZNlAjA4DVvfGEwmE5YvfQDLlz4Q8Fq2hiZsffIpLLS0ISrGtzOdM+IFUtQ6bH3yKZTtfIYJM9E4uHzVhttn3al3GERERETDcMAXARjsWdY5W9aIqqrYsWW7J1E2+pYoD4oyCiy0tGHHlu1QVTVIERLRoKsNrSiccbveYRARERENw8oyARj/o6OCac/eF1Dorvc7UR4UZRQo7KvH3uf2YeOG1RpHR0SD+vtdaG7rRkFBgd6hjEpKicbGRly+fBlutxvR0dGIiopCVFTUTT+Oi4uDwcD3o4mIiMIZk2UCoG/PspYURcHJ6kMDPcpjlxEvUGmthLJmJadkEwVJna0BuXkFiI6O1juUYZxOJy5cuIBzZz7GubMfwQgV2enJiDIZ4VJUKKobiqIOfKzCpbihKApcigqXS0Vu/m1YtXqtp8WFiIiIwhKzAAIQOcnywfIKZKktGGmYl79yZCsOlldo0kNNRMNdrmvA7bPm6x0GAMDtdsNms+H8uXM4e+YUmhpsyJoyGVOzpuDRBxdgclKiX2v95sAfUF1dheLikiBGTURERMHEZJkA6HPOcjBUHbYi36LNWtlmiWprFZNloiCpa2jFAw8V6vb6PT09qK2txdkzp3H+7GnEx5gwNTMF98zMRvbn7x7zrhKDwYAli4rwX787gMLCGZz0TUREFKaYLBOAwWnY4Z8uOzrbPzlHOUAmg4C9s02TtYjoRp1d3XALE9LTgz91XkqJzs5ONDc3o7GxEY0NNjTY6tHV2YacjGTkZadj/pfvR4LFrNlrpiQnYda0TFRZrVj+xS9qti4RERGNHybLBCBytmFLt7YTrKWqaLoeEXlcumLDjNvv0LSnV0oJu92O5uZmNDU1oanhGhoa6tHc2IjoKANSkhKQPMmMtORJmFU8E2mpyUEdwpUxJRUXmxqDtj4REREFF5NlAhA527CFwQi4NVzPyB8RomC4eq0ZCz5fFPA6tbW1OPPxaTTY6tHYeA1SdSF5cgKSE81ImZyI4junIvW+eYiNidEgav8kT56EqpOXxv11iYiISBvMBAhA5FSWzUnJUJulJluxFbeEJSlFg6iIaChVVXGtuQPTpk0b8xqtra343WsH0HD1Au6ckYd5hWlYXDwD8fFxITOBOmlSAro6O6CqKoxGo97hEBERkZ+YLBOAyEmWixeU4OhLVuQlBL6WzSFQVFIc+EJEdANbQzPS0rNgNvvfI9zX14e333oLNYffxd13TMMXHlsWsomo0WiEOS4GHR0dSE1N1TscIiIi8tMtm7WEEP9PCNEshDg15Np2IYRNCPHBwK8vDvncXwohaoUQZ4UQS4dcv0cIcXLgc/8kBt76F0LECCH+feB6lRAiX9s/IvkiVCoxgVqyeBFsBm1uSm2GVCxZvEiTtYjoE5ev2jBz1h1+PUdKiePHj+MnP/5bNF/5CN9+9Au49+47QzZRHpSUaEZbGwcFEhERhSNfJpvsA7BshOs/kVLeNfDrdwAghJgN4BsA7hh4zrNCiME7md0A1gEoHPg1uOZqAB1SyukAfgLgmTH+WSgAkVJZNplMmFNUikZnYH+WRqfE3OKFYz46hohurr6xHdMLZ/j++Pp67Hl2Fyre3I9l992NpQ+UwmyOD2KE2pmUEIfW1la9wyAiIqIxuGWyLKWsANDu43qPAHhZStknpbwEoBZAkRAiE0CilPKw9GRk/wpgxZDn/MvAx/8JYLGIlDJnGPEky3pHoY3161ah1pgLlzq2P5BLlag15mLd2se1DYyI4HA40XO9Hzk5Obd8bE9PD/7rP/8D+57fhRm5ifj6iiXITE8bhyi1k5SYgJaWJr3DICIiojEI5MyM7wohPhzYpj154Fo2gLohj6kfuJY98PGnr9/wHCmlAqALwIhTlYQQ64QQR4QQR1paWgIInT4tUirLgKdPcGvZNlTaU/xOmF2qRKU9BVvLtoX89k6icHSl7hqmF84c9edLURS8/957+Nk//B3c9gb8yWPLcMfMwrBsF0mePAktjQ16h0FERERjMNZkeTeA2wDcBaABwD8MXB/pTkaOcn205wy/KOVeKeV8KeX8tLTwqi6EusGb0EhJmLMz01G28xlYXTk+b8ludEpYXTko2/kMsjPTgxwh0cR0xdaEwttn3fTzZ8+exT/95Mf46GgFvrL8s1hUOh8x0dHjGKG2kidPQmtrs95hEBER0RiMqSFTSundUyaEeA7AqwO/rQeQO+ShOQCuDVzPGeH60OfUCyFMACbB923fpKHB6nI4Vm9Gkp2Zjt17dmHvc/tQaa1EjmxFtlnCNORYKcUtYXMI1ItUzCtZiN1rHw+ZirKiKDhYXoGqw1Y4Otsh3SqEwQhzUjKKF5RgyeJF7KmmsCKlRF1DG1YUFg773NCjoBYVz8W0/NwRVgg/FnM8eq870dfXhxgdznomIiKisRvTnbYQIlNKObiv7FEAg5OyDwB4SQjxjwCy4BnkVS2lVIUQPUKIEgBVAP4EwM+HPGclgMMAHgPwloyU8maYEcIQMZXlQUajERs3rIayZiUOlleg2loFe2cbpKpAGE2wJKWgqKQYT4dQ4qmqKvbsfQEnqw8hS21BvgWfnBvtBtRmiaMvWXHg5Rcxp6gU69etCpkEn2g0zS1tsCRORlJSkvdaOB0FNRZCCExKiEdbWxuysrL0DoeIiIj8cMvsQAjxbwDuB5AqhKgHsA3A/UKIu+DZLn0ZwHoAkFJ+JIT4DYDTABQAT0gp1YGlNsIzWTsOwOsDvwDglwB+JYSohaei/A0t/mDkP2GInG3Yn2YymbB86QNYvvQBvUMZla2hCWVbd2C6WodSs8BIXQpGg0BeApCHVjTW7MemY8ewtWwbt45TyLt01YYZMz1HRg0eBfXm7w4gK9WCbz/6hbCZcO2vSQlmJstERERh6JbJspTymyNc/uUoj/8RgB+NcP0IgDtHuN4L4Ku3ioOCTyByJmKHI1tDE7Y++RQWWtoQFePbVviMeIEUtQ5bn3yKvdYU8q42tGLZvV9AfX09Xt3/3+izt2HZfXeH3YRrfyUlxKGlhX3LRERE4SaQadgUYSJxG3a4UFUVO7Zs9yTKRv96xqOMAgstbdixZTtUVb31E4h00Nffj4amdhw9UhPWR0GNRW52Bk6fPKF3GEREROQnJsvkJYSAHHkQOQXZnr0voNBd73eiPCjKKFDorsfe5/ZpGxiRRnrsDqhKP4z9bWF9FNRY5GZnoqujBU1NPG+ZiIgonITGRCMKCcIQOWcthxNFUXCy+tBAj/LYZcQLVForoaxZGTLDyih0jfe09dTkyfjBhm9rtl44MRgMuL0gC8ePHcOy5cv1DoeIiIh8xDtq8vIcHaV3FBPPwfIKZKktGPnIcf/kyFYcLK8I+UFmpB9OW9fH7Ntvw/4/WPHg0qUwGLipi4iIKBzw/9jkNXjOMo2vqsNW5Fq0WSvbLFFtrdJmMYo4toYmbNqwGY6a/Sg1tyI/UXySKA8YnLZeam6Fo2Y/Nm3YDFsDtw8HKiU5CXFRAhcuXNA7FCIiIvIRk2XyYrKsD0dn+7CEZaxMBgF7Z5sma1FkGZy2XmyqQ0a879PWi02eaetMmAN3+205OH60Ru8wiIiIyEdMlslLeA5a1juMCUe6tZ1gLVVF0/Uo/HHaemiYWTgNpz86gd7eXr1DISIiIh+wZ5m8WFnWhzAYAbeG6xn9+7Ee70FPNP40mbbe55m2vnHDao2jmzji42KRPWUyPvroI9xzzz16h0NE6oYsZAAAIABJREFURES3wDtg8jIaDDw4SgfmpGSozVKTrdiKW8KSlOLTYznoaWLgtPXQMmt6Ho7WWJksExERhQFuwyYvVpb1UbygBPUObXqWbQ6BopLiWz+Og54mjE+mrQducNo6jd20/Bw02q6ivb1d71CIiIjoFpgskxeTZX0sWbwINkOqJmvZDKlYsnjR6I/hoKcJhdPWQ4vRaERhfgZOfPCB3qEQERHRLXAvHXkJA5NlPZhMJswpKkVjzX6fk9eRNDol5hYvHHWLrFaDnnbv2TVhtmSHe083p62HntkzpuHgocO4//OfhxDa/N0QERGR9kL3Do/GnRAGDsPWyfp1q7Dp2DGkqHVjGsLkUiVqjbl4du3joz6Og558Fyk93Zy2HnrSp6RCKr24evUq8vLy9A6HiIiIboLbsMmL27D1YzQasbVsGyrtKXCp/v0duFSJSnsKtpZtGzVZGxz0FEj1GvBsyT5hrYSiRG7SFEk93cKgbQLv77R1Gk4IgZm35eD4sSN6h0JERESjYLJMXkyW9ZWdmY6ync/A6spBo9O3v4dGp4TVlYOync8gOzN91Mdy0JNvIq2n25yUDNWtzc+1P9PWaXSzZkzDhx8chcvl0jsUIiIiugmWCMhLCAHJw6N0lZ2Zjt17dmHvc/tQaa1EjmxFtlnCNKSqqbglbA6BepGKeSULsXvt4z5t/606bEW+xoOeli99QJsFQ0Qk9nQXLyjB0ZesyEsIfC1fp637K9z7wsciwWJGWpIZZ86cwZw5c/QOh4iIiEYQWXcfFBD2LIcGo9GIjRtWQ1mzEgfLK1BtrYK9sw1SVSCMJliSUlBUUoyn/UwgOOjp1iKxp3vJ4kU48PKLyENrwGvZDKl4+hbT1v0RKX3hYzXztlwcPVLNZJmIiChEMVkmLyEAZsuhw2QyYfnSBzSr3nLQ0+gGe7pLzYH3dFdaK6GsWRkS1dDxnLbuD1tDE8q27sB0tW7gaz48tsG+8Dy0orFmPzYdO4atZdtu2XIQLgpvy0dFzWvo6elBQoIGpX8iIiLSFHuWyYtHR0U2DnoaXST3dK9ftwq1xly/h8cNGpy2vu4W09Z9FWl94WMVFWVCQXYaPvzwQ71DISIiohEwWSYvzzZsJsuRioOeRld12IpcjXu6Q8V4TFv3lVZ94aqq7U4JvcyaUYCj1Yf5by8REVEIiqzSEAVEgJXlSBYOg570FOk93YPT1nds2Y7CvnqfKrqNTonzhhyU7dyu2dbnSOwLD0RudgbeqjyKv/vRdkRFRSM6OhpR0dGIjopBVHQ04uLisfxLD8Fi0eidHCIiIvIZk2XyEgYRcrOwJ+KU3GAJ5UFPoWAi9HQHc9q6LyK1LzwQQgj88VeWobe3D/0uBYqiwKV4/nv85Bl0dMQhOjpa7zCJiIgmpPC+yyBNhdI5yxN9Sm4whOqgp1AhDEbAreF6IdrTHaxp6774pC888Ar+YF94JBxfZjKZYLHc+LW+UncNbT0KNjzxp0yWiYiIdBKad3Oki1DpWeaU3OBZv24VNh07hhS1bkzbYAcHPT2r0aCnUGJOSobaLDXZih0OPd1aT1v3Bc/69l1DUwvyC6YjOTlZ71CIiIgmLA74Ii9DCFSWOSU3uEJp0FOoKV5QgnqHNj3LkdjTrYVI7wvX0j3z7sDVix/j9OnTeodCREQ0YTFZJi/PNmz9Xp9TcsfH4KAnqysHjU7f/sIbnRJWVw7Kdj4TsdX7JYsXwWZI1WQtmyEVSyKsp1sLE6EvXCtRUSYsWTQfB175DZxOp97hEBERTUhMlslL755lTabkuj1Tcml0g4OeLEUrUGlPxZUez9bhoRS3xJUeoNKeCkvRCuzesytiE2VgSE+3j28g3Eyk9nRrgWd9+ycnKwPTspPx6oH9eodCREQ0IUX2nQb5Rc+eZU7JHX96DnoKVezpDq6J1heuhdKiu/DSf7+BU6dO4c4779Q7HCIiogllYtwBk0+EQQA6HR7FKbn60WPQU6ga7One+uRTfrcDDPZ0l+2MzJ5uLfCsb/95tmPfi//57X+goKAAZrNZ75CIiIgmDG7DJi89t2FXHbYiV+MpuURjwZ7u4GFf+NhkZUzB9JwU/M/+/9Z9CCMREdFEwmSZvPQc8MUpuRRK2NMdHOwLH7vSortw9eLH+P3rr3OIIRER0TiZOHcadEt6VpY5JZdCDXu6g4N94WNjMpnw1YcX4+A7Vjx36QK+9s1v8wxmIiKiIOMdHnkJYYDb7dbntQ1GQMOX1nNKrqIoOFhegarDVjg62yHdKoTBCHNSMooXlGAJk6uwwp5ubbEvfOzi42Lx5WX34fjJj/HsP/0DHn70a5g3b57eYREREUUs3rGTl57bsCNhSq6qqtiz9wWcrD6ELLUF+RZ88udxA2qzxNGXrDjw8ouYU1SK9etWTcgbfqLBvvAdW7ajsK8eGfG3/rlvdEqcN+SgbOf2Cb3dXQiBz8ydjZzMdLz+P7/BhdpzeOjhRxAdHa13aERERBGHPcvkJYSA1GkadvGCEtQ7tOlZ1mNKrq2hCZs2bIajZj9Kza3ITxTDEn+jQSAvASg1t8JRsx+bNmyGraFpXOMk7ZS/U6l3CGGNfeGBmZKWgm+ueBDdzZfwq395Qe9wiIiIIhKTZfISBv16lsN5Sq6toQlbn3wKxaY6nypkgOc86GJTHbY++RQT5jDU3WPHn//lX6HH7tA7lLA22Be+6/m9uOdb38fV9FJ8GDUDJwzT8GHUDFxNL8U93/o+dj2/Fxs3rOZOjE+Jjo5CbtYUxMXH6R0KERFRROI2bPIyCINuybJ3Sm7Nfp8TzpGM95RcVVWxY8t2v3svASDKKLDQ0oYdW7Zj955dTATCyKu/exOLcwRe+92b+MbXHtU7nLDHvvCxu3i1Efd+bpneYRAREUUkJsvkpWfPMhCeU3L37H0Bhe76McULeBLmwr567H1uHzZuWK1xdBQsRw8fxrwpJtQcPhS2yTIH0YU/l0uBrakd354xQ+9QiIiIIhLvhMhLGAQg9ZmGDYTflFxFUXCy+hBKzYH1WmfEC1RaK6GsWcnkJAw4nNfR294AkSjQ29YAh/M6zGG0DZaD6CLHlTobcqYWID4+Xu9QiIiIIhLvzMlLCAOk1Pa8Y3+F05Tcg+UVyFJbAAQ+mCxHtuJgecWE3IYabhXON958C7miA4AROaITbx58G48+8kW9w/KJraEJZVt3YLpaN/Amz/Dv3cFBdHloRWPNfmw6dgxby7ZxsFYIunDZhjvmLdQ7DCIioojFAV/kJQR0m4Y9VLhMya06bEWuRZu1ss0S1dYqbRYLE6qq4tndz2Pz2nU48uufIL/5MOYq5zDPfQFzlXPIbz6Moy/9FJvXrsOzu5+Hqur7Rs6gQxUVyLJ4/unMtghUvvuuzhH5hoPoIovb7caVa62YOXOm3qEQERFFrNAp15Du9Bzw9WmDU3KVNStxsLwC1dYq2DvbIFUFwmiCJSkFRSXFeFrHqqOjs12Tc6EBwGQQsHe2+fWccKvIDhWuFc7evj44W69BJHriFULA2XoNvX19iI2J0S2uW+EgushzrbEZScmpmDx5st6hEBERRazQvJMmXeg94GskoTwlV7q1rXRKVfHpceHeczpY4VxoaUNUjO8VzhTVU+Es2/mMbgnzH8orkI0ODN2UkyU6UP72e/jSsi/oEpMvOIgu8ly4VI875tytdxhEREQRjduwyUuEUGU5HAiDtgmoMN76vStbQxM2bdgMR81+lJpbkZ8ohlW3ByuypeZWOGr2Y9OGzSGzhVarCqdeW7Ir3n4bOQk3xp1rEXi3/C1d4vHF4CC6QI5kAzxvWJywVkJRfHtTh4JHSolL9U2YNXu23qEQERFFNCbL5OWpLDNZ9pU5KRmqW5uvl+KWsCSljPqYSOg51aTC6fZUOMdbf78L9mYbDOLG2A1CwN5sg8sVmknkJ4PoAjc4iI701dbRCWGKRUZGht6hEBERRTRuw6ZPGASkymTZV8ULSnD0JSvyEgJfy+YQKCopvunnI6HnNBSP2vrFc/+CMydPIi42+paPtTt7kSM6RvxcjujAD/7Xk7DEx95yneu9/Zg5Zw42rF3pd7xjUXXYinyNB9GFYlvERFJ78Spm3zkPQmgzM4GIiIhGxmSZvEKxZzmULVm8CAdefhF5aA14LZshFU8vXnTTz0dCz2koHrX19a8+iu0nT8HSchpTzT6cMX6TpDPXAuSiFnCO/vSrDgOciYX4xtce9T/YMdJ7EB1p71J9M7782FK9wyAiIop43IZNXgZhCImjo8KFyWTCnKJSNDoD+5o1OiXmFi+8aZU0UnpOQ/GorclJifjpz3Yi/bNfQXWnGe4gvVvklhI1XWZkLPoKfvrTnUialBiU1xmJXoPoKDjsdgd6nP3Iy8vTOxQiIqKIx2SZvIQQYGnZP+vXrUKtMReuMW5fd6kStcZcrFv7+E0fEyk9p6Fa4RRCYM3q72DTD8vwniMDnX0+VJj90NnnxnuODGz8v2VYveo74751Vo9BdBQ8tZeuYtbsOSE14Z6IiChSMVkmLw748p/RaMTWsm2otKf4nTC7VIlKewq2lm0b9cY3FCuyYxHqFc5ZMwvx81/sQnN6Mc71RGmy5tmeKDSlF+Pnv9iFWTMLNVnTX+M9iI6C62JdE2bdMUfvMIiIiCYEJsvk5Tk6Su8owk92ZjrKdj4DqyvH5y3ZjU4JqyvHpzODQ7Ui669wqHDGxcbgr/56C+Z/ZTUqOxMD2jFQ2ZWIex9bg7/+6y2Ii43ROFLfFS8oQb1Dm++fWw2io+Dr7etHYuL4beMnIiKayJgskxcry2OXnZmO3Xt2wVK0ApX2VFzp8VThhlLcEld6gEp7KixFK7B7z65bJspA6FdkfRVOFc5HvvxF/HDn36NazUPzLYZ2fVrTdaBazcOWnf+ARx5eHpwA/bBk8SLYDKmarGUzpGLJKIPoKPjSJifi2rVreodBREQ0IbD5jLyEgclyIIxGIzZuWA1lzUocLK9AtbUK9s42SFWBMJpgSUpBUUkxnl68yK8jj4TBCGjYRqtXz+l4HrWlhZysDPzz7p9h7drNmIJ6n593Wubgud0/C5meUu8gupr9AQ2Ju9UgOhofaSmTcM1WByA0KvxSSh5hRUREEYt3PeRlYGVZEyaTCcuXPqDZWbTmpGSozVKTrdh69pyO51FbWjEYDIhDv1/PiRMuGAyhtWln/bpV2HTsGFLUujEdPzY4iO7ZUQbR0fhwu91obm3UOwwAwI9+9CM0NDRg165deodCREQUFKF1R0e6Ejw6KiRFSs/peB21paUPPjyNSf3+JfeJ/a04cerjIEU0NuMxiI6Cy3m9F6/94X18fLkVX3zoEb3DQX9/P3784x/jl7/8Jbq7u/UOh4iIKCiYLJOXZxu23lHQp0VSz+l4HLWlpQO/PYDbEvzrGZ9uUbD/lf1Bimjsgj2IjoLn/IUr+PV/v4mMvNnY/P2/QG5urt4h4ZVXXoGqqjAYDNi3b5/e4RAREQUFk2Xy8kzDZrYcasKxInsz4VThlFKi6eolRI+wbbmj14132izo6B3eTB5tFGi6eikkf5aCOYiOtHe9tw+/+8P7qD51Gd9ZtRFf/NJDiIrS5lizQO3cuRN2ux1OpxN///d/H5Lf70RERIFiskxenIYdusKtIjuacKlwnj5zHgl9w7dgn+2JQktWCf5xzx60ZBbj7AhnMif0teLjsxfGI0y/DQ6i2/X8Xtzzre/janopPoyagROGafgwagauppfinm99H7ue34uNG1Zz67VOai9ewYv/9QamTJ2F7/7ZnyMvL0/vkLxOnjyJM2fOeH/f0dGBd955R7+AiIiIgkSEa3I0f/58eeTIEb3DiCjvvPMO2q6exGdL7tFsTUVRcLC8AlWHrXB0tkO6VQiDEeakZBQvKMESPydDT2S2hiZsffIpLLS0+TWkabAiG2pbaVVVxd7n9uGEtRI5shXZZgnTkCFmilvC5hCoF6mYV7IQ69Y+Pq6J24/+5seYcvVdxJo87yn2qxLVPZPw8Df/BA996UHv4w68+nu89vKLKEro8lahr7vcaM27H//n//zFuMVLkeF6bx/eqaxBa4+Cx772LeTn5+sd0jCrVq3Cr371K6jqJy0KS5cuxe9//3sdoxpOCHFUSjlf7ziIiCh8MVkmr3fffRetlz/EZxcEniyrqoo9e1/AyepDyFJbkGvBDdOcVbdEvUPAZkjFnKJSrF+3SrcKVjgl9LaGJuzYsh2F7nqfjgFqdEqcN+Rg219tD6lEeajBr//NjtrS6+v/3bUbUBzjOc+26bpErSkfW3dsQVbGlGGPvdbYjLKtZZiuXkV6nOdaVX8Wdu39xXiGTGHuwqWrePvwCcy7ZwEeXLoM0dHReoc0THd3N9LT09Hb23vD9djYWJw/fx45OTk6RTYck2UiIgpUaGQAFBKEEJrMwrY1NKFs6w5MV+tQahYAhid1RoNAXgKQh1Y01uzHpmPHsLVs27gmdJ9O6POHJvRuQG2WOPqSFQdeflH3hH7QYM/p3uf2odLHiuzuca7I+kvro7a0cP7CFcReb4GMljjRHYfszyzCP39v402/jlkZU/DPu3+Gn/7TbnxwrALzEq8j1tGCC5eu4raCqeMcPYWjtvZOvHX4JL69ch0KCgr0Duem9u3bN+LRaFJKPPvss/ibv/kbHaIiIiIKDlaWyeu9995D44XjWFQ69jfiw2Wr8NCE3tcKba0xd9wT+tGEakU2Euz88c9gOv0mTitpWLN5M0qKfN9tYa0+iud3/RyzjS1QZj+IJ//3nwUxUooUR46fghKThkdWPKp3KDclpUReXh7q6upG/PykSZPQ3NwcMhVxVpaJiChQvJMmLyECO8tXVVXs2LLd70QZAKKMAgstbdixZTt279kV1EroDQl9jG9xZsQLpKh12PrkUyHT+xuKFdlIUXmoGrflz8E/lv0QiQkWv55bUnQPZu36ObZv+2tcPFwdcCzh1CZAY3e1oRX3PfhZvcMY1TvvvIOOjo6bfl5VVbzyyiv4xje+MY5RERERBQ8ry+RVWVkJ27kjuG/hvWN6/rO7n4ejZr9PldqbaXRKWIpWYOOG1WNeYzSqqmLj+u+iJKre74Qe8FTAra6coCf0pB8pJX776ptY8dCDAb2BFOg64dT3T4FRFAXPvfQqnv5hGWJjY/UO56aWLVuGN954Y9TH3H333Th27Ng4RTQ6VpaJiChQPDqKvALpWVYUBSerDwWUKAOeCu4JayUURQlonZvZs/cFFLrHligDngp4obsee5/bp21gFDKEEHj04aUB77QIZB1bQxM2bdgMR81+lJpbkZ8obkiUgU/6/kvNrXDU7MemDZtha2gKKGbSh62hCZnZuSGdKNfX1/t0PNSZM2dw8uTJ4AdEREQ0Dpgsk1cg5ywfLK9AltqiSRw5shUHyys0WWuocEnoaWIbbBMoNvnWTw94vieLTZ42ASbM4UVKidNnL2LG7XfoHcqoDh8+jP7+fgghRtzBEB0dDSEEent7UVGh/b/fREREemCyTF6BJMtVh63I9a+186ayzRLV1iptFhsiHBJ6mti06vsfev4tha6Ozm78x4E/oN9gwfx7x9b+Ml6++tWvwu12w+12jzgN2+12o6enB263G0888YQOERIREWmPyTJ5BbLt1NHZPmyb6FiZDAL2zjZN1hoqHBJ6mtjYJjAxSClx9MRH+I/XKnDPwi9gzbqNSEhI0DssIiIi+hQmy+QVSGVZurWtZElV+y3O4ZDQ08TFNoGJob2jC7858AfY2l3Y9L0/R2npwhErtURERKQ/njdCXp5k2f/nSSmR1uf2fDdpk4tCGLX/1gyHhJ4mrk/aBAL/IRpsE+CxYqHl47MX8N6Rj7Fk+cMoLi4JeIgcERERBRffziavsSbL9sv1mN/shKFfm2NrFLeEJSlFk7WGEgZtj9UJRkJPExfbBCJbY1MLKo+dxfonvo+SkgVMlImIiMIAk2Xy8hwd5X+23FRZAwlA6dbm2BObQ6CopFiTtYYyJyVDdWtzrniwEnqauNgmELkczut4rfwwHv3qtzBlyhS9wyEiIiIfsTRGXr5WltV+F5oPHYFUPNuaG8orIQCkuMzodQxsdRbA9bjeMe0otRlS8fTiRf4/8RaKF5Tg6EtW5GkwRydYCT1NXGwTiExutxuvlx/C/AWfx+zZs/UOh4iIiPzAZJm8hBDwpbDs7u3DhV+9gr72ThiioyHdbgBADAyI7kyAAQJugxu9sX2Qwr9KbqNTYm7xQphM2n9rLlm8CAdefhF5aA14rWAl9DRxCYMRcGu4HtsEQsL7VccRPzkDX1iyRO9QiIiIyE+8myIvX7dhRyVaUPJPO3D65y+g7YPTkANTdw1SQoEB12N60ZXcDWnwL1F2qRK1xlw8u/bxsYR/SyaTCXOKStFYsz+gicPBTOh9pSgKDpZXoOqwFY7Odki3CmEwwpyUjOIFJViyeJGu8ZH/zEnJUJulJlux2SYQGs7WXsLlhm488b3VnHhNREQUhvh/b/LyZ8CXyRyPOU9tQpQl/obrsUmJ+K3JiH7pX4nMpUpU2lOwtWwbjEZtB3ENtX7dKtQac+FSx9a7PJjQrwtSQn8rqqri2d3PY/PadTjy658gv/kw5irnMM99AXOVc8hvPoyjL/0Um9euw7O7n4eqaru1l4KneEEJ6h3a9CyzTUB/re0dqKj+CN/+k1WIj4+/9ROIiIgo5DBZJi9/z1nubWpFX0c3DNFRECYjDNFRULrt+OFTT8HqykGj07e1Gp0SVlcOynY+g+zM9LGG7xOj0YitZdtQaU/xO2Eer4T+ZmwNTdi0YTMcNftRam5FfqIYVoU0GgTyEoBScyscNfuxacNm2Bqaxj1W8t+SxYtgM6RqspbNkIolbBPQTV9/P177wyF88cuPISsrS+9wiIiIaIyYLJOXv8ly06EjgNuNrMULsehff4rMBxYCbjcM569g955dsBStQKU9FVd6PNtCh1LcEld6gEp7KixFK7B7z66gJ8qDsjPTUbbzmZBN6Edia2jC1iefQrGpzuct5BnxAsWmOmx98ikmzGHA2ybg4/fkzYRCm8BEJqXEG28dxsw59+Izn/mM3uEQERFRAIQ/yVEomT9/vjxy5IjeYUSUU6dOoerd3+GhJZ/16fFtxz8CIJFy951Drp0CIJBy9x0APumtrbZWwd7ZBqkqEEYTLEkpKCop1rW3VlVV7H1uH05YK5EjW5FtljANqdQqbgmbQ6BepGJeyUKsW/u4LhVlVVWxcf13URJVjyij/9t0Xaon0d+9Z5cu8ZPvVFXFpg2bUWyqG/PfdZWSi2d/8XP+Xeuk+uhJXOt0YfXaDRH7hkV0dDRcLtcN10wmEzo7O2E2m3WKajghxFEp5Xy94yAiovDFZJm8PvroI1jffhUPPfg5vUMZV6Gc0APAs7ufh0ODoWSWohXYuGG1hpFRMAzuIlhoafMrYR5sE9Br9wMBl6/W423raWz63g+QmJiodzhBw2SZiIgmish825vGxDMNe+IxmUxYvvQBLF/6gN6hDKMoCk5WH0KpObDBTxnxApXWSihrVkZstStSDLYJ7NiyHYV99T69SdLolDhvyEHZzu1MlHXS1d2Dg+8dxx+vWh/RiTIREdFEwp5l8vK3Z5mC72B5BbLUFk3WypGtOFheoclaFFzZmekh3fdPN3K5FLx68H088OBDyM/P1zscIiIi0ghLTOTlz9FRND6qDluRb9FmrWyzRLW1KiQr6DSc0WjExg2roaxZOWqbwNM8U1tXUkq89V41cgpmY0Fpqd7hEBERkYZueYclhPh/AB4C0CylvHPg2o8BPAygH8AFAKuklJ1CiHwAHwM4O/B0q5Ryw8Bz7gGwD0AcgN8B+DMppRRCxAD4VwD3AGgD8HUp5WWN/nzkB882bGbLocTR2T7seKixMhkE7J1tmqxF4yeU2wQIOPHRWXT2Cmz4o69ACG1+VomIiCg0+LINex+AZZ+6dhDAnVLKuQDOAfjLIZ+7IKW8a+DXhiHXdwNYB6Bw4NfgmqsBdEgppwP4CYBn/P5TkCaEEGCuHFqkW9V2PVXRdD2iiexaYzOOnLyIb3/ncURHR+sdDhEREWnslsmylLICQPunrr0ppRy867YCyBltDSFEJoBEKeVh6WmK/VcAKwY+/QiAfxn4+D8BLBZ8e14X7FkOPcKg7fE/wsjtukSBcrvdaGnrwOtvV+ErX/9jpKSk6B0SERERBYEWd85/CuDfh/y+QAhxHEA3gB9KKd8DkA2gfshj6geuYeC/dQAgpVSEEF0AUgC0fvqFhBDr4KlOY+rUqRqETkNxG3boMSclQ22WmmzFVtwSliTe1BMF4tiHp2E9fhaWhETc94UvYebMmXqHREREREESULIshPi/ABQAvx641ABgqpSybaBH+bdCiDsAjHSnP5iVjfa5Gy9KuRfAXsBzznIgsdNwvb29iOKgoJBSvKAER1+yIi8h8LVsDoGikuLAFyKaoJpb2nD01CX82Z//JZKTk/UOh4iIiIJszJmREGIlPIO/Fg9srYaUsg9A38DHR4UQFwDMgKeSPHSrdg6AawMf1wPIBVAvhDABmIRPbfum8eF0OhEXE6V3GDTEksWLcODlF5E3fKOF32yGVDy9eJEGUU1MiqLgYHkFqg5b4ehsh3SrEAYjzEnJKF5QgiWcSh3RFEXBG+9W40uPPMZEmYiIaIIY052dEGIZgKcA3CeldA65ngagXUqpCiGmwTPI66KUsl0I0SOEKAFQBeBPAPx84GkHAKwEcBjAYwDekmyc1YXT6URsNJPlUGIymTCnqBSNNfuRET/2rdiNTom5xQuZzI2BqqrYs/cFnKw+hCy1BfkWfLIt3g2ozRJHX7LiwMsvYk5RKdavWwWjUdtec9LfoZoTyJpaiLvuukvvUIiIiGic3HLAlxDi3+BJZG8XQtQLIVam0EsWAAAcuElEQVQD2AUgAcBBIcQHQohfDDx8EYAPhRAn4BnWtUFKOVgl3gjgeQC18Bw39frA9V8CSBFC1AL4AYCntfmjkb8c9h7ExcXoHQZ9yvp1q1BrzIVLHdt7SC5VotaYi3VrH9c2sAnA1tCETRs2w1GzH6XmVuQnimH940aDQF4CUGpuhaNmPzZt2AxbQ5NOEVMw1F9rRG1dKx55lMdDERERTSQiXIu48+fPl0eOHNE7jIjym3//N6TFuTB75nS9Q6FPsTU0YeuTT2GhpQ1RRt9v1l2qRKU9BWU7n0F2ZnoQI4w8/JoTAPT3u/Dr/3oDj3ztO5g1a5be4YSE6OhouFyuG66ZTCZ0dnbCbDbrFNVwQoijUsr5esdBREThy5dzlmmC8FSWY/UOg0aQnZmOsp3PwOrKQaPTtze4Gp0SVlcOk7YxUFUVO7Zs9ztRBoAoo8BCSxt2bNkOVdX2nGwafxWHj2LGnXczUSYiIpqAmCyTl9PhQGwst2GHquzMdOzeswuWohWotKfiSo/nOKihFLfElR6g0p4KS9EK7N6zi4nyGOzZ+wIK3fV+J8qDoowChe567H1un7aB0bi6eLkO19qu44tfeljvUIiIiEgHnPZDXk6HHXFMlkOa0WjExg2roaxZiYPlFai2VsHe2QapKhBGEyxJKSgqKcbTnMw8Zoqi4GT1IZSaA+tNzYgXqLRWQlmzkn8XYeh6bx/eOvQBvrVyHWJjueOGiIhoIuIdHHk5HA5uww4TJpMJy5c+gOVLH9A7lIhzsLwCWWoLRj4C3j85shUHyyv49xSG3nqvGnffuxAFBQV6h0JEREQ64TZsAuCppqmqC9FRPDqKJraqw1bkWrRZK9ssUW2t0mYxGjcfn7uI7l6BJQ8u1TsUIiIi0hGTZQLgGWgkhEC4Tkcn0oqjs33Y8VBjZTII2DvbNFmLxofd7sB7Nafw1W98G1F885CIiGhCY7JMAICYmBgkTU5BW0eX3qEQ6Uq6tZ1gLVVF0/UoeKSUePPdKiy8bwmys7P1DoeIiIh0xmSZvPLyp+FaQ5PeYRDpShiM2q5n5GiIcHHi1BkgKhH33Xe/3qEQERFRCGCyTF65eQVobOnQOwwiXZmTkqG6tWlHUNwSlqQUTdai4Oro7Eb1h7V47OvfhNGo7RsmREREFJ6YLJPX5MmTYXf26h0Gka6KF5Sg3qFNz7LNIVBUUqzJWhQ8brcbb7xjxReWPYy0tDS9wyEiIqIQwf2B5NXc3IzJifF6h0FhSFEUHCyvQNVhKxyd7ZBuFcJghDkpGcULSrAkjM59XrJ4EQ68/CLy0BrwWjZDKp5evEiDqCiYao6fgmVyJkpKFugdChEREYWQ8Lh7pXHReK0eqclJeodBYURVVezZ+wJOVh9CltqCfAs+mSTtBtRmiaMvWXHg5Rcxp6gU69etCvktriaTCXOKStFYsx8Z8WOvMDc6JeYWLwybNwkmqpbWdnx4tg7f/f7/hhDa7CggIiKiyMBt2OR1zVaHKanJeodBYcLW0IRNGzbDUbMfpeZW5CeKYUcuGQ0CeQlAqbkVjpr92LRhM2xhMERu/bpVqDXmwqWOrXfZpUrUGnOxbu3j2gZGmlIUBb9/x4ovPfIYkpL4RiERERHdiMkyAfBUCFuam5CSPFnvUCgM2BqasPXJp1BsqvO5+poRL1BsqsPWJ58K+YTZaDRia9k2VNpT/E6YXapEpT0FW8u2hXwVfaI7VHMCWVNn4K677tI7FCIiIgpBTJYJANDe3g5LfAyiorhllEanqip2bNmOhZY2RBn927YaZRRYaGnDji3boaranmestezMdJTtfAZWVw4anb4lzI1OCasrB2U7n0F2ZnqQI6RA2BqaUFvXikce/Qq3XxMREdGImCwTAMDlcjFRJp/s2fsCCt31fifKg6KMAoXueux9bp+2gQVBdmY6du/ZBUvRClTaU3Glx3Mc1FCKW+JKD1BpT4WlaAV279nFRDnE9fe78Oa7NXjkj74Os9msdzhEREQUopgdEQBACAEptTlbliKXoig4WX0IpebAKnEZ8QKV1kooa1aG/AAso9GIjRtWQ1mzEgfLK1BtrYK9sw1SVSCMJliSUlBUUoynw2ji90T3nvUoZtxxN2bPnq13KERERBTCeGdHAAaTZb2joFB3sLwCWWoLgMC3rebIVhwsr8DypQ8EHtg4MJlMWL70gbCJl0Z26Uo96luc+N4fP6x3KERERBTiuA2bALCyTL6pOmxFrkWbtbLNEtXWKm0WI/LB9d4+lFcex2Nf/xZiY2P1DoeIiIhCHJNl8pJgskyjc3S2DzseaqxMBgF7Z5smaxH54q33a3DX/FJMmzZN71CIiIgoDDBZJgBAUlISFLcBDU0teodCIUy6tZ1gLVVF0/WIbubjcxfRfR14cOkyvUMhIiKiMMFkmQAAMTEx+OLDf4Ty947A7XbrHQ6FKGHQ9txgYeTYBAq+tvZOvFd9Cl/75h8jKipK73CIiIgoTDBZJq+5c+ciOX0qjn14Wu9QKESZk5KhurXZrq+4JSxJKZqsRXQz/f0uvFZ+CMu//BiysrL0DoeIiIjCCJNl8hJC4Msr/gjHPrqE7h673uFQCCpeUIJ6hzY9yzaHQFFJsSZrEY1ESomD71px28x5uOeee/QOh4iIiMIMk2W6QUpKCj53/xK8/f4RvUOhELRk8SLYDKmarGUzpGLJ4kWarEU0kg9OnYFDicLDX14BIbR5k4eIiIgmDibLNMxnP7cITsWE8xeu6B0KhRiTyYQ77ilBgyOwrdiNTom5xQthMrFnmYLjWmMzjp66jG9/53H2KRMREdGYMFmmYUwmE1Z85Wt4t+pD9PX36x0O6cjtdqPH7oCtoQkfn7uIyurjiEqagmPX0+BSx5Ywu1SJWmMu1q19XNtgh+jt68O1xmaoqrbTuyk8OJzX8fpbVfijr30LycnJeodDREREYYplHRpRfn4+Zs35DA5Vf4DPf7ZI73AoCKSUaGlth/P6dbhcKuwOJ3rsDtidfXBc70WPoxfO672IN1swKWkyJk9OQVJyAdZt+gpWrd2Mzd96GMXRdYgy+r691aVKvN2eiL/44WbP2nGxMBoDn7Dd19+Pelsj6q81wdbcga6e65icnIKe7nbMmpaDuXfMQGKCJeDXodDndrvxevkhzF9wP2bNmqV3OERERBTGhJTaTLYdb/Pnz5dHjrCvNpicTid+8vd/h4WfmYEZt+VpktSQvvr7XbhSdw2Xrl7DlWstMCdMxqSkJERFRSNh0iRPQpyUhEmTJmHSpElISEi46Vbpuro6/K/V30TB9bNIj7v1vyON1wVOKllY8ug3ERNjgqPHDrvdDpPJAHNcDOJioxEXE434uGjExkQjPi4W8fFxMMfHIT4uDvHxsYiOioIQAn39/bBda/Imx53dTuTmFeC2wttRUDAN2dnZMJlMaG5uRk11FY4dsWLKZDPmzJyGgrwcGAzcVBOp3rceQ1d/NB7/0zX8ew6S6OhouFyuG66ZTCZ0dnbCbDbrFNVwQoijUsr5esdBREThi8kyjerChQsoP/h7NNqu4rap6bh9ej5ystI5LCeM9NgduHDpKi7bmtHQ3IHcvGmYfec83H777QFvUVVVFf/4t3+F6vIDyOirQ3a8GybDJ98bilvC5jSgMSYXRYu/jB/85ZYb3nSRUuL69etwOByw2+1wOBwDH/egp7sLPd3dsNu74bD3oKe7B1KqiI2JRr9LRc7UfG9ynJOTM2r/c39/P06dOoWqw++jo7URswtzkJWeBkBAiMFf8H4MDHwMDPm8AAYfN8LzYmNjvMk86ePCpat47+g5PPG9H8Bi4U6CYGGyTEREEwWTZfJJZ2cnTp78EB8crUF3ZysK8zIxszAfU9JSmByEGCklmlvaUHu5DldsLbBfd2HmrDsx6445mD59OmJjYzV/TUVR8Or+/8Z75b9HV0sDpOKCMEVhUlomPrd4GR565FFNhnn19/fD4XDAYrGMeWhTQ0MDaqqr0NLUCCndADxfMykl3FJCSrfn924JiYHfuyWkxCefG/jlea4bbtUNp9MJVXUhPi4WcbHRiI+NQVxsFOJjP6mSx8cNVMrj4xAbEx30nx0pJXrsDjQ0tcDhcGLenTM12yEyuLbd4USCxQyLOV7Xfws6u7rxm1ffwcrVmzB16lTd4pgImCwTEdFEwWSZ/Nbc3IwTJz7AB0erIZVeFBZkYVbhNExOStQ7tAlLURRcrW/AxSs2XLa1IDY+AbPvvAuzZs9Gbm4ut9CPk8FkfrBKbrd7tpr3dHfB3tPt+a+9Bz093VBc/YiLiUFcXAziY6MHtqFHwRwfi/i4OABAb18/+vr70N+voK9fgcEA5GSlY2pOFuJiYwAALW0dOHfhMowGgQSLGdFR0Whua0dLezeaW7tgjIpGTm4B+l39UB2tuHvODKSlpiA+zr83TVRVRXNrO641NKGhpQONLZ0wmKKRmJiErq5OXHfaYY6Pg8Uci8T4OJjjo5GYYEFighmJCQlITDAHbfq5oij49/0HseD+5ViwoDQor0GfSE1NRWdn5w3XTCYTurq6EBMTo1NUwzFZJiKiQDFZpjGTUsJms+HEB8dx4ngN4qMNmFGQhdunF8BiCZ3qQqRyOJy4eKUel+oaYWtqR3ZOPmbdORczZ85ESgor/qHO5XIN2XbuSa57eno8SXVPl2drd1w84uPMiIuPR2xsLPr6+lB77gwuX6zFpIRYSLcb/W4j5n3mXhgNBnR2tuO68zoys7KRkzsVWVlZSExMhBACiqLgrfJyXLlUi4YGG4xCIiUpASlJFqSlTEZqajKSkxK9b6w4nNfR0NiMa40taGzrQmt7D9KmpCOvYDry8guQm5uLpKQk7/eZoijo6upCV1cXOjs7Pb/a29DR3oaOjjY47d1YVDwHs2ZM0/xr+ebbhxCdmIWvfeOb/L4fB4qiQFGUG64ZjcaQO6KLyTIREQWKyTJpwu1249KlSzhx/BhOnTyO1EnxuC0vE9MLpjJx1oiUEq3tnZ7+4/pmdDn6MGPmHZg1+04UFhYiPj5e7xBpnCiKgvr6ekgpkZeX5/cgKyklurq60NTUhMbGRlyzXUWDrR5dHe2YlBgPRVFxvV/F1PwC5BdMR15ePrKzswOqGl67dg3//tKvkGIx4vOfvRfR0dokVidPn8Opi83Y+MSfhVRVk/THZJmIiALFZJk053K5cP78eXx08gTOfHwKCfHRyM9Jw/SCPKQmJ7Hy4wdVVVF/rREXLtfjsq0Fpuh4zL5zHmbOmo38/HxuryZN9ff3o6WlBSaTCWlpaZpPk+7v78drrx7AuY+OY9n9RchITwtovabmVhz4QxXWP/F9pKUFthZFHibLREQUKCbLFFSqquLKlSv/v727D7Kqvu84/v76wKIoLss+ILssC+gKKvgULRKjkoeGRmtiLD4kTmhrY6OxaZ04Vs1MZ/qXbdKZ1NppZzpNpqlNgoZidNpJxqdoTAsqNquwsCorsCzL0/KoIaAsv/5xD3j3sAsrso/3/Zph9t7fPUfP+XA5s597fudcVq1spnl5E2n/XhrqqpnWMInaM6v9apce7PntXtaua+ft9Rtp37iNmomTOPf8WZxzznSqq6v9sEHD3vLly3ly8WPMOqeOSy86/5je07/du4+Fjz/NNV+8hZkzZ/bDVirv4N9TfX09b7zxRo83C2xoaGDdunW8//77/XaNel9ZliVJH5VlWQMmpcTmzZtZtXIlzcub2N65mcm1VUydPJGGSbXHbVrmULNl6zZWtKym9sxqGuprKRs16rBltm3fydtr17Nmwxa27/wNZzXOYMZ5M2lsbPQrcDQi7dy5k588+mPee7eTeXNnf6jLNVJKPPGz56k7axbXXPv7/biVKlb8ocaDDz7Ifffdd9gylmVJ0khiWdag2blzJy0tLaxsfo22Na2cWTWOqfUTmNYwiTFjhv/1tyklljU107RqHbOvmMv6tjWse3s1NePH0jCphorysaxbv4m1G7ZwgJM5d+YFzDj3PBoaGobcjXKk/nDgwAGef/4X/O8LzzD38lmcNXVyn9Z7adnrbNrdxW1f/ZqXIgygiGDcuHGHbhjX2tpKZWVlt2Usy5KkkcSyrCFh7969heucV7zOmy3NlJ82mobaKs6aOpnxFeWDvXkf2u533uWp55cy6rQq5t90C+XlhX3Yt28fra2ttKxsZuvWTTSecx7TZ8xgwoQJTq9WyWpra+PRHz1CbeUpXHn5xzj55N5L1rr1G3h2yQq+/o1vMnasX1c3kCKC2tpa7rnnHu6++27uuusuHn744W7LWJYlSSOJZVlDzv79+1m7di2rVjazcvlrRHqPKXXVTG2oY+KEoX+d86o33+ZXrzRz5Sc/yxWfuHLIb680FOzdu5cnf/o4ba3NzJs7m6rKisOW2f3Ouzz65HN8+Q//lClTpgzCVpa2g2V5zZo1zJgxg7a2NlasWEFjY+OhZSzLkqSRxLKsIS2lxMaNGwvFecVr7Ny+lckTq5jWUMvkSbVHPAM10Pbu28dzv3qFXXvgxltuZeLEiYO9SdKwklKiqamJ/35iEZecP5WLZk4/NOOiq6uLx558hksu/xSfuPLKQd7S0nSwLLe3t7No0SLmz5/P9ddfz+LFiw8tY1mWJI0klmUNKzt27KClpYXm5U20t62htqaCqfUTmNpQz6mnHH5n1oHS1r6RZ15cxvkXzWbe733Oa46lj2Dbtm089uMfcsL+d/jM1bM59ZTRPPvLl2D0eL5061e8ZGGQFJdlgDlz5rBkyRJefPFFrrjiCsCyLEkaWSzLGrb27Nlz6Drnt1pWUj52NFXjTqeyopzqqvFUVozr9zPPXV1d/M/LTbSu38YXb/xSt+mIko5dV1cXzz7zDC8v+QVjTx3NyWMq+KPbbu/x64o0MPJlecmSJcyZM4fLLruMpUuXEhGWZUnSiGJZ1oiwf/9+2tvb2bhxIxs3tNOxoY2tWzZz2pjRVJafTuW406mqrKC6suK43Wm7c/sOfv7cUibUn80Xrr+BMWP6/tU3kvqmo6ODXbt20djY6J2vB1m+LAPMnz+fRYsWsXDhQm666SbLsiRpRLEsa8Tq6uqis7OTTZs20bFhAx0b2ujYsJ5IXVSOG8v48tMOFehx5WP7fCOulBK/Xr6KZcvf5nPX3cDFF1/stFBJI15PZbm1tZUZM2ZQV1dHS0sLjY2NlmVJ0ogxdO6OJB1nJ554IjU1NdTU1HDBBRcAhaK7e/duNm3alJ2FXs+rK5vYvWsHFeWnM/6M06isOIPqqgqqxlcwalT3a4/fffc3PPXCS0TZGdz5jW8yfvz4wdg1SRoSpk2bxp133slDDz102NdISZI03HlmWaLw/cebN28uFOiOdja0t7Fl00bGnDKK8eMK07jLRpWxbPlq5lz1aa666mqnhEoqKT2dWQbYvn0706ZNIyI44YQT2LZtm2eWJUkjgmeWJaCsrIz6+nrq6+uB3wHgwIEDdHZ2snnzZjo6NrCtcysL/uROJk2aNLgbK0lDSEVFBQ888AD33nvvYG+KJEnHlWeWJUnSUfV2ZhkKs3OmT5/O2rVrATyzLEkaETyzLEmSjupIH66XlZWxZs2aAdwaSZL6X99u/ytJkiRJUgmxLEuSJEmSlGNZliRJkiQpx7IsSZIkSVKOZVmSJEmSpBzLsiRJkiRJOZZlSZIkSZJyLMuSJEmSJOVYliVJkiRJyrEsS5IkSZKUY1mWJEmSJCnHsixJkiRJUo5lWZIkSZKkHMuyJEmSJEk5lmVJkiRJknIsy5IkSZIk5ViWJUmSJEnKsSxLkiRJkpRjWZYkSZIkKceyLEmSJElSjmVZkiRJkqQcy7IkSZIkSTmWZUmSJEmScizLkiRJkiTlWJYlSZIkScqxLEuSJEmSlGNZliRJkiQpx7IsSZIkSVKOZVmSJEmSpBzLsiRJkiRJOZZlSZIkSZJyLMuSJEmSJOVYliVJkiRJyrEsS5IkSZKUEymlwd6GYxIRW4F1x7BqJdB5nDdnJDKnvjGnvjGnvjGnozOjvjEnmJxSqhrsjZAkDV/Dtiwfq4hYllL62GBvx1BnTn1jTn1jTn1jTkdnRn1jTpIkfXROw5YkSZIkKceyLEmSJElSTimW5X8Z7A0YJsypb8ypb8ypb8zp6Myob8xJkqSPqOSuWZYkSZIk6WhK8cyyJEmSJElHZFmWJEmSJClnWJfliDgxIn4dEf+VPf9ORLRExOsR8XhElBcte39ErI6INyLis0Xjl0TE8uy1f4iIyMbLIuLRbPyliGgY6P07XvI5FY3fExEpIiqLxkoyp54yiog/y3JojohvF42XZEbQ47+5CyNiaUQ0RcSyiLisaNmSzCki1mb71xQRy7Kxioh4OiLeyn6OK1renD7IyWN4Tk85Fb3mMVySpH40rMsy8OfAqqLnTwPnp5RmAW8C9wNExLnAzcB5wDzgnyLixGydfwZuB87O/szLxm8DdqSUzgK+C/xt/+5Kv8rnRERMAj4DtBWNlXJO3TKKiLnA54FZKaXzgL/Lxks5Izj8vfRt4K9TShcCf5U9NyeYm1K6sOh7bu8Dnk0pnQ08mz03p8Nz8hjes3xOHsMlSRoAw7YsR0QdcA3wrwfHUkpPpZT2Z0+XAnXZ488DC1NK+1JKa4DVwGURcSYwNqW0JBXudPbvwBeK1vlB9ngR8KmDn8QPJz3llPkucC9QfIe3ksypl4zuAP4mpbQPIKW0JRsvyYyg15wSMDZ7fAbQkT0u2Zx6UbxvP6D7PptTxmP4h+IxXJKkfjZsyzLw9xR+UTjQy+t/DPwse1wLrC96rT0bq80e58e7rZP98rYLGH88NnyAHZZTRFwHbEgpvZZbtlRz6um91Ah8IpuW+EJEXJqNl2pG0HNOfwF8JyLWUzj7fn82Xso5JeCpiHg1Im7PxmpSShsBsp/V2bg5dc+pmMfwgsNy8hguSdLAOGmwN+BYRMS1wJaU0qsRcXUPr38L2A/88OBQD/+ZdITxI60zbPSUU0ScCnwL+N2eVulhbETndIT30knAOGA2cCnwWERMpQQzgiPmdAdwd0rpPyPiRuB7wKcp0ZwyH08pdURENfB0RLQcYVlzKsoppfRL8Bie09P7yWO4JEkDYLieWf44cF1ErAUWAp+MiP8AiIgFwLXAl9MHXyLdDkwqWr+OwnTRdj6Y5lc83m2diDiJwhTT7f2xM/3osJyAR4ApwGvZeB3wfxExgdLMqbf3UjuwOBW8TOFsaiWlmRH0ntMCYHG2zE+Agzf4KtWcSCl1ZD+3AI9TyGRzNhWW7OfBaf3m1D0nj+E5PeR0FR7DJUkaEMOyLKeU7k8p1aWUGijczOS5lNKtETEP+EvgupTSnqJVngRuzu76OYXCzU1ezqZDvhMRs7NrtL4CPFG0zoLs8R9k/49h9Wl7LzndkFKqTik1ZOPtwMUppU2UYE69vZeAn1L4cIGIaARGAZ2UYEZwxJw6KPzyDoW83soel2ROETEmIk4/+JjC2b8VdN+3BXTfZ3PKcvIY3l0vOb3iMVySpIExLKdhH8E/AmUUpqoBLE0pfS2l1BwRjwErKUzt+3pKqStb5w7g34BTKFwfd/Aaue8Bj0TEagqfst88YHsxSMypm+8D34+IFcB7wILsF0gz6u6rwEPZGam9FO62W8rvpRrg8ez4cxLwo5TSzyPiFQpT+W+jcPfi+WBOPeS0Go/hxXrMqbeFSzgnSZL6RfgBsiRJkiRJ3Q3LadiSJEmSJPUny7IkSZIkSTmWZUmSJEmScizLkiRJkiTlWJYlSZIkScqxLEuSJEmSlGNZliRJkiQp5/8BsWOrc0HTETgAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plot_results(lscpb, facility_points_gdf, demand_points_gdf, facility_points_gdf.shape[0], \"LSCP-B\", lscpb.lscp_obj_value)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## LSCPB San Francisco Case Study Results"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 190,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "San Francisco Dataset \n",
+ "Demand Nodes: 205 Candidate Facilities: 16 Facilities Needed: 3.0 Computation Time: 0.3546009063720703\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(f\"San Francisco Dataset \\nDemand Nodes: 205 Candidate Facilities: 16 Facilities Needed: {lscpb.lscp_obj_value} Computation Time: {total_time}\")"
+ ]
+ }
+ ],
+ "metadata": {
+ "interpreter": {
+ "hash": "56b72aab97c5d88c22a6bf5872989e2e65e9296dc12395fbfb8350007c775deb"
+ },
+ "kernelspec": {
+ "display_name": "Python 3.8.13 ('geo_env')",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/notebooks/lscp.ipynb b/notebooks/lscp.ipynb
index 858e27ac..bc976fe3 100644
--- a/notebooks/lscp.ipynb
+++ b/notebooks/lscp.ipynb
@@ -906,10 +906,10 @@
],
"metadata": {
"interpreter": {
- "hash": "31b88bb145573cdebdaa7fd72fef7949ecb3dda26d5e10d4ccc660a5d07787a7"
+ "hash": "56b72aab97c5d88c22a6bf5872989e2e65e9296dc12395fbfb8350007c775deb"
},
"kernelspec": {
- "display_name": "Python 3.9.9 ('spopt')",
+ "display_name": "Python 3.8.13 ('geo_env')",
"language": "python",
"name": "python3"
},
@@ -923,7 +923,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.9"
+ "version": "3.8.13"
}
},
"nbformat": 4,
diff --git a/notebooks/lscpb.ipynb b/notebooks/lscpb.ipynb
new file mode 100644
index 00000000..73b07a7d
--- /dev/null
+++ b/notebooks/lscpb.ipynb
@@ -0,0 +1,1098 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "jupyter": {
+ "outputs_hidden": true
+ }
+ },
+ "source": [
+ "# Backup Coverage Location Set Covering Problem (LSCP-B)\n",
+ "\n",
+ "*Authors:* [Erin Olson](https://github.com/erinrolson), [Germano Barcelos](https://github.com/gegen07), [James Gaboardi](https://github.com/jGaboardi), [Levi J. Wolf](https://github.com/ljwolf), [Qunshan Zhao](https://github.com/qszhao)\n",
+ "\n",
+ "The Backup coverage problem is refered to as an extension of the LSCP (location set covering problem) as it seeks a solution to LSCP while selecting a set of facilities that optimizes for backup coverage (Church L., Murray, A. (2018)). If you are unfamiliar with LSCP the following [notebook](https://pysal.org/spopt/notebooks/lscp.html) explains the problem formulation in detail.\n",
+ "\n",
+ "Daskin and Stern (1981) posed the following problem which Church L., Murray, A. (2018) refers to as LSCP-B (location set covering problem with backup):\n",
+ "\n",
+ "_Find the minimum number of facilities and their locations such that each demand is covered, while maximizing the number of backup coverage instances among demand areas._ Church L., Murray, A. (2018)\n",
+ "\n",
+ "**LSCP-B can be written as:**\n",
+ "\n",
+ "\\begin{equation*}\n",
+ "\\textbf{Minimize }\\sum_{j} x_j\n",
+ "\\end{equation*}\n",
+ "\n",
+ "\\begin{equation*}\n",
+ "\\textbf{Maximize }\\sum_{i} q_i\n",
+ "\\end{equation*}\n",
+ "\n",
+ "_Subject to:_\n",
+ "\\begin{equation*}\n",
+ "\\sum_{j\\in N_i} x_j - q_i\\geq 1 \\quad \\forall i\n",
+ "\\end{equation*}\n",
+ "\n",
+ "\\begin{equation*}\n",
+ "x_j \\in \\{0,1\\} \\quad \\forall j\n",
+ "\\end{equation*}\n",
+ "\n",
+ "\\begin{equation*}\n",
+ "q_i \\geq 0 \\quad \\forall i\n",
+ "\\end{equation*}\n",
+ "\n",
+ "_Where:_\n",
+ "\n",
+ "\\begin{array}{lclll}\n",
+ "& & i & \\small = & \\textrm{index referencing nodes of the network as demand} \\\\\n",
+ "& & j & \\small = & \\textrm{index referencing nodes of the network as potential facility sites} \\\\\n",
+ "& & S & \\small = & \\textrm{maximal acceptable service distance or time standard} \\\\\n",
+ "& & d_{ij} & \\small = & \\textrm{shortest distance or travel time between nodes} \\quad i \\quad \\textrm{and} \\quad j \\\\\n",
+ "& & N_i & \\small = & \\{j | d_{ij} < S\\} \\\\\n",
+ "& & x_j & \\small = & \\begin{cases} \n",
+ " 1, \\quad \\text{if a facility is located at node} \\quad j\\\\\n",
+ " 0, \\quad \\text{otherwise} \\\\\n",
+ " \\end{cases} \\end{array}\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "_The excerpt above was quoted from Church L., Murray, A. (2018)_\n",
+ "\n",
+ "\n",
+ "This tutorial solves for both LSCP and LSCP-B using `spopt.locate.coverage.LSCP` and `spopt.locate.coverage.LSCPB` instances that depend on a 2D array representing the costs between facilities candidate sites and demand points. Costs are calculated from a 10x10 lattice with simulated points."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/opt/anaconda3/envs/geo_env/lib/python3.8/site-packages/spaghetti/network.py:36: FutureWarning: The next major release of pysal/spaghetti (2.0.0) will drop support for all ``libpysal.cg`` geometries. This change is a first step in refactoring ``spaghetti`` that is expected to result in dramatically reduced runtimes for network instantiation and operations. Users currently requiring network and point pattern input as ``libpysal.cg`` geometries should prepare for this simply by converting to ``shapely`` geometries.\n",
+ " warnings.warn(f\"{dep_msg}\", FutureWarning)\n"
+ ]
+ }
+ ],
+ "source": [
+ "from spopt.locate.coverage import LSCP, LSCPB\n",
+ "from spopt.locate.util import simulated_geo_points\n",
+ "\n",
+ "import numpy\n",
+ "import geopandas\n",
+ "import pulp\n",
+ "import spaghetti\n",
+ "from shapely.geometry import Point\n",
+ "import matplotlib.pyplot as plt"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Since the model needs a distance cost matrix we start with defining our variables. In the comments, it's defined what these variables are for except for solver. The solver, assigned below as `pulp.PULP_CBC_CMD`, is an interface to optimization solver developed by [COIN-OR](https://github.com/coin-or/Cbc). If you want to use another optimization interface as Gurobi or CPLEX see this [guide](https://coin-or.github.io/pulp/guides/how_to_configure_solvers.html) that explains how to achieve this."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "CLIENT_COUNT = 100 # quantity demand points\n",
+ "FACILITY_COUNT = 5 # quantity supply points\n",
+ "\n",
+ "SERVICE_RADIUS = 8 # maximum service radius in meters\n",
+ "\n",
+ "# Random seeds for reproducibility\n",
+ "CLIENT_SEED = 5 \n",
+ "FACILITY_SEED = 6 \n",
+ "\n",
+ "solver = pulp.PULP_CBC_CMD(msg=False, warmStart=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Lattice 10x10"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Create a 10x10 lattice with 9 vertical lines in interior."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "lattice = spaghetti.regular_lattice((0, 0, 10, 10), 9, exterior=True)\n",
+ "ntw = spaghetti.Network(in_data=lattice)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Transform spaghetti instance into geodataframe."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "street = spaghetti.element_as_gdf(ntw, arcs=True)\n",
+ "\n",
+ "street_buffered = geopandas.GeoDataFrame(\n",
+ " geopandas.GeoSeries(street[\"geometry\"].buffer(0.2).unary_union),\n",
+ " crs=street.crs,\n",
+ " columns=[\"geometry\"],\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Plotting the network created by spaghetti we can verify the simulation of a district with quarters and streets."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAALtklEQVR4nO3dX4ylBXnH8e+voLFgiRjUUP50ICFUYmKwmxYlaQhoSlsivbAREwgxNtuLimhNLDRp6E1TL4yRpk3jBFESCLZdSSHGqAQlpgndOAs0AmuDQYG1qzumUZreKPHpxRzqsu6ys+d9z573zPP9JGTm/Jnn/DLLb95zzpzzTKoKSTvfryw7gKSTw7JLTVh2qQnLLjVh2aUmTj2ZN3bWWWfV2traybxJqZV9+/b9qKrecLTLTmrZ19bW2NjYOJk3KbWS5NljXebdeKkJyy41YdmlJiy71IRll5o4btmT3JnkUJInDjvv9UkeTPL07OOZi40paajtHNk/B1x9xHm3AA9V1UXAQ7PTkibsuL9nr6pvJFk74uxrgStmn98FPAz8xVih3vvpR8YaJe0Y//Snbx/09fM+Zn9TVR0EmH1847GumGR3ko0kG5ubm8cd/N5PP8JTB1+YM9Yve+rgC6PNG3NWt3lTzrYq84YeBBf+CrqqWgfWAXbt2rWtTRmXnH3G4J9iL3npGzTGvDFndZs35WyrNG+IeY/sP0xyNsDs46HBSSQt1LxlfwC4cfb5jcD948SRtCjb+dXbvcAjwMVJDiT5APBx4F1JngbeNTstacK282z8+45x0VUjZ5G0QL6CTmrCsktNWHapCcsuNWHZpSYsu9SEZZeasOxSE5ZdasKyS01YdqkJyy41YdmlJlK1reUxo9i1a1cd72+9vbSW6pKzzxjlNl9aDTTGvDFndZs35WyrMm87G5yS7KuqXUe7zCO71MRJ/Suu2+UOup03b8rZVmneEB7ZpSYsu9SEZZeasOxSE5ZdasKyS01YdqkJyy41YdmlJiy71IRll5qw7FITll1qwrJLTVh2qYlBZU/ykSRPJnkiyb1JXjNWMEnjmrvsSc4BPgTsqqq3AKcA140VTNK45t5BNyv7vwNvBV4A/hX4u6r66rG+xh10fedNOduqzFvaDrqq+j7wCeA54CDwk6MVPcnuJBtJNjY3N+e9OUkDzb2DLsmZwLXABcCPgX9Jcn1V3X349apqHViHrSP7dma7g27nzZtytlWaN8SQJ+jeCXy3qjar6mfAfcA7BieStBBDyv4ccFmS05IEuArYP04sSWMb8ph9L7AHeBT41mzW+ki5JI1s0N74qroNuG2kLJIWyFfQSU1YdqkJyy41YdmlJiy71IRll5qw7FITll1qwrJLTVh2qQnLLjVh2aUmLLvUxNw76ObhDrq+86acbVXmLW0HnaTVMuj97IviDrqdN2/K2VZp3hAe2aUmLLvUhGWXmrDsUhOWXWrCsktNWHapCcsuNWHZpSYsu9SEZZeasOxSE5ZdasKyS00MKnuS1yXZk+TbSfYnGef9fJJGN/T97LcDX66q9yR5NXDaCJkkLcDca6mSnAH8B3BhbXOIa6n6zptytlWZt8y1VBcCm8BnkzyW5I4kpx/lxncn2Uiysbm5OeDmJA0x5G78qcDbgJuqam+S24FbgL86/EpVtQ6sw9aRfTuDXUu18+ZNOdsqzRtiyJH9AHCgqvbOTu9hq/ySJmjuslfVD4Dnk1w8O+sq4KlRUkka3dBn428C7pk9E/8M8P7hkSQtwqCyV9XjwFGf+ZM0Lb6CTmrCsktNWHapCcsuNWHZpSYsu9SEZZeasOxSE5ZdasKyS01YdqkJyy41YdmlJubeQTcPd9D1nTflbKsyb5k76CStkKHLKxbCHXQ7b96Us63SvCE8sktNWHapCcsuNWHZpSYsu9SEZZeasOxSE5ZdasKyS01YdqkJyy41YdmlJiy71IRll5qw7FITg8ue5JQkjyX54hiBJC3GGEf2m4H9I8yRtECDdtAlORe4C/gb4M+r6ppXur476PrOm3K2VZm37B10nwI+Bvz8FW58d5KNJBubm5sDb07SvObeQZfkGuBQVe1LcsWxrldV68A6bB3ZtzPbHXQ7b96Us63SvCGGHNkvB96d5HvA54Erk9w9OJGkhZi77FV1a1WdW1VrwHXA16rq+tGSSRqVv2eXmhhlb3xVPQw8PMYsSYvhkV1qwrJLTVh2qQnLLjVh2aUmLLvUhGWXmrDsUhOWXWrCsktNWHapCcsuNWHZpSYG7aA7Ue6g6ztvytlWZd6yd9BJWhGjvJ99bO6g23nzppxtleYN4ZFdasKyS01YdqkJyy41YdmlJiy71IRll5qw7FITll1qwrJLTVh2qQnLLjVh2aUmLLvUxNxlT3Jekq8n2Z/kySQ3jxlM0riGvJ/9ReCjVfVokl8D9iV5sKqeGimbpBGNtpYqyf3A31fVg8e6jmup+s6bcrZVmTeJtVRJ1oBLgb1HuWx3ko0kG5ubm2PcnKQ5DF5LleS1wBeAD1fVC0deXlXrwDpsHdm3M9O1VDtv3pSzrdK8IQYd2ZO8iq2i31NV9w1OI2lhhjwbH+AzwP6q+uR4kSQtwpAj++XADcCVSR6f/fcHI+WSNLK5H7NX1b8BGTGLpAXyFXRSE5ZdasKyS01YdqkJyy41YdmlJiy71IRll5qw7FITll1qwrJLTVh2qQnLLjUx2g667XAHXd95U862KvMmsYNO0vQN3kG3CO6g23nzppxtleYN4ZFdasKyS01YdqkJyy41YdmlJiy71IRll5qw7FITll1qwrJLTVh2qQnLLjVh2aUmLLvUhGWXmhhU9iRXJ/nPJN9JcstYoSSNb+6yJzkF+Afg94FLgPcluWSsYJLGNfcOuiRvB/66qn5vdvpWgKr622N9jTvo+s6bcrZVmTd0B92Qsr8HuLqq/mR2+gbgd6rqg0dcbzewG+D888//rWefffa4s8dYwSPtNNtZcfVKZR+ygy5HOe+XfnJU1TqwDltH9u0MHmtvl6RfGPIE3QHgvMNOnwv817A4khZlSNm/CVyU5IIkrwauAx4YJ5aksc19N76qXkzyQeArwCnAnVX15GjJJI1q0N74qvoS8KWRskhaIF9BJzVh2aUmLLvUhGWXmjipf7I5ySZw/JfQwVnAjxYcZ15TzgbTzjflbLAz8v1GVb3haBec1LJvV5KNY73kb9mmnA2mnW/K2WDn5/NuvNSEZZeamGrZ15cd4BVMORtMO9+Us8EOzzfJx+ySxjfVI7ukkVl2qYlJlX3KCyyTnJfk60n2J3kyyc3LznSkJKckeSzJF5ed5UhJXpdkT5Jvz76Hk9lQkuQjs3/TJ5Lcm+Q1S85zZ5JDSZ447LzXJ3kwydOzj2ee6NzJlH0FFli+CHy0qt4MXAb82cTyAdwM7F92iGO4HfhyVf0m8FYmkjPJOcCHgF1V9Ra23q593XJT8Tng6iPOuwV4qKouAh6anT4hkyk78NvAd6rqmar6KfB54NolZ/p/VXWwqh6dff4/bP3Pes5yU/1CknOBPwTuWHaWIyU5A/hd4DMAVfXTqvrxclO9zKnAryY5FTiNJW9cqqpvAP99xNnXAnfNPr8L+KMTnTulsp8DPH/Y6QNMqEyHS7IGXArsXW6Sl/kU8DHg58sOchQXApvAZ2cPM+5IcvqyQwFU1feBTwDPAQeBn1TVV5eb6qjeVFUHYevAA7zxRAdMqezbWmC5bEleC3wB+HBVvbDsPABJrgEOVdW+ZWc5hlOBtwH/WFWXAv/LHHdDF2H22Pda4ALg14HTk1y/3FSLMaWyT36BZZJXsVX0e6rqvmXnOczlwLuTfI+thz9XJrl7uZFe5gBwoKpeuie0h63yT8E7ge9W1WZV/Qy4D3jHkjMdzQ+TnA0w+3joRAdMqeyTXmCZJGw95txfVZ9cdp7DVdWtVXVuVa2x9X37WlVN5uhUVT8Ank9y8eysq4CnlhjpcM8BlyU5bfZvfBUTefLwCA8AN84+vxG4/0QHDNpBN6YVWGB5OXAD8K0kj8/O+8vZHj4d303APbMf5M8A719yHgCqam+SPcCjbP3G5TGW/LLZJPcCVwBnJTkA3AZ8HPjnJB9g6wfUH5/wXF8uK/UwpbvxkhbIsktNWHapCcsuNWHZpSYsu9SEZZea+D9d46Lfj/H+DgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "street.plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Simulate points in a network\n",
+ "\n",
+ "The function `simulated_geo_points` simulates points inside a network. In this case, it uses a lattice network 10x10 created using the spaghetti package. \n",
+ "Below we use the function defined above and simulate the points inside the lattice bounds."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "client_points = simulated_geo_points(street_buffered, needed=CLIENT_COUNT, seed=CLIENT_SEED)\n",
+ "facility_points = simulated_geo_points(\n",
+ " street_buffered, needed=FACILITY_COUNT, seed=FACILITY_SEED\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Plotting the 100 client and 5 facility points we can see that the function generates dummy points to an area of 10x10 which is the area created by our lattice created on previous cells."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAFlCAYAAAAXhsnPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dfVxU170v/s9CFBwDKqCCpjNoIhBAUCH2RFPI0SbF0BjrQ5uTMTdJT4PWWxrT5HdP7ORwUpo5MVd7T1oaDxLTe9KXk6Sp2hwbonnojZCTV04NGJ9I1LR1QC2o4AMooiLr9wcOhWGGh5k9+2k+79eLl7Jnz15rHpj9ne/+rrWElBJEREREZhGhdQeIiIiIlMTghoiIiEyFwQ0RERGZCoMbIiIiMhUGN0RERGQqDG6IiIjIVCLVbCwhIUEmJyer2SQRkaHU1tY2SyknaN0PIiNTNbhJTk5GTU2Nmk0SERmKEKJe6z4QGR0vSxEREZGpMLghIiIiU2FwQ0RERKaias0NERGpr7a2dmJkZORmAJngl1oyvi4Ahzo7O7+Xk5Nz2tcODG6IiEwuMjJyc2Ji4m0TJkw4FxERwdWSydC6urrEmTNn0puamjYDWORrH0bwRETmlzlhwoRWBjZkBhEREXLChAkX0J2J9L2Piv0hIiJtRDCwITO58X72G8MwuCEiIk2UlpZObGtrU+w8pPTxyLj4JiAiIk1s2rRp0sWLF32ehzo7OxU9HoUXvgmIqIfL5UJycjIiIiKQnJwMl8uldZfIJFpbWyPuuuuuW1NTU9OnT5+e8eSTTyadPn16ZH5+fspXv/rVFACwWCyz1qxZMzkrKyvtD3/4w00bN26MmzFjxm1paWnpDz74oM0T8Gzfvj125syZaenp6bctXLhw2oULFyKee+65ib2P19nZiaVLlyZPnz49IyUlJf0nP/nJRE2fAFIVR0sREYDuwKaoqAjt7e0AgPr6ehQVFQEA7Ha7ll0jhRW/ttem5PHKHpw96JIR27dvj01MTLy2e/fuPwFAS0vLiDfeeCOhqqrqaFJSUicAXL58OSIzM/Pyiy+++Ne9e/dGv/DCC4k1NTWHo6Ki5IoVK6zl5eXxS5cuvfCv//qvSdXV1UdjY2O7HA5H4k9/+tNJGzZsaPz3f//3SZ7jffTRR5bGxsaRX375ZR0ANDc3j1DyMZO+MXNDRAAAh8PRE9h4tLe3w+FwAGBWh4Ize/bsyx999FHs97///Sm7du26KT4+/rr3PiNGjMAjjzxyDgB27doVc+jQIUt2dvZtaWlp6f/1X/8V+5e//CVq9+7dY/785z9Hz5kzJy0tLS39jTfeiG9oaBjlfay0tLQrx48fj3r44Ye/snXr1tjx48f3a4/Mi5kbIgW5XC44HA40NDTAarXC6XQqk/VwuQCHA2hoAKxWwOkEFM6mNDQ0+N3OrI65DCXTorSsrKwre/fu/Xzbtm1jHQ7HlA8++KDVe59Ro0Z1RUZ2n5aklGL58uUtL7300sne+7z22mtj77zzztbf//73xwZqb8KECdcPHTr0+e9+97vYjRs3TvzNb34T99vf/tat5GMi/WLmhkghngCgvr4eUsqeACCYDIfL5ULRTTfh0ooVQH09IGX3v0VF3QGPgqxWq9/tg2V1iAbjdrtHxsTEdK1evfrsmjVrTu3bt88yZsyY6xcuXPB5HiooKGh9++23x588eTISAE6dOjXi6NGjo+66665LNTU1Nx06dCgKANra2iIOHDgQBQC9j9fY2Bh5/fp1PPLII+efe+65kwcPHrSo9VhJe4MGN0KIXwkhTgshDvXaFieEeF8I8eWNf8eHtptE+qd0AOByufDoo4/ix5cuYYz3je3t3ZkcBTmdTlgsfT//LRYLnE7ngFkdoqGora0dPXPmzNvS0tLSX3jhhaSSkpLGhx9+uHnhwoXTPQXFveXk5HQ888wzJxcsWJCSkpKSPn/+/JTjx4+PnDx5cuemTZvcDzzwwLSUlJT0nJyctIMHD0YDQO/jud3ukXfeeWdqWlpa+ne/+92ppaWlJ9R/1KQVIeXA8zoJIfIAXATwayll5o1t/xvAWSnlOiHE0wDGSyn/abDGcnNzZU1NjQLdJtKfiIgI+Pp7EkKgq6tr2MdLTk5GfX09rsPPtxAhgACOOxB/l9U8ffFms9ngdrsV7UO4E0LUSilzlTzm/v373dnZ2c1KHpNIa/v370/Izs5O9nXboJkbKWU1gLNem+8H8OqN/78KYHEwHSQyg4Eu6wTCkxXxmxsJ8LgDsdvtcLvd6Orqgtvt7qmnGSirQ0SkN4EWFE+SUjYCgJSyUQih2fwBa7cf0Kppoj6yFq/EyfJSdF7p6NkWGRWNrMUrA3qfxsQnorW5ET8G8DLQ59JUO4Adi1div1rv/9EzsOCxZ1DlKkNrSxNi4xNxS86dWL3m/8OKhx5CbHwi8u3FyMgrVKc/OvL8kiytu0BEXkJeUCyEKBJC1Aghas6cOaPosdduP4A9x7yTSqG159hZVdtUuz22GbiMvEIsXFWC2IQkQAjEJiRh4aqSPif84bSZby+GGBGJ1wE8BsANoAtAPYCN31iO/UMMJJR6nBl5hVi9aRee3roP+fZiHNz9e7Q2NwJSorW5ETvLS1FXXalom8OhVZv8gkWkP4Fmbk4JIZJuZG2SAJz2t6OUsgJABdBdcxNge37NmRqn6jcnzweZWm2q3R7bDNKSLODFtcq0uSQLrtutePzxx/F6SwteBxAfH4+f//zneGoYw69D8TiTf7SoT4YKADqvdODAW5uw48W1mr2eddWVeL1sk/JD8Qdok4j0J9DMzQ4AD9/4/8MA/lOZ7oSO1hOQad0+GZPdbkdzczOklJBSorm5WRfzyuhx9FRddSV2lpcqOhSfiIxpKEPBXwfwCYBUIcQJIcQ/AlgH4G4hxJcA7r7xu26FYv4RI7VPA1Mz8KyrrsTGlQWGD3KVLp5WQpWrrF82iXPxEIWnoYyW+gcpZZKUcqSU8mYp5StSyhYp5QIp5fQb/6p7oXuYtJ6ATOv2yb+66krVAk+Xy4Wd5aVobW40fJCrx9FTrS1NPrdzLh6i8BMWMxRrnULXun3yr8pVplrg6XA4TJNZsNvtqKiogM1mgxACNpsNFRUVml4yi41P9Lldy2wSEWkjLIIbrVPoWrdP/qn5bd9sQa6/OXG0km8vRmRUdJ9tWmeTqK/nnntu4rRp0zIWLVo0dbj3nTVrVhoAWCyWWd7bmpubR6xbt26Ccj0N3I9+9KPJJSUlk4C/9W+gffxR8jGF4nm6ePGiuP3221M7OzuDPtaUKVNmpKSkpKelpaVnZmbeBgAdHR0iNzc39dq1awEdMyyCG61T6Fq3T/6p+W2fQW5oeYbi6ymbRH298sorE955550vd+zYMeCil7589tlnh/1ta2lpGfHKK69oNt+aP776PFRKPqZQPE9lZWUJixYtOudZ6DRYVVVVRw8fPvz5oUOHvgCA6OhomZ+f37p58+a4QI4XFsGN1il0rdsn//LtxaoFnk6nk5mFEMvIK9RVNsmwysvjMHnyDERE5GDy5BkoLw/oBNPbgw8+aD1x4kTUokWLbv3JT34y8etf//otGRkZt916660ZGzZsSPDs98tf/jI+JSUlPTU1NX3x4sU9GZ7eGRvvbU8++eTNx48fj0pLS0tfuXLlzY8//vjkn/70pz0n8eLi4inPPfdcv5O6r7b89evIkSOjpk2blvHAAw/Ybr311ox58+ZNv3jxogCAf/qnf0pMTk7OnDt3bsqXX34Z5avP/vbx1573Y9q4cWPcjBkzbktLS0t/8MEHbb4yJq2trRF33XXXrampqenTp0/PePnll8cP9DwBgK/j+jtOb2+++Wb8t7/97fOe3+++++5bfvjDH07OyclJTUhIyH7rrbdi+nVwmJYtW3b+jTfeCOi9p0zIZQB2u13TDzqt2yffMvIK8Z3brT7XUwqWr3WaFq4qQZWrDG0tTarMw0I0bOXlcXjiCRs6Orq//DY2jsITT9gAAKtWBTx45LXXXmuoqqoaW1VVdTQpKanz1KlTLZMmTbp+8eJFMWvWrPQVK1acO3HixMgNGzYkffLJJ4dv7DNiKMf+2c9+duKb3/zm6MOHD38OdAci3/rWt27553/+59PXr1/HW2+9Nf7TTz/9ovd9ampqon215XK53N79SkxMvA4ADQ0N0Vu2bPnL3Llz6++9995pv/71r8fPmDGj43e/+13cwYMHP7927RpmzpyZPmvWrD6FfB999JHF3z7+2uv9mPbu3Rv91FNP3VxTU3M4KipKrlixwlpeXh7/gx/8oKV3O9u3b49NTEy8tnv37j8B3ZmagZ6nvXv3Rm/dujXO+7g33XTT9YGO09HRIY4fPx6Vmpp61bPt6NGjo++4446LtbW1R1599dVxW7ZsiV+8eHEbAOTk5KReunSp32u5bt264559FixYMF0IgUcfffTMU0891QwAt99+++UDBw70Wzd4KMImuCHyJxSBp2f4v6dY2TMyasFjz2D1pl2csp/0q7R0Sk9g49HREYHS0inBBDfeXnjhhUmVlZXjAKCpqWlkXV1d9H//93+Pue+++84lJSV1AsCkSZOuB3Ls1NTUq+PGjev8+OOPRzc2No7MyMho9wQoHu+++26sr7Z89SsxMfESAEyZMuXK3LlzLwPArFmz2t1ud1Rzc3Pkvffeez4mJqYLAO65557z8PLhhx/e5G+fgdrz2LVrV8yhQ4cs2dnZnnqUiIkTJ/ZL3cyePfuyw+H4yve///0p999//4WCgoKLAz1P/o77yCOPtAx0nKampsiYmJie9tva2iLa2tpGlJSUnAKAa9euibFjx/Y837W1tUcG6sfHH398ODk5+drJkycj58+fn5KRkdGxcOHCi5GRkRg5cqQ8d+5cxPjx44e1SjCDG6IQ8Df8v8pVFpbrL5GBNDWNGtb2ALz99tsxVVVVMTU1NYdjYmK65syZk3r58uUIKSWEEIrMZP/oo482b968OeH06dMjH3300Rbv23215a9fnttHjRrVs/+IESOk5zYhxKD98bXPYO316qtYvnx5y0svvXRyoDaysrKu7N279/Nt27aNdTgcUz744IPWDRs2NPrbf6DjDnScMWPGdF29ejWi177RmZmZ7Z76mwMHDozOzMy87Ll9sMxNcnLyNQCYMmVKZ2Fh4flPPvlkzMKFCy8C3YGSxWIZ9nsiLGpulGSWSdgotPyNgPI3OotINxITrw5rewDOnz8/YuzYsddjYmK6Pvvss+j9+/ePAYCCgoLWHTt2xDU1NY0AgKFelho7duz1S5cu9TmfPfTQQ+c//PDDsfv37x+zdOnSC9738dWWv34NZP78+RcrKyvHXbx4UZw7dy7i/fffHzfUfQZqr/djKigoaH377bfHnzx5MtLT16NHj/YLNt1u98iYmJiu1atXn12zZs2pffv29Sko9H6e/B13sONMmDDh+vXr10V7e7sAgH379o2eMWNGz7e5Q4cOWWbPnt3ze21t7ZHDhw9/7v2zePHittbW1ohz585FAN01Qx9++GFsVlbWZQBoamoaMX78+M6oqKhhBzfM3AyDZxI2z1wlnksNAFg3QX1YrVbU19f32+5vdBaRbpSUnOxTcwMA0dFdKCkZMGswHEuXLr1QUVExISUlJf2WW27pyM7OvgQAubm5HU8++WTj1772tbSIiAiZmZnZvm3bNvdgx0tMTLyek5Nzcfr06Rnz58+/sGnTphPR0dFy7ty5rePGjbvua0SPr7a2bNlS76tfA7nzzjvbv/Wtb53NzMzMmDJlypU5c+b0uxTkbx9/z4Ovx/TMM8+cXLBgQUpXVxdGjhwpf/GLXzSkpKT0CThra2tHr1279uaIiAhERkbKjRs39vkQ8vU8+Tru+fPnRwx0HADIy8u78N577920ePHitoMHD47+6le/2tP3o0ePjs7JybnsfR9fTpw4Efmtb33rVgC4fv26WLp0acuyZctaAWDnzp2xCxYs6BeYDoWQUvG1LP3Kzc2VNTU1ih1P7cX5kpOTfZ6wbDYb3G53SNo0zYKSYdamd80N0D0yasFjzyAjr9A0j1OrNn0Vax8aPSOkbfoSiscphKiVUuYqdkAA+/fvd2dnZzcP+Q7l5XEoLZ2CpqZRSEy8ipKSk0rW26jh+vXryMjISP/tb3/75xkzZlzRuj9m8/HHH49ev3594ltvvTXsYf1Ddc8999yyfv36E9nZ2T5fv/379ydkZ2cn+7qNl6WGQc1J2DzrHa1bNhMbVxbw8pfB+Bv+z3qb4Plbq62uulLrrpnHqlVn8de/HkRXVy3++teDRgtsamtro20224yvfe1rrQxsQmPevHmX77rrrlYlJvHzpaOjQyxatOi8v8BmMLwsNQz+LjUoPQmb97f+1uZGXv4yIF+jsDzf9ClwLNamweTk5HScOHHioNb9MLs1a9b0K9RWSnR0tPQe6j4czNwMg1qTsHGhTXPpver4xpUFzDAEicXaRDQYBjfDYLfbsXBVCWITkkI607DZ1iAKZ96XUFqbG7GzvJSXGYPgL1PKYm0i8mBwM0wZeYVYvWlXSKd35xpE5uErC9d5pYNZuCD4W6st316sUY+ISG8Y3OgQF9o0D2bhlMdibSIaDIMbHer94Q0hEJuQxIU2DYpZuNCw2+1cIJOI/GJwo1OeD++nt+7D6k27TP/hbdaZn31l4SKjopmFIyIKIQY3pLjeo4OGEqh4Zn5ubW7sM2+JGQIc70sosQlJWLiqxPTBKhGRlhjckKL8TbA2UKDicDh6lrTwMNPQ996XUFZv2jWk2pDhBohERPQ3DG5IUYHM0WP2otvhznMTSIBIZFQWi2WW5/+zZs1KC+QYzc3NI9atWzdBuV75Nlj/AunHxYsXxe23356qxEy/y5cvT46Li8uePn16Ru/tW7dujU1OTs60Wq2ZP/7xjxMHu62jo0Pk5uamXrt2Leg+aYXBDSkqkEDFzEW3gcxzw0kcKVx99tlnhwO5X0tLy4hXXnllotL98TZY/wLpR1lZWcKiRYvO+Vrcc7i++93vNu/YsePL3ts6OzvxxBNPWN95552jR48erdu2bVtcbW1t9EC3RUdHy/z8/NbNmzfHBd0pjTC4IUUFEqioNfOzFgKZ58bsmSzSv/Ly8rjJkyfPiIiIyJk8efKM8vJyRU5yv/zlL+NTUlLSU1NT0xcvXjzV+/beWZyNGzfGzZgx47a0tLT0Bx980NbZ2YkjR46MmjZtWsYDDzxgu/XWWzPmzZs3/eLFi+LJJ5+8+fjx41FpaWnpK1euvLm1tTXirrvuujU1NTV9+vTpGS+//PL43u0cOXJk1NSpUzOWLFmSnJKSkl5QUDCtra2t53z47LPPTpo+fXrG9OnTM0pLSyd690+pfgDAm2++Gf/tb3/7vOf3u++++5Yf/vCHk3NyclITEhKy33rrrZihPr8LFy68OGHChD4poN27d4+x2WxX0tPTr0ZHR8slS5ac3bp167jBblu2bNn5N954w7DBjeHXltpz7Kyq6/XsOda9fpxabardXrBtZi1eiZPlpX1qaCKjopG1eKX/442egZQlT+LPOzfjyoXTiI1PRL69GIdGzwjp41bjua33E5DUNzT4bTcmPhGtzY0+twfSV6O9h4zW5pyphv3896m8vDzuiSeesHV0dEQAQGNj46gnnnjCBgCrglhAs6amJnrDhg1Jn3zyyeGkpKTOU6dOjfC37969e6O3bt0aV1NTczgqKkquWLHCWl5eHn/33Xe3NTQ0RG/ZsuUvc+fOrb/33nun/frXvx7/s5/97MQ3v/nN0YcPH/4cAP7jP/5jXGJi4rXdu3f/CejOqHi34Xa7ozdt2uS+5557Li1fvjx5/fr1E0pLS0999NFHltdeey2+trb2CyklcnJybluwYEHbvHnzLve+vxL96OjoEMePH49KTU296tl29OjR0XfcccfF2traI6+++uq4LVu2xC9evLgtJycn9dKlS/0ex7p1644vXry4zd9zefz48VFTpkzpOf7NN9989Y9//ONNg912++23Xz5w4MAYf8fVO8MHN6QvnmLZKlcZWluaegKVwYpoE3O+jsScr5vuRBHrJ1AZaKmAfHsxdvoIEDkDL6mhtLR0iiew8ejo6IgoLS2dEkxw8+6778bed99955KSkjoBYNKkSdf97btr166YQ4cOWbKzs2/ztD9x4sROAG1Tpky5Mnfu3MsAMGvWrHa32x0F4GLv+8+ePfuyw+H4yve///0p999//4WCgoKL3m0kJiZeveeeey4BwEMPPdTyi1/8YiKAU7t3777p3nvvPR8bG9sFAIWFhec+/PDDGO/gRol+NDU1RcbExPRkWtra2iLa2tpGlJSUnAKAa9euibFjx14HgNra2iMDPb/+SCn7bRNCyMFui4yMxMiRI+W5c+cixo8f3xVI21oyfHAzZ2ocnl+SpVp7nm+FarXZuz2XywWHw4GGhgZYrVY4nc6QDCkO+jEuyQJeXKtumwFQo83My+v7rPAOdAcqG19cD7u/dpdkwXW7VbHX2qzPrZ7aNJOmpqZRw9k+VFLKnhPnEPYVy5cvb3nppZdO9t5+5MiRUaNGjeo5xogRI+Tly5f7lVdkZWVd2bt37+fbtm0b63A4pnzwwQetGzZs6PMtQwgBX7/7OuH7okQ/xowZ03X16tWe++3duzc6MzOz3VN/c+DAgdGZmZmXASDQzI3Var168uTJntfuxIkToyZPnnxtsNuA7uDKYrEM7QnRGdbcGARH0BhToPPccAZe0kpiYuLV4WwfqoKCgtYdO3bENTU1jQCAgS5LFRQUtL799tvjT548GenZ9+jRo36Dq7Fjx16/dOlSz/nM7XaPjImJ6Vq9evXZNWvWnNq3b5/F+z6NjY2jPvjggzEA8Nprr8XNnTv3IgDMnz//4jvvvDOura0torW1NeKdd94Z//d///d+g4dg+jFhwoTr169fF+3t7QIA9u3bN3rGjBk934QOHTpkmT17djvQnbk5fPjw594/AwU2AJCfn3/J7XZHHz58eFRHR4fYvn173NKlS88PdltTU9OI8ePHd0ZFRTG4odDhCBrjCmSeGyKtlJSUnIyOju5zGSI6OrqrpKTkpL/7DEVubm7Hk08+2fi1r30tLTU1NX316tVf8bdvTk5OxzPPPHNywYIFKSkpKenz589POX78+Eh/+ycmJl7Pycm5OH369IyVK1feXFtbO3rmzJm3paWlpb/wwgtJJSUl/a4NT5s2reNXv/pVfEpKSvq5c+cin3rqqTMAcOedd7Y/+OCDLbNnz74tJyfntoceeuiM9yUpJfuRl5d34b333rsJAA4ePDh65syZPR/0R48eHZ2TkzOktgHgvvvum3rnnXemHTt2LGrSpElZ//Zv/5YwcuRI/OxnP2soKChImT59esbixYvP5ubmdgDAQLft3LkzdsGCBReG2rbeGP6yVG9qXbbRAkfQEJEaPHU1paWlU5qamkYlJiZeLSkpORlMvY1HcXFxS3FxcUvvbe3t7Z/5+v9jjz127rHHHjvnfYwvv/yyzvP/0tLSU57///73vz/We7+lS5d+PlBfIiIi8Nprr/n8AH322WdPPfvss6e8t3v6l5qaelWpfjz++OOn169fn7h48eK2zZs3n+h924kTJw4OdF9v3m17fOc737nwne98x2eg4u+2119/PW79+vUnfN3HCEwT3Hgu23iyG57LNgBMEeBYrVbU19f73E5EpKRVq1adVSKYocHNmzfv8qefftra2dkJJea6UUJHR4dYtGjR+ezs7Cta9yVQprksZfbLNr4WYDTLXDBERGryzrxobc2aNS16CWwAIDo6Wv7gBz9oGXxP/TJNcGP2yzbehak2mw0VFRWmyEoREREpSffBzVAXEDTzFP4eHEFDREQ0OF0HN8MZ/szLNkRERAToPLgZTh2NmS7bDHcVaSKiQXR1dXWJwXcjMoYb72e/MyfrOrgZbh2NGS7bBLKKNBHRIA6dOXNmLAMcMoOuri5x5syZsQAO+dtHP+XZPoTj8OeBVpE2YrBGRNrr7Oz8XlNT0+ampqZM6PxLLdEQdAE41NnZ+T1/O+g6uHE6nf3W5TF7HY3ZR30RkfpycnJOA1ikdT+I1KLrCN5MdTRDFQ6jvoiIiEJJ18ENYI46muHwNeorMira1NkqIiIiJek+uAk3ga4iTURERN10XXMTrux2e08ws3b7AY17Q0REZCzM3BAREZGpMLghIiIiU2FwQxRmhrpeGxGRUTG4MSmewMiX4azXRkRkVAxuTIgnMPJnOOu10eDqqiuxcWUBv0QQ6QyDGxMK5ATGxTqHxugZMc6ArRyXy4Wd5aVobW7klwginWFwY0LDPYFxsc6hMUNGjDNgK8fhcKDzSkefbcyCEelDUMGNEOIJIUSdEOKQEOJ1IUS0Uh2jwA33BDbQYp30N2a4pONrBmyzr9cWLH/ZOmbBiPQr4OBGCDEFwA8B5EopMwGMAPCAUh2jwA33BMYP6aExw/MUjuu1BWOgbB2zYET6FexlqUgAo4UQkQAsAP4afJcoWMM9gfFDemjM8jyF23ptwRgoW+d0OhEZ1TdZzSwYkT4IKWXgdxbicQBOAJcBvCelHPBTMjc3V9bU1ATcnre12w9gz7GzmDM1TrFjDmbPsbMAoFqbarRXV12JneWlfeoHIkZGoXD1vyAjrzBk7fam9vMaSJu+nqfIqGgsXFUy5OdJq8fZVPsBTrz/K7S2NCE2PhH59uKQvrZGeD2HYt2ymYCvz0gh8PTWfdix9U2ceP9XaGtpgtVqhdPpDDpYFELUSilzgzoIUZgLeG0pIcR4APcDmArgPIDfCiFWSCm3eO1XBKAIMN433HDhOclVucrQ2tKEqLETccvC7w3r5FdXXdlzfzVOnlrwfp6M8jibaj/A4a0b0HXtCgD0FIwD0H3ftRYbn4jW5kaf2wEgMefrWLTs23h+SZbaXSOigUgpA/oBsBzAK71+/x8ANg50n5ycHKmkp7ftl09v26/oMfXWphEe45YtW6TFYpEAen4sFovcsmVLyNpUgpptbtmyRdpsNgkhZGxC0rCem2DFJiT1eW08PzabLWRtmilG5aIAACAASURBVOX1HOy9HYo2AdTIAD+X+cMf/nT/BFNz0wDg74QQFiGEALAAwBdBHI8MygyjiELBM8pGCIGHHnoI9fX1gOweaq/mEPLWliaf241UCK0VFmATGVPAwY2U8o8AtgLYC+DgjWNVKNQvMhAzjCJSWu9RNkB3hrQ3NYM/zyUUb7xMPDQswCYynqBGS0kp/0VKmSalzJRSPiSlvKJUx8g4zDKKSEm+slne1Ar+8u3FHNVDRGGFMxRT0DgxXH9DCVzUCv4y8gqxcFWJ4pdWjL4UBRGZV8CjpYg8PCdJh8OBhoYGxYbEGpnVau25JOWL2sFfRl4hdry4VrHjeS67ebJTnsntAIT1605E+sDMDSmCdQl9+cpmddfdA7EJSYYvSmURORHpGTM3RCHgL5t1aPSM7tsNPi8Ki8iJSM+YuSEKEX/ZrLrqSsPXqrCInIj0jMENkYo8Szj4WojRSFhETkR6xuCGSEVVrrI+a1MBxqxV4eR2RKRnrLkhUpGZZgu22+0MZohIl5i5IVIRZwsmIgo9BjdEKuJswaHHyQWJiJeliFSUkVcIADjw1iZOeBgCddWV+MXLz3FyQaIwx8wNkcoy8go54WGIVLnKOLkgETG4ISLzMFPBNhEFjsENEZkGC7aJCGBwQ0Qmkm8v5uSCRMTghojMIyOvkJMLEhFHSxGRuXByQSJi5oYMjXOaEBGRNwY3ZFgulwtFRUWGX4RSbQwIicjsGNyQYTkcDs5pMkwMCIkoHDC4IcPyN3cJ5zTxjwEhEYUDBjdkWP7mLuGcJv4xICSicMDghgzL6XRyTpNhYkBIROFASClVayw3N1fW1NQodry12w9gz7GzmDM1TrFjDmbPsbMAoFqbardntDbrqitR5SpDa0sTYuMTkW8v7lmcMlRtBkPrNuuqK7GzvBSdVzp6bo+MisbCVSVDft6G26ZatGpzztQ4PL8kS7FjCiFqpZS5ih2QKAxxnhsytIy8QkVPymbnea4CDQiJiIzA8MGN0t+aBrN2+wEAUK1Ntdtjm2HQ5pIs4MW16rapAi3bJCJ9Yc0NERERmQqDGyIiIjIVBjdERERkKgxuiIiIyFQY3BAREZGpMLghIiIiU2FwQ0RERKbC4IaIiIhMhcENERERmQqDGwo7LpcLycnJWLdsJjauLIDL5dK6S0REpCDDL79ANBwulwtFRUVob28HALQ2N6KoqAgAYLfbtewaEREphJkbCisOh6MnsPFob2+Hw+HQqEdERKQ0BjcUVhoaGoa1nYiIjIfBDYUVq9U6rO1EwN/qtCIiIpCcnMw6LSKdY3BDYcXpdMJisfTZZrFY4HQ6NeoR6Z2nTqu+vh5SStTX16OoqIgBDpGOMbihsGK321FRUQGbzQYIgdiEJFRUVLCYmPxinRaR8XC0FIUdu90Ou92OtdsPdP++JEvjHpGesU6LyHiYuSEiGgDrtIiMh8ENEdEAWKdFZDwMbihseI94qauu1LpLZAC967SEELDZbKzTItI51txQWPCembi+vh4ny0u7b2TNDQ3CU6dFRMbAzA2FBV8jXjqvdKDKVRbytntnjDauLGDGiIgoxBjcUFjwN7KltaUppO16z5HS2tyIneWlIZsjhZPNEREFGdwIIcYJIbYKIQ4LIb4QQtyhVMeIlORvZEtsfGJI2/WXMQrFHCn+JptjpoiIwk2wmZufA9glpUwDkA3gi+C7pDMuF5CcDEREAMnJyOaJwpB8jXiJjIpGvr04pO2qOUeKv8nm1Lj0RkSkJwEXFAshYgHkAXgEAKSUVwFcVaZbQ7fn2NmeydiUll1diSXlpRh1paN7Q309Fm/8Cf58+hLWhqTF/vYcOwsAIXuMYdPm6BlY8NgzqHKVobWlCbHxibj57u/i0lfuCOnjjIlPRGtzo8/tSrdb7+/SW3NTSP9OfDHle8hPm3OmxqnWHhENTTCZm2kAzgD4v0KIz4QQm4UQY7x3EkIUCSFqhBA1Z86cCaI59X3DVfa3wOaG6GtX8I87N2vUIwpGRl4hVm/ahae37sPqTbuQmPP1kLeZby9GZFR0n20RI6NCkjHyd4ktatxExdsiItKzYIaCRwKYDaBYSvlHIcTPATwN4J977ySlrABQAQC5ubkyiPZ8mjM1Ds+HaijvMt/FppMunA5dm14830LVao9tKmxJFly3W+FwONDQ0ICY+ETk24ux40Xlc3+Zl9f3Ge4OdE82t+Dhx5ERyr8TH0z7evppk4j0JZjMzQkAJ6SUf7zx+1Z0Bzvm4acI9XyIi1DJXOx2O9xuN7q6urB60y5k5BUOuH+gI578TTY3WHtERGYTcHAjpWwCcFwIkXpj0wIAnyvSqyGqq67ExpUFoRv26nQCXkWoV6Oi8W6Ii1BJQ14F5FB5KLW/EU/DCXA8gZTb7ebEc0QUloIdLVUMwCWEOABgJoB/Db5LQ+NyubCzvBStzY0BnQSGxG4HKioAmw0QArDZsH1VCfbzm7A5uVxAURFQXw9I2f1vUZGqAY6/EU+hGDpORGRWQQU3Usp9UspcKWWWlHKxlPKcUh0bjMPhQKdXsW9ITgJ2O+B2A11dgNvNwMbMHA7AK7BAe3v3dpWoOXSciMisDDtDMU8CpDh/7x0V31P+Jhv0t52IiPozbHDDkwApzt97R8X3lK/JBi0WC5xOp2p9ICIyOsMGN06ns9/8ITwJUFB8FJDDYunerhJ/I55YGGwMXNuLSB+CmedGU3a7Hb/5tAFVrjK0tTTBarXC6XTyJECB87x3HI7uS1FWa3dgo/J7ym63831sQJ6Rbp6CcM8gBwB8PYlUZtjgBuiecTYjr1DVSbvI5Ox21YMZMoeBRroxuCFSl6EuS3mnfLnaMRHpBQc5EOmHYTI3vlK+J8tLu29k5oaINGa1WlFfX+9zOxGpyzCZG18p384rHahylbGIj4g0x5FuRPphmODGX2q3tbkxqOnqiYiUwJFuRPphmODGX2pXRERwunoi0gWu7UWkD4YJbnylfCOjoiG7unzuzyI+IiKi8GSY4MZXynfhqhLEJiT53J9FfEREROHJMMEN0D/lm5FXiHx7MYv4iIiIqIehghtfMvIKWcRHREREPQwzz81AOF09EREReRg+c0NE6uPcUkSkZ7oPbvghSqQvntnCObcUEemVroMbfogS6c9AC0QSEemBroMbfogS6Q8XiCQivdN1cMMPUSL98TeHFOeWIiK90HVwww9RIv3hApFEpHe6Dm74IWoeLAw3Dy4QSUR6J6SUqjWWm5sra2pqhnUfl8sFh8OBhoYGWK1WOJ3Ong/RtdsPYM+xs5gzNS4U3fVpz7GzAKBam2q3F4o266orsbO8FJ1XOnq2RUZFY+GqEmTkFYakzaEwQpt11ZWocpWhtaUJsfGJyLcX9zxnoWpTCeHU5pypcXh+SZZixxRC1EopcxU7IFEY0v0kfpygz/iqXGV9AhsA6LzSgSpX2bBP1OHEOyhsbW7EzvJSAODzRkQ0AN1nbgaydvsBAFD0W5Pe2jTDY4yIiICv95kQAl03VnU3w+NUus3k5GTU19f3226z2eB2u0PSplLYZuCYuSEKnq5rbsgcWBgeGCOMFmQtFRHpEYMbCjkWhgdG70EhJ9kkIr1icEMhx9E1gdF7UMhJNolIr3RfUEzmwMLw4fM8X/5GC2rNCJfNiCg8MXNDFAJK1aLY7Xa43W50dXXB7XbrJrAB9H/ZjIjCl+6DGxYsktGESy2K3i+bEVH40nVwEy4nCTKXcKlFYS0VEemVroObcDlJkLmEUy2Kni+bEVH40nVwE04nCTIP1qIQEWlL18ENTxJkRKxFISLSlq6DG54kyIhYi0JEpC1dBzc8SZCalByZx1oUIiLt6H4SP07+RmrwjMzzFLB7RuYB4PuPiMhgdJ25IVILR+YREZkHgxsicGQeEZGZMLghAkfmERGZiWGCGy7DQKHEkXlEROZhiODG3zIMddWVWneNTIIj84iIzMMQwY2/Ys8qV5lGPVJfqDJXzIj9DYdvExGZgyGCG39Fna0tTSr3RBt11ZUhWUCUGTEiIjIjQwQ3/oo6Y+MTVe6JNqpcZSEZpmymjFhIMlAuF5CcDEREdP8bxlktIiIjMURw46/YM99erFGP1OUvQxXsMGWzZMT8ZaCCCnBcLqCoCKivB6Ts/reoiAEOEZEBGCK48VfsmZFXqHXXVOEvQxXsMGWzZMRCMgGfwwF4HRPt7d3bB8AaJiIi7RkiuAGMV+yp5Eku314ckmHKZsmIhWQCPn/3HeCYIckgERHRsAUd3AghRgghPhNCvK1Eh8xA6ZNcRl5hSIYpmyUjFpIJ+Pzdd4BjcgkHIiJ9UCJz8ziALxQ4jmmE4iQXqsyV0TJivoRkAj6nE/A6JiyW7u1+cAkHIiJ9EFLKwO8sxM0AXgXgBPAjKeU3B9o/NzdX1tTUBNyet7XbD2DPsbOYMzVOsWMOZs+xswAwYJvrls3sLkL1JgSe3rpP8faUZsQ266orUeUqQ2tLE2LjE5FvLx40AzVYm9nVlfiGqwzjWppwPj4R79qLsX+AY25cWYDW5sZ+22MTkrB6064htRkKbDM06qor8d6rP8eVC6dhs1rhdDoV+XIghKiVUuYq0EWisBUZ5P1fBPC/AMT420EIUQSgCAifdXpi4xN9n+QMVqhrJBl5hYpfTtufVzhgMOMt316MneWl6LzS0bMtMiracDVMNLi66so+r7Xn0jMAQ2Y/icwm4OBGCPFNAKellLVCiLv87SelrABQAXRnbgJtz585U+Pw/JIspQ/r19rtBwBgwDYzL69HUVFRn0tTFosFG19cD/sw+zqU9pTGNgO0JAuu261wOBxoaGiA1ce3eVM8TraJ5B8t6hPEAn+79Mzghkh7wWRu5gFYJIS4F0A0gFghxBYp5QplumZcng+3gU5yZE52u52vcxhgfRWRvgVcUCylXCulvFlKmQzgAQD/z0yBTbBDuc1QqEtEvoVkhB4RKcYw89yoifOVENFAQjJCj4gUo0hwI6XcPdhIKSPhfCVENBDPHFGxCUmAgnNPEZEygh0tZUq8nk5Eg7Hb7Tg0egYAdQuniWhwvCzlA6+nExERGReDGx94PZ2IiMi4GNz44G/NJV/X07kKNBERkb6w5saPocxX4hlV5Sk+5iylRERE2mPmJggcVUVERKQ/DG6CwFFVRERE+sPgJghmHFXlcrmwcWUB1i2byRoiCkpddSXr0YhIEwxugmC2UVWeGqLW5kaAMzMHLZyLzT2rZnOWbyLSAoObIAxnVJURsIZIOf6W8KirrtS6a6qocpX5XTWbiCjUOFoqSGZaBZo1RMrxFyhWucqQkVeoUa/U09rS5HM730tEpAZmbqiHGWuItOLvJO7vpG82sfGJPrfzvUREamBwQz3MVkOkJX8ncX8nfbPJtxcjMiq6zza+l4hILQxudMpTjLpu2UxsXFmgSiEmVzpWjr9AMd9erFGP1JWRV4iFq0pUr0fLrq4EkpOBiIjuf1nATBSWWHOjQ94zH7c2N6o28zFXOlaG53VyOBxoaGiA1WqF0+nseW7DQUZeIXa8uFa19rKrK7GkvBTwFDLX1wM3/m7AAJ0orDBzo0MctWQOdrsdbrcbXV1dcLvdzICF2DdcZRjlNUIL7e0A/26Iwg6DGx3iqCWi4Rvnr1ibfzdEYYfBjQKUnqyNo5a6hfMkeDR85/0Va4fZ3w0RMbgJmr/J2oI5EXPUUmieVzK3d+3FuOo1QgsWCxBGfzdE1I3BTZBCUR/Te+ZjCIHYhKSwG7XEuiMarv15hdi+qgS48XcDmw2oqGAxMVEYYnATpFDVx3iKUZ/eug+rN+0Kq8AGMH/dES+5hcb+vELA7Qa6urr/DbO/GyLqxuAmSKyPCQ0zP6911ZW85EZEFEJCSqlaY7m5ubKmpkax463dfgB7jp3FnKlxih1zMHuOnQWAnjbfrXgOn7372z77REZFY+GqEkXWEPJuTw16aNOzqnTvxReVfF59tRmsuupKVLnK0NrShNj4ROTbi/v1dc+xs/j4uQdw5fypfvePTUjC6k27FOmLd5tA+L2H1GpzztQ4ReeEEkLUSilzFTsgURjiJH5BqKuuxMHdv++3fcZd94XF4oih5Hn+BgsW9MI7GGttbsTO8lIA6NfnK+dP+zxGuKw7RUQUaoYPbpT+1jSYtdsPAOievTf5R4v6ZBY8zh7eo1iferenFi3bzLx8sM+svhtfXB+yeiMlH6ev90LnlQ4ceGtTn1l6124/gJqERLQ2N/Y7hs1qDclzHm7vIS3aJCJ9Yc1NEMxe9Ko2I9eiDOe9kG8vDvuh/kREocTgJghmLnrVQpWrzLDDv4fzXsjIK+wZ6q/mopJEROGCwU0QONmesvzVnBghEzbc9wLXnSIiCh0GN0HoPdkev4EHL9bP9PlGyITxvUBEpB+GLyjWmt1u5wlMIfn2Yvzh5ef6XJoyUiaM7wUiIn1g5oZ0g7UoNFy9Z3reuLIAddWVWneJiHSAmRvSFWY/aKg8i6t6Mn2euYVct1v5HiIKc8zcEJEh+VpctfNKhyFG1xFRaDG4IVJRXXUlNq4s4IKZCuA8U0TkD4MbIpW4XC7sLC9Fa3Oj4SYp1CPOM0VE/jC4IVKJw+Hot0SDUSYp1CNfcwtFRkUbZnQdEYUOgxsilfAyirK85xaKTUjCwlUlLCYmIgY3Q8HhpqQEXkZRXu+Znldv2qXbVeOJSF0MbgbhGW7qWcyxZ7gp6yRomJxOJyKjovtsM9IkhURERsHgZhAcbkpKsdvtWLiqBLEJSZykkIgohDiJ3yBYJ0FKysgrREZeIZ5fkqV1V4iITIuZm0GwToKIiMhYGNwMgsNNiYiIjIXBzSA43JSIiMhYWHMzBL0Xc1y7/YDGvSEiIqKBMHNDREREpsLgxuB6TzDIhRiJiIgY3Bia9wSDelyIkcEXERGpjcGNgfmaYFBPCzEaIfgiIiLzCTi4EUJ8RQjxoRDiCyFEnRDicSU7ZiRaZSf0PsGgXoMvz+u1btlMbFxZwGCLiMhkghkt1QngSSnlXiFEDIBaIcT7UsrPFeqbIXiyE56TuCc7ASDkw8WtVivq6+t9btcDPQZf3q9Xa3Ojaq8XERGpQ0gplTmQEP8J4JdSyvf97ZObmytramoUaQ8AFq15Hu+9+nNcuXAasfGJyLcXh3xV4D3HzgIA5kyNAwBsXFmA1ubGfvvFJiRh9aZdirfXW111JXaWl6LzSkfPtsioaCxcVRLU8zBQm8MxnOdGqTaV7FMoqPU42aZ6bc6ZGqfochpCiFopZa5iByQKQ4rU3AghkgHMAvBHH7cVCSFqhBA1Z86cUaI5AN3fwHeWl+LK+VNAr9W666orFWtjKFpbmoa1XUkZeYU9CzGi1wSDoQ7whirfXtxvFezIqGjk24s16pG2rxcREakj6MyNEOImAFUAnFLK7QPtq2TmJjk52eclGZvNBrfbrUgbvngm8fN8Uwt1P7zbU4OSbbpcLjgcDjQ0NMBqtcLpdPq8/KPW49TqfeNh9NeTbYa+TWZuiIIXVOZGCDESwDYArsECG6XppZ7D19pTFovF59pT4Tgs2m63w+12o6urC263W/O6luG8XkREZEzBjJYSAF4B8IWU8v8o16Wh0ctq3d5rT9lsNlRUVPQ7iXNYtD70fr08l/J8vV5ERGRcwWRu5gF4CMB8IcS+Gz/3KtSvQTmdzn71HFp9Ax9KdkKvw6KB/hklteuW1OZ5vZ7eug+rN+1iYENEZDIBDwWXUv4XAKFgX4bFbrfjN582oMpVhraWpgHrOfRAL5fRvPkayn6yvLT7RhVrF4iIiJRi6BmKM/IKsXrTLt3UcwxEL5fRvPnKKHVe6UCVq0yjHpFRhGMNGREZg6GDGyPRayGrv8wRh0bTQHzVkK1YsQIJCQkMcohIcwxuVDLUwmO1+cscxcYnqtwTMhJfGT8AaGlpQVFRkenrtohI3xjcqEhvw6IB3xklrSfaI/0bqFasvb2dlzWJSFMMbsKcr4ySnmY5VgNrR4ZvsFoxXtYkIi0xuKF+GaVwCmzqqis5/1AAfGX8euNlTSLSEoMbCmtVrjLdzj+kZ56MX3x8fL/bLBYLL2sSkaYY3FBY83f5ROv5h4zAbrejubkZW7Zs6VcoH07ZPyLSHwY3FNb8XT7Rev4hI9FjoTwRhTcGNxTW8u3Fupx/iIiIAsfghsJaRl6hLucfIiKiwAW8thSRWdjtdgYzREQmwswNERERmQqDGyIiIjIVBjdERERkKgxuiIiIyFQY3BAREZGpMLghQ+Eil0RENBgOBSfDcLlcKCoq6lkLyrPIJQAO5SYioh7M3JBhOBwOLnJJRESDYnBDhuFvMUsucklERL0xuCHD8LeYJRe5ND+1aq1Y00VkDkJKqVpjubm5sqamRrHjrd1+AHuOncWcqXGKHXMwe46dBQDV2lS7PT23WVddiZ3lpei80tGzLTIqGgtXlSAjrzAkbSqNbQ7fUF/3YNsM5P21Y+ubOPH+r9DW0gSr1Qqn0xl0/ZcQolZKmRvUQYjCHDM3ZBgZeYVYuKoEsQlJgBCITUgKOLAh46hylfUJOACg80oHqlxlmrZTV12Jw1s3oLW5EVLKngJ3ZnuItGf4zA0APL8kS7Fj6q3NcHiMbJNtDiQiIgK+PqeEEOjq6lKszaG245GcnIz6+vp+2202G9xud0B9uNEeMzdEQWLmhoh0Ta1aq+G2wwJ3Iv1icENEuuZ0OmGxWPpss1gscDqdmrbDAnci/WJwQ0S6ZrfbUVFRAZvNBiEEbDYbKioqFJ+4cbjtOJ1OREZF99kWiqCLiIaPMxQTke7Z7XZVZqEeTjt2ux2/+bQBVa4yRUdLEVHwTJG54dwURKSFjLxCrN60C11dXXC73QxsiHTC8JmbuupK/OLl57jeEBEREQEwQeamylXG9YaIiIioh+GDm9aWJp/bORyTiIgoPBk+uImNT/S5ncMxiYiIwpPhg5t8e7Eqc2AQERGRMRg+uMnIK1RlDgwiIiIyBsOPlgLUmwODiIiI9M/wmRsiIiKi3hjcEBERkakwuCEiIiJTYXBDREREpsLghoiIiEyFwQ0RERGZCoMbIiIiMhUGN6Qol8uF5ORkREREIDk5GS6XS+suERFRmDHFJH6kDy6XC0VFRT2rtNfX16OoqAgAOMkiERGphpkbUozD4egJbDza29vhcDgUb4sZIiIi8ofBjQHp9cTe0NAwrO2B8mSI6uvrIaXsyRDp5XkgIiJtBRXcCCEKhBBHhBB/EkI8rVSnyD89n9itVuuwtgdKzQwREREZT8DBjRBiBICXACwEkA7gH4QQ6Up1jHzT84nd6XTCYrH02WaxWOB0OhVtR60MESlDr5lGIjKvYDI3cwD8SUr5FynlVQBvALhfmW6RP3o+sdvtdlRUVMBms0EIAZvNhoqKCsWLidXKEFHw9JxpJCLzElLKwO4oxDIABVLK7934/SEAX5VS/sDffXJzc2VNTU1A7fmydvsB7Dl2FnOmxil2zMHsOXYWAFRr07u9jSsL0Nrc2G+/2IQkrN60KyRtDqSuuhJVrjK0tjQhNj4R+fZiZOQVDvn2QNvcWV6KzisdPdsio6KxcFWJz2P7o/ZrGY5t1qx7MOTvV+821X6cc6bG4fklWYodUwhRK6XMVeyARGEomOBmOYBveAU3c6SUxV77FQEoAgCr1ZpTX18fXI+9rN1+QNHj6Z1SJ3Y1+hLKvg41aCJtrVs2E/D1GSMEnt66T/0OhYCSgQ3A4IZICcEEN3cAeFZK+Y0bv68FACnl8/7uo3TmJly5XC44HA40NDTAarXC6XRqMo9McnIyfAWrNpsNbrd70NvJ/PgeGD4GN0TBCya4iQRwFMACACcBfArgQSllnb/7MLgxl4iICPh6/wgh0NXVNejtZH7eEzsC3UXmoajFMgsGN0TBC7igWErZCeAHAN4F8AWANwcKbMh8BivsZeEvqVVkTkTUW1Dz3Egp35FSpkgpb5FSKjvel3RvsKHfag0NJ32z2+1wu93o6uqC2+1mYENEIccZiilgg30r57d2IiLSQsA1N4FgzQ0R0cBYc0MUPGZuiIiIyFQY3BAREZGpMLghIiIiU2FwQ0RERKbC4IaIiIhMhcENERERmQqDGyIiIjIVBjdERERkKgxuiIiIyFQY3BAREZGpqLr8ghDiDIB6hQ+bAKBZ4WPqTTg8RoCP02z4OANjk1JOUPB4RGFH1eAmFIQQNWZfhyUcHiPAx2k2fJxEpBVeliIiIiJTYXBDREREpmKG4KZC6w6oIBweI8DHaTZ8nESkCcPX3BARERH1ZobMDREREVEPwwY3QogCIcQRIcSfhBBPa92fUBBCfEUI8aEQ4gshRJ0Q4nGt+xQqQogRQojPhBBva92XUBJCjBNCbBVCHL7xut6hdZ+UJoR44sb79ZAQ4nUhRLTWfVKCEOJXQojTQohDvbbFCSHeF0J8eePf8Vr2kYi6GTK4EUKMAPASgIUA0gH8gxAiXdtehUQngCellLcB+DsA/9OkjxMAHgfwhdadUMHPAeySUqYByIbJHrMQYgqAHwLIlVJmAhgB4AFte6WY/wBQ4LXtaQB/kFJOB/CHG78TkcYMGdwAmAPgT1LKv0gprwJ4A8D9GvdJcVLKRinl3hv/b0P3iXCKtr1SnhDiZgCFADZr3ZdQEkLEAsgD8AoASCmvSinPa9urkIgEMFoIEQnAAuCvGvdHEVLKagBnvTbfD+DVG/9/FcBiVTtFRD4ZNbiZAuB4r99PwIQn/d6EEMkAZgH4o7Y9CYkXAfwvAF1adyTEpgE4A+D/3rgEt1kIMUbrTilJSnkSwAYADQAaAVyQUr6nba9CapKUshHo/jICYKLG/SEiGDe4ET62mXbYlxDiJgDbAKyRUrZq3R8lCSG+CeC0lLJW676oIBLAbAD/LqWcBeASTHYZ40bNyf0ApgKYDGCMEGKFtr0ionBjq9m3bQAAAXdJREFU1ODmBICv9Pr9Zpgk9e1NCDES3YGNS0q5Xev+hMA8AIuEEG50X16cL4TYom2XQuYEgBNSSk/2bSu6gx0z+TqAY1LKM1LKawC2A5ircZ9C6ZQQIgkAbvx7WuP+EBGMG9x8CmC6EGKqEGIUugsWd2jcJ8UJIQS66zO+kFL+H637EwpSyrVSypullMnofh3/n5TSlN/0pZRNAI4LIVJvbFoA4HMNuxQKDQD+TghhufH+XQCTFU172QHg4Rv/fxjAf2rYFyK6IVLrDgRCStkphPgBgHfRPRrjV1LKOo27FQrzADwE4KAQYt+NbT+WUr6jYZ8oOMUAXDeC8r8AeFTj/ihKSvlHIcRWAHvRPdrvM5hkBl8hxOsA7gKQIIQ4AeBfAKwD8KYQ4h/RHdgt166HROTBGYqJiIjIVIx6WYqIiIjIJwY3REREZCoMboiIiMhUGNwQERGRqTC4ISIiIlNhcENERESmwuCGiIiITIXBDREREZnK/w8v1DjkN6yaxgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots(figsize=(6, 6))\n",
+ "street.plot(ax=ax, alpha=0.8, zorder=1, label='streets')\n",
+ "facility_points.plot(ax=ax, color='red', zorder=2, label='facility candidate sites ($n$=5)')\n",
+ "client_points.plot(ax=ax, color='black', label='clients points ($n$=100)')\n",
+ "plt.legend(loc='upper left', bbox_to_anchor=(1.05, 1))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Transform simulated points to real points"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "To use a cost matrix or geodataframes we have to pay attention to certain details. The client and facility points simulated don't currently belong to a network, so if we calculate the network distances now we would receive an incorrect result. Before calculating distances we must snap points to the network and then calculate the distances."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Below we snap points to the lattice created above and create new real points geodataframes."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ntw.snapobservations(client_points, \"clients\", attribute=True)\n",
+ "clients_snapped = spaghetti.element_as_gdf(\n",
+ " ntw, pp_name=\"clients\", snapped=True\n",
+ ")\n",
+ "\n",
+ "ntw.snapobservations(facility_points, \"facilities\", attribute=True)\n",
+ "facilities_snapped = spaghetti.element_as_gdf(\n",
+ " ntw, pp_name=\"facilities\", snapped=True\n",
+ ")\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The plot is now visually more organized as the points belong to a network. \n",
+ "The network created is plotted below with facility points and clients points:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAFlCAYAAAAebWm1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3hU5b0v8O87uRAGCZAESAjODChJzAWERNwFCxR2PcELomgfD6NHce8G5FSBjXZL42bvUqfFqj2llzRQpEcfRt0tUI9bkVrdim63LU0QISBgWyZcTICES4AQyOU9fySTJpO5z1qz1pr1/TxPHpg1a9b7W2smWb95r0JKCSIiIiKjsmgdABEREVEsmMwQERGRoTGZISIiIkNjMkNERESGxmSGiIiIDI3JDBERERlacjwLy8rKkg6HI55FEhHpWm1tbZOUcqTWcRAZWVyTGYfDgZqamngWSUSka0KIeq1jIDI6NjMRERGRoTGZISIiIkNjMkNERESGFtc+M0REpL7a2tpRycnJGwEUg19ayfi6ANR1dHT8Y2lp6Sl/OzCZISJKMMnJyRuzs7NvGDly5FmLxcLVhMnQurq6xOnTpwsbGxs3Apjnbx9m7EREiad45MiRLUxkKBFYLBY5cuTI8+iuafS/TxzjISKi+LAwkaFE0vN5DpizMJkhIqK4WLNmzagLFy4odt9R+nhkXPwQEBFRXKxfv370xYsX/d53Ojo6FD0emUvID4EQYpMQ4pQQoq7PtgwhxO+FEF/0/DtC3TDD53a74XA4YLFY4HA44Ha7TRkDxZca77nb7UZWVhYWCgGPEOgSAhezsgCVPk+hzqHv81lZWcjKyuJnnAJqaWmxzJo16/r8/PzCCRMmFK1cuTLn1KlTKTNnzsy7+eab8wDAarVOXr58+ZiJEycWvPfee9dUVVVllJSU3FBQUFC4cOFCuzfB2bZtW/qNN95YUFhYeMPcuXPHnz9/3vLMM8+M6nu8jo4OLFiwwDFhwoSivLy8wu9+97ujNL0AFFfhjGb6vwB+BuDlPtueAvCelHKtEOKpnsf/rHx4kXG73aioqEBraysAoL6+HhUVFQAAp9NpmhgovtR4z91uNxYtWoR729vxSwBDerZf09yMjkce6f7FVfDzFOocfJ9vbm7ufS0/4/r32Cu77Uoe76cLp4RcgmHbtm3p2dnZ7R988MGfAaC5uTnptddey9q5c+fhnJycDgC4fPmypbi4+PKPf/zjL3fv3p327LPPZtfU1BwcNGiQfOCBB2zV1dWZCxYsOP/9738/58MPPzycnp7eVVlZmf29731v9PPPP9/wi1/8YrT3eB999JG1oaEh5YsvvtgPAE1NTUlKnjPpW8hkRkr5oRDC4bP5LgCzev7/EoAPoHIys2rb3pD7VC1/svePrVdrayuWLn8SdYNL1ApNdzFQfKnxnlctfxLt7e34Pv6WyHglX72Ks8ufxA8V/DyFOgd/zwfa14x+cM9ErUPQnSlTplyurKy89tFHH8296667zpeXl1/03ScpKQkPP/zwWQDYsWPH0Lq6OuukSZNuAIC2tjbLqFGjOj744IMhf/nLX9KmTp1aAADt7e2itLR0wLEKCgquHDt2bNBDDz107Z133nn+7rvvblH7HEk/op1nZrSUsgEApJQNQoiA1XlCiAoAFQBgs9miKmzVtr3YdeQMpo7LCLpfS3NjRNuD2XXkDACELFPpGKItN1ZalJso5xruex5Jud7XBvqNGa7w5ynUOYTz+e27T6K8t+GWuWrbXl0nNOHUpCht4sSJV3bv3n1g69atwyorK3PffffdAclFampqV3Jy921ISinuu+++5p///Ocn+u7zyiuvDLvlllta/uM//uNIsPJGjhzZWVdXd+C3v/1telVV1ah///d/z/jNb37jUfKcSL9UnzRPSrkBwAYAKCsri3qo4NRxGSH/WLxqs6G+fuDvrN1mi/gPjbcmKNLXxRpDtOXGSotyE+Vcw33PIynXe8yjABx+nhcKf55CnUOg5/3tG0m5StPyc0z9eTyelFGjRnUsXbr0zNChQ7teeumlzCFDhnSeP3/ekpOTM2D/8vLylnvuuef673znOydzc3M7Tp48mXT+/PmkWbNmXVq5cqWtrq5uUHFx8ZULFy5Yjhw5kjJx4sQrfY/X0NCQPGjQoK6HH374XF5e3pVHHnlknAanTRqJthf4SSFEDgD0/Ot3euF4c7lcsFqt/bZZrVa4XC5TxUDxpcZ77nK5kJKSgu8AuOTzXEdqKqDw5ynUOfh7PtC+WnG73ahaXI61997ITsk6UFtbO/jGG2+8oaCgoPDZZ5/NWb16dcNDDz3UNHfu3AneDsB9lZaWtj399NMn5syZk5eXl1c4e/bsvGPHjqWMGTOmY/369Z77779/fF5eXmFpaWnBvn370gCg7/E8Hk/KLbfckl9QUFD4yCOPjFuzZs3x+J81aSXampk3ADwEYG3Pv/9PsYhi4O18WFlZiaNHj8Jms8HlcsW1U6IeYqD4Cuc9d7vdqFr+JFqaG/FqGJ8J73PLli3DN5ub8X10Nzm1ZmbimnXrFO38G845+D6fkdHdjHPmzBldfMbZ8V5/FixY0LJgwYIDfbfNmDGjtbKysvfLb2tr66d9n//mN7959pvf/OZZ32PNmzfvwrx58z733V5ZWXmq7/EOHDgwYB8yh5DJjBDiVXR39s0SQhwH8K/oTmJ+LYT4BwBHAdynZpCRcDqdmv/x0kMM5F+kSUW4gr3n0d5o/R3zmpgjDSzU51bPn+vKykq/HZgrKyt1GzMRKSec0Uz/M8BTcxSOhUhVWn17541WfUePHo1oOxElFs6cSKYRLKlQE2+06gs0UjLaEZREZCxMZsg0tEoqeKNVHzveE5kbkxkyDa2SCt5o1ed0OrFhwwakZ+UAQsBut2PDhg1sxiMyCdXnmSHSC5fL1a/PDBCfpMJ7Q13a0/HYroPRP4nI6XT2zkCs5wnsiEh5rJkh0+C3dyKixMSaGTIVLb69cw4UIiJ1sWaGSGVajaIi0tozzzwzavz48UXz5s2LeGmByZMnFwCA1Wqd7Lutqakpae3atSOVizR6//RP/zRm9erVo4G/xRdsn0CUPCc1rtPFixfFTTfdlN/R0RHzsXJzc0vy8vIKCwoKCouLi70Li4qysrL89vb2qI7JZMYPTotOSuLQbDKrF198ceT27du/eOONN4IuEunPp59+ejDQtubm5qQXX3wx4ALHWvEXc7iUPCc1rtNPf/rTrHnz5p31Lgwaq507dx4+ePDggbq6us8BIC0tTc6cObNl48aNUa0Sy2TGh7dJoKWpAZCyt0mACQ1Fi0OzSfeqqzMwZkwJLJZSjBlTgurqmJcdX7hwoe348eOD5s2bd/13v/vdUX//939/XVFR0Q3XX3990fPPP5/l3e9nP/tZZl5eXmF+fn7h/Pnze2tw+tbI+G5buXLl2GPHjg0qKCgoXLx48dhly5aN+d73vtd7037sscdyn3nmmQE3cX9lBYrr0KFDqePHjy+6//777ddff33R9OnTJ1y8eFEAwD//8z9nOxyO4mnTpuV98cUXg/zFHGifQOX5nlNVVVVGSUnJDQUFBYULFy60+6sRaWlpscyaNev6/Pz8wgkTJhT98pe/HBHsOgGAv+MGOk5fv/71rzO/8Y1vnPM+/vrXv37d448/Pqa0tDQ/Kytr0uuvvz50QIARuvfee8+99tprUX322GfGB2drJaVpNYrKbNRaqiLhVVdnYMUKO9raur/cNjSkYsUKOwBgyZIz0R72lVdeObpz585hO3fuPJyTk9Nx8uTJ5tGjR3devHhRTJ48ufCBBx44e/z48ZTnn38+55NPPjnYs09SOMd+4YUXjt9xxx2DDx48eADoTjzuvvvu6/7lX/7lVGdnJ15//fURf/rTn/qt01RTU5Pmryy32+3xjSs7O7sTAI4ePZq2efPmv06bNq3+tttuG//yyy+PKCkpafvtb3+bsW/fvgPt7e248cYbCydPntzvpvHRRx9ZA+0TqLy+57R79+60J554YmxNTc3BQYMGyQceeMBWXV2d+a1vfau5bznbtm1Lz87Obv/ggw/+DHTXxAS7Trt3707bsmVLhu9xr7nmms5gx2lraxPHjh0blJ+ff9W77fDhw4O/8pWvXKytrT300ksvDd+8eXPm/PnzLwBAaWlp/qVLlwa8l2vXrj3m3WfOnDkThBBYtGjR6SeeeKIJAG666abLe/fuHRLOZ8AXkxkfbBIgpXFotvrYyToGa9bk9iYyXm1tFqxZkxtLMuPr2WefHf3WW28NB4DGxsaU/fv3p/3hD38Ycuedd57NycnpAIDRo0d3RnPs/Pz8q8OHD+/4+OOPBzc0NKQUFRW1ehMSr9/97nfp/sryF1d2dvYlAMjNzb0ybdq0ywAwefLkVo/HM6ipqSn5tttuOzd06NAuALj11lvPwcf7779/TaB9gpXntWPHjqF1dXXWSZMmefuTWEaNGjWgambKlCmXKysrr3300Udz77rrrvPl5eUXg12nQMd9+OGHm4Mdp7GxMXno0KG95V+4cMFy4cKFpNWrV58EgPb2djFs2LDe611bW3soWBwff/zxQYfD0X7ixInk2bNn5xUVFbXNnTv3YnJyMlJSUuTZs2ctI0aM6Ap2DF9MZnzYbDbU19f73a42frNMXJwDRV2sUY1BY2NqRNuj8Oabbw7duXPn0JqamoNDhw7tmjp1av7ly5ctUkoIIaQSZSxatKhp48aNWadOnUpZtGhRs+/z/soKFJf3+dTU1N79k5KSpPc5IUTIePztE6q8PrGK++67r/nnP//5iWBlTJw48cru3bsPbN26dVhlZWXuu+++2/L88883BNo/2HGDHWfIkCFdV69etfTZN624uLjV239m7969g4uLiy97nw9VM+NwONoBIDc3t+P2228/98knnwyZO3fuRaA7MbJarRF/JthnxodWs7Wyr05iY6dydbFGNQbZ2Vcj2h6Fc+fOJQ0bNqxz6NChXZ9++mnaZ599NgQAysvLW954442MxsbGJAAIt5lp2LBhnZcuXep3/3rwwQfPvf/++8M+++yzIQsWLDjv+xp/ZQWKK5jZs2dffOutt4ZfvHhRnD171vL73/9+eLj7BCuv7zmVl5e3vPnmmyNOnDiR7I318OHDA5JLj8eTMnTo0K6lS5eeWb58+ck9e/b0u3n5XqdAxw11nJEjR3Z2dnaK1tZWAQB79uwZXFJS0vvtoa6uzjplypTex7W1tYcOHjx4wPdn/vz5F1paWixnz561AN19ft5///30iRMnXgaAxsbGpBEjRnQMGjQo4mSGNTM+tGoS4DfLxMUmEPVpWaNqeKtXn+jXZwYA0tK6sHp10FqBSCxYsOD8hg0bRubl5RVed911bZMmTboEAGVlZW0rV65s+OpXv1pgsVhkcXFx69atWz2hjpednd1ZWlp6ccKECUWzZ88+v379+uNpaWly2rRpLcOHD+/0N+LGX1mbN2+u9xdXMLfcckvr3Xfffaa4uLgoNzf3ytSpUwc07QTaJ9B18HdOTz/99Ik5c+bkdXV1ISUlRf7kJz85mpeX1y/BrK2tHbxq1aqxFosFycnJsqqqqt8vgb/r5O+4586dSwp2HACYMWPG+Xfeeeea+fPnX9i3b9/gm2++uTf2w4cPDy4tLb3s+xp/jh8/nnz33XdfDwCdnZ1iwYIFzffee28LALz99tvpc+bMGZCIhkNIqUgNX1jKyspkTU1NxK9btW0vgPhWz8e7TIvFAn/vhRACXV0RNR1GxQzXWKtyHQ6H3xut3W6Hx+NRtWyzXGPfhBHorlGNxwzPsZ6rEKJWSlmmZEyfffaZZ9KkSU1hv6C6OgNr1uSisTEV2dlXsXr1CSX7y8RDZ2cnioqKCn/zm9/8paSk5IrW8SSajz/+ePBzzz2X/frrr0c8zD5ct95663XPPffc8UmTJvl9/z777LOsSZMmOfw9x2YmneDw3cTFJhD1camKGC1ZcgZffrkPXV21+PLLfUZLZGpra9PsdnvJV7/61RYmMuqYPn365VmzZrUoMWmeP21tbWLevHnnAiUyobCZSSc4fDdxsQkkPtjJ2rxKS0vbjh8/vk/rOBLd8uXLB3SsVkpaWpr0HXoeCdbM6ITZvlmaqUOsVp3KiYjMgjUzOmKWb5Zm6xDLeWaIiNTFZIbizowjt8ySqBIRaYHNTBR37BBLRERKYjJDinC73XA4HLBYLCH7wJhl5JbvNdn/4VtRvS6R+xMRESmByQzFzNsHpr6+HjKM2YvN0CHW3zV5u3pNyIQm0mtJREQGmjRv15EzmDou5lXpw7brSPc0C/Es06jlVi0u716GwUd6Vg6Wrt/h9zX7P3wL77y0DlfOnUJ6VjZmOh9D0YzbIy47GvG4xoGuyaDho7HixXcifl2waxmMET9PRivX+7fJ0JPmERlAsEnz2AGYYtbS3BjRdgAomnE7Ll37FQDxv+HFQ6Bzv3LuVFSvC3YtiYjMzjDJTCzffKKhxTTwbrcbVWu7h+/+Jc7Dd2M531cDTApnt9mCHi+Rp9oPdE3Ss7KDlhvttQwkka+xXsr1lknhsVqtk1tbWz8FgMmTJxd8+umnByM9RlNTU9LGjRsznnrqqdPKR/g3oeKLJo6LFy+Kr33ta3mffPLJIX9rSEXivvvuc7z33nvDMjMzO7744ov93u1btmxJf+KJJ2xdXV144IEHmr7//e83Bnuura1N3HLLLXmffPLJoZSUlJhi0gr7zOiEkVfNNkMfmEj5uybJg9Iw0/lYxK8z+7WkxBVNIgMAzc3NSS+++OIopePxFSq+aOL46U9/mjVv3ryzsSYyAPDII480vfHGG1/03dbR0YEVK1bYtm/ffvjw4cP7t27dmlFbW5sW7Lm0tDQ5c+bMlo0bNxq2mpzJjE4Em3tF77yzF9vtdggTzF4cDn/XZO6S1SH7BfFakhaqq6szxowZU2KxWErHjBlTUl1drchN7Wc/+1lmXl5eYX5+fuH8+fPH+T5vtVone/9fVVWVUVJSckNBQUHhwoUL7R0dHTh06FDq+PHji+6//3779ddfXzR9+vQJFy9eFCtXrhx77NixQQUFBYWLFy8e29LSYpk1a9b1+fn5hRMmTCj65S9/OaJvOYcOHUodN25c0T333OPIy8srLC8vH3/hwoXe+9+//du/jZ4wYULRhAkTitasWTPKNz6l4gCAX//615nf+MY3znkff/3rX7/u8ccfH1NaWpqflZU16fXXXx8a7vWdO3fuxZEjR/ZbLOmDDz4YYrfbrxQWFl5NS0uT99xzz5ktW7YMD/Xcvffee+61115jMkOxMfrcK06nEx6PB11dXfB4PLz5YuA1CbeDM68lxVN1dXXGihUr7A0NDalSSjQ0NKSuWLHCHmtCU1NTk/b888/n7Ny58/ChQ4cOrF+/PuAfs927d6dt2bIlo6am5uDBgwcPWCwWWV1dnQkAR48eTXv88cdP/fnPf94/bNiwzpdffnnECy+8cPzaa6+9cvDgwQPr168/vm3btvTs7Oz2Q4cOHfjiiy/233PPPS2+ZXg8nrQlS5acPnz48IGhQ4d2PffccyMB4KOPPrK+8sormbW1tZ/X1NR8/vLLL4/8+OOPB/u+Xok42traxLFjxwbl5+df9W47fPjw4OHDh3fW1tYeeuGFF+o3b96cCQClpaX5BQUFhb4/oZKdY8eOpebm5vYef+zYsVdPnDiRGuq5m2666fLevXuHBDu2nuk+mTHLGj5mmXuFiPRlzZo1uW1tbf3uBW1tbZY1a9bkxnLc3/3ud+l33nnn2ZycnA4AGD16dGegfXfs2DG0rq7OOmnSpBsKCgoK/+u//iv9r3/96yAAyM3NvTJt2rTLADB58uRWj8czyPf1U6ZMufzRRx+lP/roo7k7duy4JjMzc0BZ2dnZV2+99dZLAPDggw82//d///c1APDBBx9cc9ttt51LT0/vGjZsWNftt99+9v333x+QMCgRR2NjY/LQoUN7a1IuXLhguXDhQtLq1atPAkB7e7sYNmxYJwDU1tYeOnjw4AHfn/nz518IdB0BwN8IZSGEDPVccnIyUlJS5NmzZ3WfF/ij66CN3I8kUuwrQURaaGxsTI1ke7iklL03yjD2Fffdd1+z94bt8XjqfvSjH30JAKmpqb3HSEpKkh0dHcL39RMnTryye/fuAyUlJZcrKytzn3jiiRzffYQQfh+HOz2JEnEMGTKk6+rVq7333d27d6cVFxe3evvP7N27d3BxcfFlIPqaGZvN1lvbAgDHjx9PHTNmTHuo54DuZMpqtcZvvhYF6TqZMXI/kkiZbdVsItKH7Ozsq5FsD1d5eXnLG2+8kdHY2JgEACdPnkwKtu+bb7454sSJE8nefQ8fPhwwmRo2bFjnpUuXeu9fHo8nZejQoV1Lly49s3z58pN79uyx+r6moaEh9d133x0CAK+88krGtGnTLgLA7NmzL27fvn34hQsXLC0tLZbt27eP+NrXvha09iPaOEaOHNnZ2dkpWltbBQDs2bNncElJSe9Nrq6uzjplypRWIPqamZkzZ17yeDxpBw8eTG1raxPbtm3LWLBgwblQzzU2NiaNGDGiY9CgQYZMZnQ9NNvo/UgixcUIiSjeVq9efWLFihX2vk1NaWlpXatXrz4Ry3HLysraVq5c2fDVr361wGKxyOLi4tatW7d6/O1bWlra9vTTT5+YM2dOXldXF1JSUuRPfvKTo2PHjm33t392dnZnaWnpxQkTJhTNnj37/K233tqyatWqsRaLBcnJybKqqmrA/Abjx49v27RpU+bSpUvt48aNu/LEE0+cBoBbbrmldeHChc1Tpky5AQAefPDB09OnT78czjlGE8eMGTPOv/POO9fMnz//wr59+wbffPPNl7zPHT58eHBpaWlYZQPAnXfeOe4Pf/jD0LNnzyaPHj164lNPPfXlihUrml544YWj5eXleZ2dnVi4cGFTWVlZGwCkpKQg0HNvv/12+pw5c86HW7be6HoGYIfD4X/ODbsdHo9HwcgGMtM8GVqVa6Zz1apcM52rVuXGWqYeZgCurq7OWLNmTW5jY2Nqdnb21dWrV59YsmTJGSVj0tKhQ4dS77jjjgl952LRyscffzz4ueeey3799dePaB1LX7feeut1zz333PFJkyZd0TqWQILNAKzrZqbbbrstou1GZ5bOzkSkL0uWLDnz5Zdf7uvq6qr98ssv9yVSIqM306dPvzxr1qyWjo6O0DvHSVtbm5g3b945PScyoei6mWn79u0RbTcyb2dnbx8hb2dnAOw3Q0QUg/z8/Kt6qJXxWr58ebPWMfSVlpYmv/Wtb+kqpkjpumbGTH1mzNTZmYiISEm6TmbMNPeKmRI3IiIiJek6mTHT3CtmStyIiIiUpOtkxkxzr5gpcSMi1XV1dXUNmNSNyKh6Ps9dgZ7XdQdgwDxzr3gTtKXLn0RLcyPsNhtcLldCJm5EpLq606dPF44cOfK8xWIx5CRoRF5dXV3i9OnTwwDUBdpH98mMmZglcSMidXV0dPxjY2PjxsbGxmLovAaeKAxdAOo6Ojr+MdAOTGaIiBJMaWnpKQDztI6DKF6YsRMREZGhMZkhIiIiQ2MyQ5SguDwGEZkF+8wQJSAuj0FEZsKaGaIExOUx4oO1X0T6wGSG+Ac5AXF5DPV5a79amhoAKXtrv/j7QxR/TGZMjn+QExOXx1Afa7+I9COmZEYIsUIIsV8IUSeEeFUIkaZUYBQf/IOcmLg8hvpY+0WkH1EnM0KIXACPAyiTUhYDSAJwv1KBUWTcbjccDgcsFktETUWx/EGOtkwjMtq5mmlds3jw9/6z9otIP2IdzZQMYLAQoh2AFcCXsYdEkYpl5IrNZkN9fb3f7WqVaTRGPVcuj6GMQO//Qw89hJdeeqlfzSZrv4i0IaSMfg0yIcQyAC4AlwG8I6UM+pe9rKxM1tTURFzOqm17sevIGUwdlxFdoFHYdeQMAMS1zGjLrVpc3t3nxUd6Vg6Wrt8R9LX7P3wLb1evQceVtt5tyYPSMHfJahTNuF2VMr2Mco2VONdoylWCUa6xnssN9v7PdD6Gd15ahyvnT0W9OKwQolZKWaZUvERmFHXNjBBiBIC7AIwDcA7Ab4QQD0gpN/vsVwGgAmD1q1pamhsj2t6XN2F556V1uHLuFNKzsjHT+VjQRCbWMo3GqOe6/8O38HHP+1oT5vtKAwV7/4tm3I5L134FU8dlsPaLSEtSyqh+ANwH4MU+j/8XgKpgryktLZXReGrrZ/KprZ9F9dpoaVFmtOXa7XYJYMCP3W5XrVwtylSKFue6efNmmZ6VIyGEtNvtcvPmzVFEHr7NmzdLq9XaL16r1ap6uV5GeW/DEer9j7VMADUyyr/D/OEPf7p/YhnNdBTA3wkhrEIIAWAOgM9jOB5FSYuRK2YaLRPrubrdbixatKjf8PdFixap2omYo9SUY6bPOpFRRZ3MSCn/CGALgN0A9vUca4NCcVEEvCNX7HY7RJxGrmhRplZiPddly5ahvb2937b29nYsW7ZMjXABcNiwksz0WScyqphGM0kp/xXAvyoUC8XA6XTG/Y+rFmVqJZZzbW5ujmi7EqIdpUb+memzTmREnAGYKAGxaYSIzITJDJHKMjMzI9quBC0nzeNaX0QUb7FOmkdEIaxbtw6PPPIIrl692rstNTUV69atU7VcLSbNM+oEg0RkbKyZIVKZ0+nEpk2b+tWSbNq0KSFv7hxFRURaYDJDRIrhKCoi0gKTGSKVeZte+s4zU1FRkZB9Sbj4IhFpgckMkcrM1PTCUVREpAUmM0QqM1PTi5ajqIjIvDiaiUhlZpvATotRVERkbqyZIVIZm16IiNTFZIZIZWx6iQ9O1kdkXmxmIooDNr2oi5P1EZkba2aIyPDMNGKMiAZiMkNEhmemEWNENBCTGSIyPE7WR2RuTGaIyPA4YozI3JjMEJHhccQYkblxNBMRJQSOGCMyL9bMEBERkaExmSEiIiJDYzJDREREhsZkhgzH7XbD4XDAYrFw2voo8PoRUaJhB2AyFE5bHxtePyJKREJKGbfCysrKZE1NTcSvW7VtL3YdOYOp4zJUiJObyrIAABv5SURBVMq/XUfOAEBcyzRbudGUWbW4HC1NDQO2p2flYOn6HaqVqwQ9XGMlrl805caLVtd46riMqEdQCSFqpZRlCodFZCpsZiJDaWlujGg79cfrR0SJyDDNTLF884nGqm17AcR/vgozlRtNma/abKivrx+w3W6zhX0cM19jJa5fNOXGi5bXmIi0w5oZMhROWx8bXj8iSkRMZshQvNPW2+12CE5bHzFePyJKRIZpZiLycjqdvPnGgNePiBINa2aIiIjI0JjMEBERkaExmSEiIiJDYzJDREREhsZkhoiIiAyNyQwREREZGpMZIiIiMjQmM2QqbrcbVYvLsfbeG+FwOOB2u7UOiYiIYsRJ88g03G43Kioq0NraCgCor69HRUUFAHASOSIiA2PNDJlGZWVlbyLj1draisrKSo0iIiIiJTCZIdM4evRoRNuJiMgYmMyQadhstoi2E4XCPlhE+sBkhkzD5XLBarX222a1WuFyuTSKiIzM2werpakBkLK3DxYTGqL4YzJDpuF0OrFhwwakZ+UAQsBut2PDhg3s/EtRYR8sIv3gaCYyFafTibrBJQCAH9wzUeNoyMjYB4tIP1gzQ0QUBfbBItIPJjNERFFgHywi/WAyQ6bC0SekFPbBItIP9pkh0+AMwKQ09sEi0gfWzJBpaDn6hDVCRETqYc0MmYZWo09YI0REpC7WzJBpaDX6hPOREBGpK6ZkRggxXAixRQhxUAjxuRDiK0oFpgm3G3A4AIsF315cjkkfvqV1RKSgoKNP+rz3cDi6Hyskkhoht9sNh8MBi8UScXNULK8lIjKyWGtm1gHYIaUsADAJwOexh6QRtxuoqADq6wEpMaKpAfdUr1H0pkbaCjj6BOj33qO+vvuxQu99uDVC3uao+vp6yAinxw/02v1MyInIBISUMroXCpEO4DMA42WYBykrK5M1NTURl7Vq217sOnIGU8dlRPzacH17cTlGNDUM2H42Kwc/XL9DtXJ97TpyBgBUPVe9lKuXc1X7vd//4Vt4u3oNOq609W5LHpSGuUtWo2jG7b3bqhaXd6/z4yM9KwdLQ8QR6LWDho/G9Kdf0/waJ3K53r9N0Y5mEkLUSinLFA6LyFRiqZkZD+A0gF8JIT4VQmwUQgzx3UkIUSGEqBFC1Jw+fTqG4tQ1vLkxou2UONR+74tm3I65S1Zj0PDRAATSs3IGJDIA0BKgvEDbw9nnyrlTEcdLRGQ0sdTMlAH4A4DpUso/CiHWAWiRUv5LoNfEUjMDqDyPg8PR3bzgy24HPB71yvURl3PVSbm6Odc4vfehztfhcKDeTxx2ux2eEHEEeq23Vkfza5zA5cZaJmtmiGIXS83McQDHpZR/7Hm8BcCU2EPSiMsF+HQOvToorXs7JTY/7z2s1ri/97FMjx/otTOdjykaIxGRHkWdzEgpGwEcE0Lk92yaA+CAIlH1EbfJxpxOYMOG7m/jQuBsVg62LVndvZ0Sm897D7u9+3Gc33tvB2W73Q4R4fT4gV7r25RFRJSIYp007zEAbiFEKoC/AlgUe0h/E/fJxpzO3hvYD3uqju9XvhTSoz7vvbZhOKP+bPt7rbcJhIgokcU0NFtKuUdKWSalnCilnC+lPKtUYAAnGyMiIqLQdD0DsFbTzxMREZFx6DqZ0Wr6eSIiIjIOXSczsYzuICJSG1dDJ9IHXSczAaef10FHTSIyN+8AhZamBiDC5SeISFmxjmZSndPpRN3gEgDxn4CLiCiQYAMU+IWLKL50XTMDsBqXiPSJAxSI9EPXyQyrcYlIrzhAgUg/dJ3McJ4ZItIrDlAg0g9dJzP+Fs4Ltp2IKF44QIFIP3TdATgpKQmdnZ1+txMRaY0DFIj0Qdc1M/4SmWDbiYiIyHx0nczY7faIthMREZH56DqZYQc7IiIiCkXXyQw72BEREVEouu4ADLCDHREREQWn65oZIiIiolB0n8xwOQMiIiIKRtfNTN7lDLyzAHuXMwDAfjNEREQEQOc1M1zOgIiIiELRdTLDVWmJiIgoFF0nM1yVloiIiELRdTLDSfOMze12w+FwwGKxsPN2FPR8/byxCSGQnJwMIYTuYiQi89B1B2BvJ9+ly59ES3Mj7DYbXC4XO/8aADtvx0bP1883Nu9aaX1jRM/cUERE8SCklHErrKysTNbU1ET8ulXb9mLXkTOYOi5Dhaj823XkDADEtcxEKrdqcTlamhoGbE/PysHS9TtUKTNcRig3nOundJnhChSbV3pWDsqeekXxcsOhxXvr/dsU7aSeQohaKWWZwmERmYqum5nIuFqaGyPaTv3p+fqFikEPMRKRuei6mamvWL75RGPVtr0A4r+EQqKU+6rNhvr6+gHb7TZbbxmJcq5qlBvO9VO6zHAFis3LbrP11ozo+RorXSYRaYc1M6QKdt6OjZ6vn7/YvPQSIxGZC5MZUoV3xXO73Q7BFc8jpufr1zc2AEhKSgIAXcVIROZimGYmMh6n08kbWwz0fP30HBsRmQ9rZojigAumEhGpR/fJDG8CZHTeeVlamhoAKXvnY+FnmYhIGbpOZngToETABVOJiNSl62SGNwFKBFwwlYhIXbpOZngToETABVOJiNSl62SGNwFKBHqeM4aIKBHoOpnhTYASgXdelvSsHEBnc8YQESUCXc8zw1WzKVE4nU7U9awkHe8p/omIEp2ukxmANwFSltvtRlVPcvwqk2MiooSg+2SGSCneof7eEXLeof4AmNAQERmYrvvMECmJQ/2JiBITkxkyDQ71JyJKTLpPZricASmFQ/2JiBKTrpMZLmdASuJQfyKixKTrZIZ9HEhJnO+FiCgx6TqZMVsfB62a1MzUlOd0OrF0/Q48tWUPPB4PExkiogSg62TGTH0ctGpSY1MeEREZna6TGTP1cdCqSY1NeUREZHS6TmbM1MdBqyY1szXlERFR4tH9DMBmWc7AZrOhvr7e7/ZELJeIiEgpuq6ZMROtmtTM1JRHRESJKeZkRgiRJIT4VAjxphIBGZXb7YbD4YDFYolqRJBWTWpGbsqL9ZoHOTDgcAAWS/e/YRxXtViIiCgkJZqZlgH4HEC6AscyJKUWMNSqSc2ITXmqLRrpdgMVFYC3U3R9fffj7gPHNxYiIgqLkFJG/2IhxgJ4CYALwD9JKe8Itn9ZWZmsqamJuJxV2/Zi15EzmDouI7pAo7DryBkACKvMqsXl3UObfaRn5WDp+h2qlaskLcqNpcxYrnmwcr+9uBwj/Bz3bFYOfhjguOHGYrRrzHJD2//hW3jnpXW4cv4U7DYbXC5XxAmsEKJWSlmmUohEphBrM9OPAXwbQFegHYQQFUKIGiFEzenTp2MsTp9amhsj2k6xU+uaDw/w+kDb1YyF9G3/h2/h7eo1uHLuJOdoItJY1DUzQog7ANwmpVwqhJgF4Ak1a2aA+DaBRFKmw+HwOyLIbrfD4/GoVq6S9H6NfcVyzYOW63B0Ny0NPDAQ4LjhxmK0a8xyg1Pq9541M0Sxi6VmZjqAeUIID4DXAMwWQmxWJCqD4Yig+FPtmrtcgM9xYbV2b493LKRrnKOJSD+iTmaklKuklGOllA4A9wP4TynlA4pFZiDeEUF2ux3CYCOCjEq1a+50Ahs2dNfECNH974YNATv/qhoL6ZqZllsh0jvdT5qnBbfbjarlT6KluRGvhtmpz+l08uYVZ6pdc6czaPIS11hIt1wuV79RbABr5Ii0osikeVLKD0L1lzEKLrxIROEw8hxNRImGNTM+gi28yD9SRNSXEedoIkpEXM7ABzv1ERERGQuTGR/s1EdERGQsTGZ8uFwupKSk9NuWkpLCTn1EREQ6xWTGDyFE0MdERESkH0xmfFRWVuLq1av9tl29ehWVlZUaRURERETBMJnxwQ7ARERExsJkxgc7ABPFxu12o2pxOdbeeyMcDgfnaCIi1TGZ8WHGdXZ481GfWa4xJ50kIi0wmfFhtlk9efNRn5mucbBJJ4mI1MIZgP0w06yenPFYfWa6xuxzRkRaYM2MyfHmoz4zXWP2OSMiLTCZMTnefNRnpmtsxj5nRKQ9JjMmx5uP+sx0jc3W54yI9IF9ZnTE7XajavmTaGluxKs2G1wul+o3Ae/xl/aUa49TuWZitmusWZ8ztxvfXv4khjc3AjYb4HIBCXqNiag/JjM64R3x4u0o6h3xAiAuCY1ZOjxrhddYZW43UFGBEd6O1vX1QM/vDxMaosTHZiad4JBWohhUVgI+vz9obe3eTkQJj8mMTphpxAuR4gL9nvD3h8gUmMzohJlGvBApLtDvCX9/iEyByYxOmGnEC5HiXC7A5/cHVmv3diJKeExmdIJDWoli4HQCGzbgbFYOpBCA3Q5s2MDOv0QmwWQmAm63G1lZWRBCQAiBrKwsRdfXcTqdWLp+B57asgcej8e0iYzb7YbD4YDFYjHMoozhxrz/w7cMd26G4XTih+t34Dtb9gAeDxMZIhPh0Owwud1uLFq0CO3t7b3bmpub8cgjjwBQf/i0WWg5RD1a4ca8/8O38Hb1GnRcaQu6HxERRUZIKeNWWFlZmaypqYn4dau27cWuI2cwdVyGClH5t+vIGQDoLbNqcXn3qsd+pGflYOn6HaqUGy9alOuvzEDXWc/XONyY/88/3Ior506G3E9JZvo8aVWu929TtPMHCSFqpZRlCodFZCpsZgpTS3NjVM9RZAJdSz1f43BjvnLuVESvJyKi8BimZgaI78ypvmU6HA7U19f73ddut8Pj8ahSbrzEu1y32+13ev9A11nP1zjcmIeNHOO3BkfJc/Nlls+TluXGWiZrZohix5qZMLlcLqSkpAzYnpqayuHTEfL2MWlpagCk7O074na7DTlEPdyYZzofQ/KgtJD7ERFRZJjMhMnpdOJXv/oVMjMze7dlZmZi06ZN7LwZoWBLN3iHqNvtdgiDDFEPN+aiGbdj7pLVhjo3IiIj4GimCDidTt54FBBq6QYjXudwYy6acTve+PGqOERERGQerJmhuOPSDUREpCQmMxR3RuwXQ0RE+sVkhuKOSzeQGtxuN6oWl2PtvTdydmUik2GfGdKE0+lE3eASAPEfvkuJx4gzRxORclgzQ0SGF2yEHBElPiYzRHHAJhB1hRohR0SJjckMkcqCTRJIyuAIOSJzYzJDpDI2gaiPI+SIzI3JDJHK2ASiPo6QIzI3jmbyw+12o6pnEcRX+yyCSBQNm83mdyFKNoEoiyPkiMyLNTM+2L+BlMYmECIidTGZ8cH+DaQ0NoEQEamLzUw+2L+B1MAmECIi9bBmxgeHeBIRERkLkxkf7N9ARERkLExmfLB/AxERkbGwz4wf7N9ARERkHKyZISIiIkNjMkNERESGxmSGiIiIDI3JDBERERla1MmMEOJaIcT7QojPhRD7hRDLlAyMiIiIKByx1Mx0AFgppbwBwN8B+N9CiEJlwtIvt9sNh8MBi8UCh8MRcM2mcPdTq3wt6TVGb1xr770RVYvLdRMXERHFJuqh2VLKBgANPf+/IIT4HEAugAMKxaY73kUovWs3eRehBNBvHppw91OrfC3pNUbfuFqaGnQRFxERxU5IKWM/iBAOAB8CKJZStgTar6ysTNbU1ER0bLfbjaXLn0RLUyPSs7Ix0/kYimbcHlO84dh15AwAYOq4jN5tVYvLu1fT9pGelYOl63dEvF+45Spx3FCClRuJSGJUqkyl41JLPM9XyzLNVu6uI2cwdVxG1HNSCSFqpZRlCodFZCoxT5onhLgGwFYAy/0lMkKICgAVQOTrG/n7Nv129RoAiEtC46uluTGs7eHup1b5WtJrjHqNi4iIYhdTzYwQIgXAmwB+J6X8Uaj9I62ZcTgcqK+vH7DdbrfD4/FEEGnkVm3bC6D/DMDhxhNL3P7KVeK4oQQrNxKRxKhUmUrHpZZ4nq+WZZqt3FjLZM0MUexiGc0kALwI4PNwEploHD16NKLtagt3EUq1Fqs0wiKYeo1Rr3EREVHsYhnNNB3AgwBmCyH29PzcplBcAAI3S0XaXKUU7yKUdrsdIsgilOHup1b5WtJrjH3jghBIz8rRRVxERBS7WEYz/RcAoWAsA7hcrn59ZgDtv007nc6wboDh7qdW+ZFwu92oWv4kWpob8arNBpfLFVMZap17rLxxeZsFnFxElIgoIeh6BmDvt+n0rBxAR9/yE4m3k3VLUwMgZe9Qas7BQkRERhHzaCa1OZ1O1A0uARD/zoRmUFlZ2a/mCwBaW1tRWVnJpJGionRNHxFRKLpPZkhdeutkTcbmdruxaNEitLe3A+ieNHHRokUAODkhEalH181MpD69dbImY1u2bFlvIuPV3t6OZcu4dBsRqYfJjMlxyDIpqbm5OaLtRERKYDJjcmbrZO12u1G1uBxr771RV4tgEhFR9NhnhkzTyVqvi2AmkszMTL+1MJmZmRpEQ0RmwZoZMo1gI7dIGevWrUNqamq/bampqVi3bp1GERGRGTCZIdPgyC31OZ1ObNq0qV+z5aZNm1jzRUSqYjMTmYbNZvO72CRHbinLLM2WRKQfrJkh0+DILSKixMRkhkzDbCO3iIjMgs1MZCpsAiEiSjysmSEiIiJDYzJDREREhsZkhoiIiAyNyQwREREZGpMZIiIiMjQmM0RERGRoTGaIiIjI0JjMEBERkaExmSHdc7vdcDgcsFgscDgccLvdWodEGojX54CfNyLj4QzApGtutxsVFRVobW0FANTX16OiogIAuAyBicTrc8DPG5ExCSll3AorKyuTNTU1Eb9u1ba92HXkDKaOy1AhKv92HTkDAHEt02zlhlNm1eJytDQ1DNienpWDpet3qFauGvR6jY1Qbrifg1jLjebz5v3bFO3yGEKIWillWVQvJiIAbGYinWtpboxoOyWmeH0OIi1n/4dv4eNn7sfae29kkxSRhgxTMwPEd2FALco0W7nhlOlwOFBfXz9gu91uh8fjUa1cNej1Ghuh3HA/B7GWG8nnzbdJCgCsVmvEK7GzZoYodqyZIV1zuVywWq39tlmtVrhcLo0iIi3E63MQSTmVlZX9EhkAaG1tRWVlpaIxEVFoTGZI15xOJzZs2AC73Q4hBOx2e8TffMn44vU5iKSco0eP+j1GoO1EpB6OZiLdczqdTF4obp+DcMux2Wx+m6RsNpsaYRFREKyZISKKAptAifRD98mM2+1G1eJyjhYgIl3xNkmlZ+UAbAIl0pSum5k4gRUR6ZnT6UTd4BIA8R8xRkR/o+uaGY4WICIiolB0ncxwtAARERGFoutkJtCoAI4WICIiIi9dJzMcLUBERESh6DqZ4WgBIiIiCkXXo5kAjhYgIiKi4HRdM0NEREQUCpMZIiIiMjQmM0RERGRoTGaIiIjI0JjMEBERkaExmSEiIiJDYzJDREREhsZkhoiIiAyNyQwREREZGpMZIiIiMjQmM0RERGRoTGaIiIjI0JjMEBERkaHFlMwIIcqFEIeEEH8WQjylVFDUn9vthsPhgMVigcPhgNvt1lU8S5cu7X2clZWFrKws1WLV27Wg0PieEZHakqN9oRAiCcDPAXwdwHEAfxJCvCGlPKBUcNR9I6ioqEBraysAoL6+HhUVFQAAp9Opi3h+8Ytf9D7f3Nzc+3+lY9XbtaDQ+J4RUTwIKWV0LxTiKwD+TUr5P3oerwIAKeUPAr2mrKxM1tTURFzWqm17sevIGUwdlxFVrNHYdeQMAMS1TH/lVi0uR0tTw4D90rNysHT9DtXKDSRQPMEEijXSa6zUtdDLe5uoZfYtt2btwrh8fn3Ljfc1njouAz+4Z2JUrxdC1EopyxQOi8hUoq6ZAZAL4Fifx8cB3Oy7kxCiAkAFANhstqgK+sE9E7Fq296oXhuteP/xD1RuS3Oj3/0CbVeq3ECiKTfQayK9xkpdC728t4laZt9y/zNOn1/fcuMplkSGiJQRS83MfQD+h5TyH3sePwhgqpTysUCvibZmxswcDgfq6+sHbLfb7fB4PLqJJxilYtXbtaDQ+J6FxpoZotjF0gH4OIBr+zweC+DL2MIhXy6XC1artd82q9UKl8ulm3iCUTJWvV0LCo3vGRHFhZQyqh90N1H9FcA4AKkAPgNQFOw1paWlkiK3efNmabfbpRBC2u12uXnzZl3F8+ijj/Y+zszMlJmZmarFqrdrQaHxPQsOQI2M8u8wf/jDn+6fqJuZAEAIcRuAHwNIArBJShn06xabmYiI+mMzE1HsYukADCnldgDbFYqFiIiIKGKcAZiIiIgMjckMERERGRqTGSIiIjI0JjNERERkaExmiIiIyNCYzBAREZGhMZkhIiIiQ2MyQ0RERIbGZIaIiIgMLablDCIuTIjTACJbcvlvsgA0KRiOnvFcE5eZzpfnGh67lHKkksEQmU1ck5lYCCFqzLJ+Cc81cZnpfHmuRBQvbGYiIiIiQ2MyQ0RERIZmpGRmg9YBxBHPNXGZ6Xx5rkQUF4bpM0NERETkj5FqZoiIiIgG0H0yI4QoF0IcEkL8WQjxlNbxqEkIca0Q4n0hxOdCiP1CiGVax6Q2IUSSEOJTIcSbWseiJiHEcCHEFiHEwZ739ytax6QWIcSKns9vnRDiVSFEmtYxKUkIsUkIcUoIUddnW4YQ4vdCiC96/h2hZYxEZqPrZEYIkQTg5wDmAigE8D+FEIXaRqWqDgArpZQ3APg7AP87wc8XAJYB+FzrIOJgHYAdUsoCAJOQoOcshMgF8DiAMillMYAkAPdrG5Xi/i+Acp9tTwF4T0o5AcB7PY+JKE50ncwAmArgz1LKv0oprwJ4DcBdGsekGillg5Ryd8//L6D7hperbVTqEUKMBXA7gI1ax6ImIUQ6gBkAXgQAKeVVKeU5baNSVTKAwUKIZABWAF9qHI+ipJQfAjjjs/kuAC/1/P8lAPPjGhSRyek9mckFcKzP4+NI4Jt7X0IIB4DJAP6obSSq+jGAbwPo0joQlY0HcBrAr3qa1DYKIYZoHZQapJQnADwP4CiABgDnpZTvaBtVXIyWUjYA3V9KAIzSOB4iU9F7MiP8bEv44VdCiGsAbAWwXErZonU8ahBC3AHglJSyVutY4iAZwBQAv5BSTgZwCQnaDNHTV+QuAOMAjAEwRAjxgLZREVGi03sycxzAtX0ej0WCVVn7EkKkoDuRcUspt2kdj4qmA5gnhPCgu/lwthBis7YhqeY4gONSSm8t2xZ0JzeJ6O8BHJFSnpZStgPYBmCaxjHFw0khRA4A9Px7SuN4iExF78nMnwBMEEKME0Kkorsj4Rsax6QaIYRAd7+Kz6WUP9I6HjVJKVdJKcdKKR3ofl//U0qZkN/gpZSNAI4JIfJ7Ns0BcEDDkNR0FMDfCSGsPZ/nOUjQzs4+3gDwUM//HwLw/zSMhch0krUOIBgpZYcQ4lsAfofuURGbpJT7NQ5LTdMBPAhgnxBiT8+270gpt2sYEynjMQDunqT8rwAWaRyPKqSUfxRCbAGwG92j8z5Fgs2OK4R4FcAsAFlCiOMA/hXAWgC/FkL8A7oTuvu0i5DIfDgDMBERERma3puZiIiIiIJiMkNERESGxmSGiIiIDI3JDBERERkakxkiIiIyNCYzREREZGhMZoiIiMjQmMwQERGRof1/StygQeJVsGYAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots(figsize=(6, 6))\n",
+ "street.plot(ax=ax, alpha=0.8, zorder=1, label='streets')\n",
+ "facilities_snapped.plot(ax=ax, color='red', zorder=2, label='facility candidate sites ($n$=5)')\n",
+ "clients_snapped.plot(ax=ax, color='black', label='clients points ($n$=100)')\n",
+ "plt.legend(loc='upper left', bbox_to_anchor=(1.05, 1))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Calculating the cost matrix "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Calculate distance between clients and facilities."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "cost_matrix = ntw.allneighbordistances(\n",
+ " sourcepattern=ntw.pointpatterns[\"clients\"],\n",
+ " destpattern=ntw.pointpatterns[\"facilities\"],\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The expected result is a Dijkstra distance between clients and facilities points, so we our case an array 2D 100x5."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[12.60302601, 3.93598651, 8.16571655, 6.04319467, 5.65607701],\n",
+ " [13.10096347, 4.43392397, 8.66365401, 6.54113213, 5.15813955],\n",
+ " [ 6.9095462 , 4.2425067 , 2.47223674, 0.34971486, 5.34955682],\n",
+ " [ 2.98196832, 7.84581224, 3.45534114, 3.57786302, 6.25374871],\n",
+ " [ 7.5002892 , 6.32806975, 4.55779979, 6.43527791, 11.75939222],\n",
+ " [ 0.60209077, 11.42987132, 5.03940023, 7.16192211, 9.8378078 ],\n",
+ " [ 5.37335867, 6.20113923, 2.43086927, 4.30834738, 9.6324617 ],\n",
+ " [ 5.40801577, 5.41976478, 3.02929369, 1.15181557, 4.85108725],\n",
+ " [ 3.68807115, 8.51585171, 2.12538061, 4.24790249, 7.94717417],\n",
+ " [14.22503627, 4.60274429, 9.78772681, 7.66520493, 4.98931924],\n",
+ " [10.32521229, 4.99225179, 7.38272288, 9.260201 , 14.58431531],\n",
+ " [ 6.65436171, 7.98732222, 5.59685112, 3.719373 , 2.58135531],\n",
+ " [11.55510375, 1.11193575, 7.11779429, 5.37988496, 10.70399927],\n",
+ " [10.90832519, 1.75871431, 6.47101573, 6.02666352, 11.35077783],\n",
+ " [ 9.29354019, 9.53424036, 7.14376926, 5.26629115, 0.05782317],\n",
+ " [11.25279502, 3.57498553, 6.81548556, 4.69296368, 6.01707799],\n",
+ " [ 6.14400601, 11.47696651, 9.08649542, 7.2090173 , 3.09171102],\n",
+ " [10.43008909, 2.23695041, 5.99277963, 6.50489962, 11.82901393],\n",
+ " [ 1.79838406, 11.13134457, 4.74087347, 6.86339535, 9.53928104],\n",
+ " [ 2.93052752, 7.89725303, 3.50678194, 3.62930382, 6.30518951],\n",
+ " [11.55272282, 6.21976231, 8.61023341, 10.48771153, 15.81182584],\n",
+ " [ 8.83964081, 3.66742137, 5.89715141, 7.77462952, 13.09874384],\n",
+ " [ 4.11777697, 9.45073748, 7.06026638, 5.18278826, 7.11794005],\n",
+ " [ 8.69768642, 8.63527408, 5.75519701, 7.63267513, 12.95678945],\n",
+ " [ 8.2652832 , 6.56249735, 4.79222739, 2.66970551, 3.02956617],\n",
+ " [ 1.71437731, 9.6185832 , 3.2281121 , 5.35063398, 8.02651967],\n",
+ " [ 4.30308213, 6.52469842, 2.13422733, 2.25674921, 5.95602089],\n",
+ " [ 9.31612329, 8.64908379, 6.25861269, 4.38113458, 0.94297974],\n",
+ " [ 2.86540683, 13.69318738, 7.30271629, 9.42523817, 12.10112386],\n",
+ " [ 8.95995574, 2.29291624, 4.52264628, 6.4001244 , 11.72423871],\n",
+ " [10.54288208, 7.87584258, 6.10557262, 3.98305074, 1.71622094],\n",
+ " [ 8.58885878, 8.74410173, 5.64636937, 7.52384749, 12.8479618 ],\n",
+ " [ 2.51163835, 12.82132215, 6.43085106, 8.55337294, 11.22925863],\n",
+ " [ 5.19213144, 5.63564912, 0.75482198, 1.74285727, 7.06697159],\n",
+ " [ 4.1276352 , 13.2053253 , 6.81485421, 8.93737609, 11.61326178],\n",
+ " [ 3.99217608, 6.83560448, 0.44513338, 2.94281263, 6.75645905],\n",
+ " [ 5.88198594, 11.21494644, 8.82447535, 6.94699723, 5.35373109],\n",
+ " [ 8.24225403, 4.58552653, 3.80494457, 1.68242269, 5.006537 ],\n",
+ " [10.89255004, 6.22551054, 6.45524058, 4.3327187 , 3.36655299],\n",
+ " [ 6.58504851, 11.91800902, 9.52753792, 7.6500598 , 2.65066851],\n",
+ " [ 5.44204086, 8.77500136, 6.38453026, 4.50705215, 3.79367617],\n",
+ " [ 5.56289993, 7.26488062, 4.87440953, 2.99693141, 3.6728171 ],\n",
+ " [ 7.96716366, 10.86061689, 8.4701458 , 6.59266768, 1.26855337],\n",
+ " [ 7.9603294 , 5.3726311 , 5.01783999, 6.89531811, 12.21943243],\n",
+ " [ 8.68198919, 4.65097132, 5.73949978, 7.6169779 , 12.94109221],\n",
+ " [ 9.06064716, 8.39360767, 6.00313657, 4.12565845, 1.19845586],\n",
+ " [15.325265 , 4.65822551, 10.88795554, 8.76543366, 6.08954798],\n",
+ " [ 3.51444772, 7.81851278, 1.95175718, 3.92572094, 7.77355074],\n",
+ " [ 3.33469883, 14.16247938, 7.77200828, 9.89453017, 12.57041585],\n",
+ " [ 4.46482284, 6.36295772, 1.40731225, 2.0950085 , 5.79428018],\n",
+ " [11.20742649, 1.459613 , 6.77011704, 5.72756222, 11.05167653],\n",
+ " [11.15442417, 5.67335639, 6.71711471, 4.59459283, 3.91870714],\n",
+ " [ 5.17021584, 5.65756471, 0.73290638, 2.6103845 , 7.93449881],\n",
+ " [ 5.54400588, 10.87696639, 8.48649529, 6.60901717, 5.28490286],\n",
+ " [ 5.28695668, 8.04600382, 2.34446727, 4.22194539, 9.5460597 ],\n",
+ " [ 7.33259845, 6.66555896, 4.27508786, 2.39760974, 2.92650457],\n",
+ " [ 8.08642618, 10.74135437, 8.35088328, 6.47340516, 1.14929085],\n",
+ " [ 7.97403829, 2.85374226, 3.53672884, 4.96095042, 10.28506473],\n",
+ " [ 5.04455411, 6.2884064 , 2.1020647 , 3.97954282, 9.30365713],\n",
+ " [ 8.05520721, 3.2777533 , 5.1127178 , 6.99019592, 12.31431023],\n",
+ " [ 8.033197 , 3.2997635 , 5.09070759, 6.96818571, 12.29230002],\n",
+ " [ 4.88391014, 5.94387041, 3.55339931, 1.6759212 , 4.62480712],\n",
+ " [ 3.38092176, 9.44685879, 6.32341117, 5.17890958, 7.85479527],\n",
+ " [ 5.83945489, 5.17241539, 2.78194429, 0.90446618, 4.41964814],\n",
+ " [10.25764123, 4.57013932, 5.82033178, 3.69780989, 5.02192421],\n",
+ " [ 3.16471551, 8.168245 , 1.7777739 , 3.90029578, 7.59956747],\n",
+ " [ 8.83620663, 8.49675387, 5.89371722, 7.77119534, 13.09530965],\n",
+ " [ 7.60754658, 6.94050708, 4.55003599, 2.67255787, 2.65155644],\n",
+ " [ 4.14555919, 9.4785197 , 7.0880486 , 5.21057048, 5.09015784],\n",
+ " [ 7.24126831, 4.57422881, 2.80395885, 0.68143697, 5.01783472],\n",
+ " [ 5.70322513, 8.53100569, 2.76073572, 4.63821384, 9.96232815],\n",
+ " [ 9.27617639, 9.55160416, 7.16113307, 5.28365495, 0.04045936],\n",
+ " [ 2.5651854 , 11.39296595, 5.00249486, 7.12501674, 9.80090243],\n",
+ " [14.22296519, 3.5559257 , 9.78565573, 7.66313385, 6.03613783],\n",
+ " [ 8.33806089, 2.48971967, 3.90075143, 5.77822955, 11.10234386],\n",
+ " [14.34079531, 3.51301476, 9.90348585, 7.78096397, 7.91830771],\n",
+ " [ 7.55811406, 6.89107456, 4.50060346, 2.62312535, 2.70098897],\n",
+ " [ 9.54667188, 8.87963238, 6.48916129, 4.61168317, 0.71243114],\n",
+ " [ 6.99771477, 3.83006578, 2.56040532, 2.43788343, 7.76199775],\n",
+ " [10.85478728, 4.18774778, 6.41747782, 4.29495594, 5.40431574],\n",
+ " [ 6.89563349, 8.43732701, 3.95314408, 5.8306222 , 11.15473651],\n",
+ " [12.29945454, 3.63241504, 7.86214508, 5.7396232 , 5.95964848],\n",
+ " [ 6.57929244, 6.75366806, 3.63680304, 5.51428115, 10.83839547],\n",
+ " [ 8.35675866, 8.47102189, 6.0805508 , 4.20307268, 1.90234436],\n",
+ " [11.26183 , 1.40520949, 6.82452055, 5.67315871, 10.99727302],\n",
+ " [ 6.92663397, 8.25959447, 5.86912337, 3.99164526, 2.30908306],\n",
+ " [ 6.97410775, 3.8536728 , 2.53679829, 3.96088096, 9.28499527],\n",
+ " [10.00715257, 8.82062799, 6.94964198, 4.92783614, 0.77143554],\n",
+ " [ 8.83013405, 7.9976465 , 5.77262346, 3.89514534, 1.59441703],\n",
+ " [ 6.69445759, 4.63850292, 2.86823295, 4.74571107, 10.06982539],\n",
+ " [ 2.60649588, 11.43427644, 5.04380534, 7.16632722, 9.84221291],\n",
+ " [ 9.01806225, 4.31489826, 6.07557284, 7.95305096, 13.27716527],\n",
+ " [ 7.49191577, 3.84104474, 4.07077477, 5.94825289, 11.2723672 ],\n",
+ " [ 7.80056437, 9.53239613, 4.85807497, 6.73555308, 12.0596674 ],\n",
+ " [ 8.85156915, 2.48139135, 4.71112139, 6.58859951, 11.91271382],\n",
+ " [10.04988811, 2.61715138, 5.61257866, 6.8851006 , 12.20921491],\n",
+ " [ 3.68039673, 7.65256378, 1.26209268, 3.38461456, 7.08388625],\n",
+ " [10.04984807, 7.28311243, 7.10735867, 8.98483678, 14.3089511 ],\n",
+ " [ 8.34309643, 10.48468413, 8.09421303, 6.21673491, 0.8926206 ],\n",
+ " [14.48203148, 3.65425093, 10.04472202, 7.92220014, 7.77707154]])"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "cost_matrix"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We will solve for both LSCP and LSCP-B and plot and compare the results to demonstrate their similarities and differences. \n",
+ "\n",
+ "With ``LSCP.from_cost_matrix`` we model the LSC problem to cover all demand points with $p$ facility points within `max_coverage` meters as service radius using the cost matrix calculated previously.\n",
+ "\n",
+ "With ``LSCPB.from_cost_matrix`` we model the LSC Backup problem to cover all demand points with $p$ facility points within `max_coverage` meters as service radius using the cost matrix calculated previously."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "lscp_from_cost_matrix = LSCP.from_cost_matrix(cost_matrix, SERVICE_RADIUS)\n",
+ "lscp_from_cost_matrix = lscp_from_cost_matrix.solve(solver)\n",
+ "\n",
+ "lscpb_from_cost_matrix = LSCPB.from_cost_matrix(cost_matrix, SERVICE_RADIUS, solver)\n",
+ "lscpb_from_cost_matrix = lscpb_from_cost_matrix.solve(solver)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Expected result is an instance of LSCP and LSCPB."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "lscp_from_cost_matrix"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "lscpb_from_cost_matrix"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Using a GeoDataFrame"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Assign a predefined location using a geodataframe column"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id | \n",
+ " geometry | \n",
+ " comp_label | \n",
+ " predefined_loc | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 0 | \n",
+ " POINT (9.00000 3.25259) | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 1 | \n",
+ " POINT (0.91963 6.00000) | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 2 | \n",
+ " POINT (5.31010 4.00000) | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 3 | \n",
+ " POINT (5.18758 6.00000) | \n",
+ " 0 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 4 | \n",
+ " POINT (6.51169 10.00000) | \n",
+ " 0 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id geometry comp_label predefined_loc\n",
+ "0 0 POINT (9.00000 3.25259) 0 0\n",
+ "1 1 POINT (0.91963 6.00000) 0 0\n",
+ "2 2 POINT (5.31010 4.00000) 0 0\n",
+ "3 3 POINT (5.18758 6.00000) 0 0\n",
+ "4 4 POINT (6.51169 10.00000) 0 1"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "facilities_snapped['predefined_loc'] = numpy.array([0, 0, 0, 0, 1])\n",
+ "facilities_snapped"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "With ``LSCP.from_geodataframe`` we model the LSC problem to cover all demand points with $p$ facility points within `max_coverage` meters as service radius using geodataframes without calculating the cost matrix previously.\n",
+ "\n",
+ "With ``LSCPB.from_geodataframe`` we model the LSC Backup problem to cover all demand points with $p$ facility points within `max_coverage` meters as service radius using geodataframes without calculating the cost matrix previously."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "lscp_from_geodataframe = LSCP.from_geodataframe(\n",
+ " clients_snapped, facilities_snapped, \"geometry\", \"geometry\", 7, distance_metric=\"euclidean\"\n",
+ ")\n",
+ "lscp_from_geodataframe = lscp_from_geodataframe.solve(solver)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "lscpb_from_geodataframe = LSCPB.from_geodataframe(\n",
+ " clients_snapped, facilities_snapped, \"geometry\", \"geometry\", 7, solver, distance_metric=\"euclidean\"\n",
+ ")\n",
+ "lscpb_from_geodataframe = lscpb_from_geodataframe.solve(solver)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Expected result is an instance of LSCP and LSCPB"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "lscp_from_geodataframe"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "lscpb_from_geodataframe"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Modelling LSCP and LSCPB with preselected facilities"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "lscp_preselected_from_geodataframe = LSCP.from_geodataframe(\n",
+ " clients_snapped, facilities_snapped, \"geometry\", \"geometry\", SERVICE_RADIUS, predefined_facility_col=\"predefined_loc\", distance_metric=\"euclidean\"\n",
+ ")\n",
+ "lscp_preselected_from_geodataframe = lscp_preselected_from_geodataframe.solve(solver)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "lscpb_preselected_from_geodataframe = LSCPB.from_geodataframe(\n",
+ " clients_snapped, facilities_snapped, \"geometry\", \"geometry\", SERVICE_RADIUS, solver, predefined_facility_col=\"predefined_loc\", distance_metric=\"euclidean\"\n",
+ ")\n",
+ "lscpb_preselected_from_geodataframe = lscpb_preselected_from_geodataframe.solve(solver)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Plotting the results"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The cell below describes the plotting of the model results. For each method executed for the LSCP and LSCPB classes (from_cost_matrix, from_geodataframe) there is a corresponding plot. Selected facility sites (stars) are assigned a unique color, demand points covered by a facility are assigned the facility's unique color scheme. Demand points with multiple color rings represents facility coverage overlapping. Small red stars represent candidate facility sites that were not chosen."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from matplotlib.patches import Patch\n",
+ "import matplotlib.lines as mlines\n",
+ "from matplotlib_scalebar.scalebar import ScaleBar\n",
+ "\n",
+ "dv_colors = [\n",
+ " \"saddlebrown\",\n",
+ " \"darkgoldenrod\",\n",
+ " \"mediumseagreen\",\n",
+ " \"lightskyblue\",\n",
+ " \"lavender\",\n",
+ " \"darkslategray\",\n",
+ " \"coral\",\n",
+ " \"mediumvioletred\",\n",
+ " \"darkcyan\",\n",
+ " \"cyan\",\n",
+ " \"limegreen\",\n",
+ " \"peachpuff\",\n",
+ " \"blueviolet\",\n",
+ " \"fuchsia\",\n",
+ " \"thistle\",\n",
+ "]\n",
+ "\n",
+ "def plot_results(model, facility_points_gdf, demand_points_gdf, facility_count, title, p):\n",
+ " \n",
+ " arr_points = [] \n",
+ " fac_sites = [] \n",
+ " \n",
+ " for i in range(facility_count):\n",
+ " if model.fac2cli[i]:\n",
+ " geom = demand_points_gdf.iloc[model.fac2cli[i]][\"geometry\"]\n",
+ " arr_points.append(geom)\n",
+ " fac_sites.append(i)\n",
+ "\n",
+ " \n",
+ " fig, ax = plt.subplots(figsize=(10, 15))\n",
+ " legend_elements = []\n",
+ "\n",
+ " street.plot(ax=ax, alpha=1, color='black', zorder=1)\n",
+ " legend_elements.append(mlines.Line2D(\n",
+ " [],\n",
+ " [],\n",
+ " color='black',\n",
+ " label='streets',\n",
+ " ))\n",
+ " \n",
+ " demand_points_gdf.plot(\n",
+ " ax=ax, fc=\"k\", ec=\"k\", marker=\"s\", markersize=7, zorder=2, lw=.5\n",
+ " )\n",
+ "\n",
+ " facility_points_gdf.plot(\n",
+ " ax=ax, fc=\"brown\", marker=\"*\", markersize=80, zorder=8\n",
+ " )\n",
+ " legend_elements.append(\n",
+ " mlines.Line2D(\n",
+ " [],\n",
+ " [],\n",
+ " marker=\"*\",\n",
+ " markerfacecolor=\"brown\",\n",
+ " markeredgecolor=\"brown\",\n",
+ " markeredgewidth=.5, \n",
+ " ms=20,\n",
+ " lw=0,\n",
+ " label=f\"Unselected Candidate Store sites ($n$={facility_count})\"\n",
+ " )\n",
+ " )\n",
+ "\n",
+ " _zo, _ms = 4, 4\n",
+ " \n",
+ " for i in range(len(arr_points)):\n",
+ "\n",
+ " cset = dv_colors[i]\n",
+ " fac = fac_sites[i] \n",
+ " fname = fac_sites[i]\n",
+ " fname = f\"Facility y{fname}\" \n",
+ " \n",
+ " gdf = geopandas.GeoDataFrame(arr_points[i])\n",
+ " \n",
+ " label = f\"Demand sites covered by {fname}\"\n",
+ " gdf.plot(ax=ax, zorder=_zo, ec=\"k\", fc=cset, markersize=100*_ms, lw=.5,) \n",
+ " legend_elements.append(\n",
+ " mlines.Line2D(\n",
+ " [],\n",
+ " [],\n",
+ " marker=\"o\",\n",
+ " markerfacecolor=cset,\n",
+ " markeredgecolor=\"k\",\n",
+ " markeredgewidth=.5, \n",
+ " ms= _ms + 7,\n",
+ " lw=0,\n",
+ " label=label\n",
+ " )\n",
+ " )\n",
+ " \n",
+ " facility_points_gdf.iloc[[fac]].plot(\n",
+ " ax=ax, marker=\"*\", markersize=1000, zorder=9, fc=cset, ec=\"k\", lw=.5\n",
+ " )\n",
+ " legend_elements.append(\n",
+ " mlines.Line2D(\n",
+ " [],\n",
+ " [],\n",
+ " marker=\"*\",\n",
+ " markerfacecolor=cset,\n",
+ " markeredgecolor=\"k\",\n",
+ " markeredgewidth=.5,\n",
+ " ms=20,\n",
+ " lw=0,\n",
+ " label=fname,\n",
+ " )\n",
+ " )\n",
+ " \n",
+ " _zo += 1\n",
+ " _ms -= (1)*(4/p)\n",
+ " \n",
+ " plt.title(title, fontsize=20)\n",
+ " kws = dict(loc=\"upper left\", bbox_to_anchor=(1.05, 1.0), fontsize=15) \n",
+ " plt.legend(handles=legend_elements, **kws)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### LSCP and LSCPB built from cost matrix"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9QAAAJiCAYAAAAmMIpYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd1xT9/4/8NcnCSRhhC3IMi7AURFU1PanUr3OShVRKnS3zlrtFa+23mvVer21tVXrqL2OtnZpXagFB3VBvfVbLc66JwoyBBlhJIEkn98fSRSQEcII4vv5ePAInJzPOe/PiSfmnc9inHMQQgghhBBCCCGkbgSWDoAQQgghhBBCCHkSUUJNCCGEEEIIIYSYgRJqQgghhBBCCCHEDJRQE0IIIYQQQgghZqCEmhBCCCGEEEIIMQMl1IQQQgghhBBCiBkooSaEkKcMY+wNxhhnjL1h6VgIIYQQQp5klFAT0ogMSYvJi70zxsYxxg4wxu4zxsoYYw8YY5cYYz8yxl6voVwIY+xrxthVxlghY0zNGLvDGNvBGItkjAnL7Ss3xlXuR8MYy2KM7WWMDa9vvU1Vl7gbOY5Nhusgr2O50HLX8DZjrMr3VMaYHWNMUW7fOp2noeIlhBBCCCENS2TpAAgheoyx9QAmAlAC2AvgNgBbAO0AhAEIBfBdpTJWAFYBmAJACyDJUFYNwBvAQAARAHYCGFvplAUAvjD8LgEQCGAEgBGMsfc456satIINF3dzpAEgB/A3AL9W8fx4APaG/ZrD++4uAH8AyLB0IIQQQgghT7Lm8MGOkKceY+w56JPpNAB9OedplZ63gj6hruxLQ7m/AIzjnF+tVE4IIArAqCrK5nPOF1ba/00A3wD4mDG2kXNeYlaFalefuJujQwCeh75OVSXUE6FPXu8C6N2EcVWJc14A/RcqhBBCCCGkHqjLNyHNw3OGx52Vk2kA4JyXcc4Plt/GGHsW+kQtF8DQykmpoZyWc/4jgFdMjGMTgGLoW8a7mB6+6eoTN2NMwBibwhj7kzFWxBgrNvw+taru1oyxfoyxOMZYmqE7eSZj7A/G2IJy+3AAxu70t8t1y06pQ7UeAIgFMIox5lYphm4AQgB8C30L9WMYY6MN3fqvGepUxBg7xRibUblepsTLGEs0bLNmjM03dKlXM8Y2GZ5/bAw1YyzGsG1nFfH9jTGmZYz9xRiT1uG6EEIIIYS0aNRCTUjz8MDw6FeHMpMNj+s55zV23eWcq82IyeSx33VUn7h/ABANIBXARuhjDAewFsD/A/CycUfG2DDou5ErAPwC4B4AZwCdALwD4CPDrh8BGA19l/eVAPIN242PptoAfav66wA+L7d9oiHOrwEMqKbsJwB0AE4Y4nSAvtv7SgC9ALxabt+6xLvTUH4/gN0A7lcXPOd8OWMsFMAYxtg7nPO1AMAY8wDwIwAVgJc458rqjkEIIYQQ8rShhJqQ5uEA9F1whzPGfgHwM4A/AdzgnFeX2P4/w+PhBozjTehbp4sBXGzA45ZnVtyMsSjok+kzAPpzzosM2+dBPwY7mjG2l3O+2VBkIvS9cEI55+cqHcvV+DvnfKFhcq9AAF9wzlPqWiGDRAA3AEyAIaE2tOa+AuAw5/wWY6y6si9wzm9WilEAfav2a4yxNZzzE2bE2wZAV855jol1eBPAWQDLGGO/Q98l/0cA7gDe4pxfMvE4hBBCCCFPBeryTUgzwDm/B31L603oJyD7CcA1AAVMP+v3K1XMeN3a8PhYF3ETOTLGFhp+PmGM7YO+FRUA/tmILZHmxv2W4fEDYzINAJzzYgDvG/6cUEW5x+pRhwTTZIYvPjYC8GeM9TdsHgvAEfrW65rK3qximw76FmgAGGpmWB/Wpa6c8wfQt7JbAdgKYDGAQQB+4px/a2YMhBBCCCEtFrVQE9JMcM6PMsb8oB9PPQBAkOH3oYaf1xljI6voBm1u12wHAMaxxFroxzTvB7CGc76vtsKG8bfySpsTOeeJJp6/rnEHQ98tuqrjJ0Ffh6By234CMAbACcbYVgBHAfxe1Rj1BrQJwL+hbx3/DcAkADnQd7euFmPMBcBs6GdZbwd9L4HyvMyM52RdC3DO/2cYY74YwFwA16GfjZ0QQgghhFRCCTUhzYihVfKY4QdM30d4MPTLZf0NwFQ8WuoqA/rkyxvAYxN7meAO51xej3DfQNVjghNrKWdu3A4AcjnnpZWf4JxrGGM5AFqV2xbLGBsJYBb0rduTAYAxdgrA3MqTvDUEznkWYywOQARjzDiue1lVMRsxxhyh797fFvoE+Hvov9zQQN+6/R4AsZkhZZpZLhbAIuh7MW0s3yOAEEIIIYQ8Ql2+CWnGuN6vAOYZNg0s9/T/DI+DmjYqPc55KOecVfpZaEJRc+MuAOBsWEKsAsaYCIAr9BOQlY9xL+d8IAAnw/lWQD97eTxjrHMdz2+q9QCkALYZ/q6xuzf03dTbAviIc96bc/4O53ye4VpurU8gNYy/rxZjTAJgi+HPPADzGWP+9YmDEEIIIaSlooSakCdDoeGx/KxW6w2Pkxhj7jUVZoyZ28LZGMyN+wz071n9q9i1PwAhgNNVHYdzXsw5P8I5jwHwMQBrAMPL7aI1PFYep26OgwDuQN8C/1tVy4JV0sHw+NhyVah+VvCGjLey5dBPeLYEwHgANgC2GhJtQgghhBBSDiXUhDQDjLFhjLEx1bS+2gH4u+HP34zbOee/Q9/66QLgAGOsYxVlBYbZsX9onMjrrh5xf2N4XMIYsym3rw30y04BjyZVA2NsUDVrJhuT+JJy24zLlvnWpS5VMXTbHwP9JHOTTCiSYngMLb+RMRYE/RjmqjRYvJXOGQH9sILfASww9I5YCn2Cvbwhz0UIIYQQ0hLQGGpCmgBjbFMNT78DIAD67sh5jLFj0E8EpYG+lfMF6MfSngCwplLZadC3Vk4BcJkxlgjgHAA19BNZDTQcY0cDVaWh1DluzvlmxtgoAJEALjLGdkM/sdlo6LtMb+Oc/1TuHMsAyA3HTgFQCqCH4dh3oF+azOgw9JOCbWCM7QBQBCCfc175epuEc34a1bSWV+F7w7m/YIw9D/1r3xHASOjHMr9URZkGjRcADEtxbYS+m3c059zYCj4P+h4AUxljhznnVbWkE0IIIYQ8lZgZQ+wIISZijJlygzlB/+XWi9BPQBYI/dJSdgDyAVwAsB36yaGqnNyKMdYb+tbQfgA8oV/26D6AZOjHw+4wtJwaE6fbqP+kZPVWl7gN+wugT8LfAmAcA30Z+tbrryrtGwl9K3FP6K+nDsBdAHugX785u1IsMdDPzt0O+i7htV4fxlgo9LOH/8Q5f8WE+v4P+pnb25ZfP9ownvsTAH2gn+H7CoCvAByC/rX6jnP+hqnxGr5EGMA5r3Lha8MM7d8CeJNzvsnQM+IYgN4AIjjnsZX2bwP9+tQMQBDn/HZtdSWEEEIIeRpQQk0IIYQQQgghhJiBxlATQgghhBBCCCFmoISaEEIIIYQQQggxAyXUhBBCCCGEEEKIGSihJoQQQgghhBBCzEAJNSGEEEIIIYQQYoYmXYfa1dWVy+XypjwlIYQQQohZTp06lcM5d7N0HIQQQpqvJk2o5XI5kpOTm/KUhBBCCCFmYYzdsXQMhBBCmjfq8k0IIYQQQgghhJiBEmpCCCGEEEIIIcQMlFATQgghhBBCCCFmoISaEEIIIYQQQggxAyXUhBBCCCGEEEKIGZp0lm9CCCGEEGKe06dPDxWJRAs45x6gRhFCCGlsOsZYpkaj+Sg4ODihup0ooSaEEEIIaeZOnz49VCwWr5HL5aVSqTRPIBBwS8dECCEtmU6nY0ql0iElJWXN6dOn360uqaZvNwkh5CkUv2+fpUMghNSBSCRaIJfLS21tbZWUTBNCSOMTCATc1tZWKZfLS0Ui0YJq92vKoAghhFheQUEB3pzyNhQKhaVDIYSYiHPuIZVKVZaOgxBCnjZSqVRlGGpTJUqoCSHkKbMldjvcxgdjS+x2S4dCCDGdgFqmCSGk6Rnee6vNmymhJoSQp8zB5N/g3M8Pv/6ZZOlQCCGEEEKeaJRQE0LIU6S4uBjpZflgjCFDk4/i4mJLh0QIIYQQ8sSihJoQQp4iO+J2obSLAwBA3UmGnfG7LRwRIYToff75564//PCDY1OfNzY2VrZo0aJWTX1eQkjLQMtmVUOj0SB+zy78dnA/FDmZ4LoyMIEVZK4e6D94OEaOCodI9ORevpZeP0JI1eL/dxDSoa4AAGl7N8Qn/IrXXnrZwlERQgiwadMmN39/f+Wrr76a35TnPXDggGzv3r1O8+fPv9+U5yWEtAyUMVWi1WqxbMkiJB+Og7vqLrxtOTwF7NHz+RyHz8dh85ol6DkoDLPmzodQKLRgxHXT0utHCKmeSqXCPVUuhMwFAMAYQ5oqFyqVChKJxMLREUKIaYqKipidnR1N0EYIaRaoy3c5qampGD8iFNkJaxFidRdt7AFhuWQT0P/dxo4jxOoushPWYvyIUKSmploo4rpp6fUjxNI45ziYsBfvvDkCU18OweTx3TH15RC88+YIHEzYC86b9vMf5xy/HohH+LCeCO3hhOd6uqG4o7TCPuoAe/yyP75J4yKEPL2Sk5Ml/fr16+jg4NBdKpUGtWvXrsuSJUvcQkJC/C9evGgTGxvrwhjrwRjrsWrVKhcA8PLyembixInes2fPbu3u7t7N0dExCNA3Evzzn//08PX17WptbR0sl8u7rl692qXyOX/88UfHrl27dhKLxcGurq6BU6ZM8Var1QwAYmJiPDds2OCenp5ubTxvRESEvKZYm/ByEUKeANRCbZCamorp0WHobZ0KKymrvQAAdymHs+YSpkeHYfXmOPj4+DRylOZr6fUjxNL2xG7Gni3L0dHxFsI6qCEo92WVTsfx544T2LyhLUZHx2DUmOgmiWfdynmAKg19AwTo2U+Iz4/ZQ93Jq8J+Uj93fPX9BkSGj230mAghJDw8vEP79u1V69evvy2RSHSXL1+WKBQK4VdffXVn3Lhx7X19fdUffvhhBgB06tRJbSy3e/du544dO6qWL19+R6PRMAB44403fHfu3OkSExOT3rNnz5KEhATZ3//+d7mrq6smKiqqAAA2btzoNHny5HZRUVHZixYtunf9+nXx4sWLvXQ6HdavX582bdq07Bs3boj/7//+z/7nn3++CQAeHh6ammJt+qtGCGnOWFO2mPTs2ZMnJyc32flMpdVq8dLwAeihvQwrYcVkM1epRXKxCMWcwZZx9LTVwFla8b20TMtxStgJW/cnNcvu0S29foRY2oa1n+P2iS8wIEA/7C8zT4eEa2IUqARwkOgw1E8NDyd9h6CkK45o13cmJkyZ1ajx7N+6GO1aKTE42AqZeTpsPy3EGeaDdu8Ne2z/rLX7EfPCm5gybU6jxVQfKSkp2LBlE7Jzc+Dm7IqJUW9ALpebVcacY5GnF2PsFOe8p6XjAIBz586lBAYG5pTf9tZbb/lcuHDBxhLxdO3ateSbb76pUxe2jIwMkaenZ+CJEycuhYSEKKs4Zid/f3/lzp07U8pv9/Lyeqa0tJTduXPnLxsbGw4AFy5cEHfr1q3rypUrU6ZPn/7AuG94eLj8+vXr0gsXLlzW6XTw9vZ+5tlnny3csWPHw2N+8cUXLh988EGblJSUcx4eHtpJkyZ579271+nevXt/mRorIeTpcu7cOdfAwEB5Vc9RCzWAZUsWoa3yaoWW23yVFntLpFB3bgPZsO4Q2UugKFRh94GzEF+6gxdslHCU6JNLKyFDW+VVLF/yb8yet9BCtaheS68fIZa0J3bzw2Q6u0CHdadlKPCVwyYyCCJ7CR4UqrDsyBk4nE3B5GAFBgTkI/H4Cuxp1breLdWfLF+KE1fOQmr76PN0ZkYa7qX8BYlIghyFFD/HCqGEFZiVCJ7hz1R5HLvQrlj53QpsO3YEHq29azynsrgEvTsF4YOZs+sVuynS0tLw7qI5uCcthrC3J0RdJdAUZuHXFe/BS2mLNfOXwtvb26Qy+5dNR97ZFMj8WkM6qL1JxyKENKxWrVppPDw8SqdMmdJm6tSpWSNGjCj08vLSmFL22WefLTQm0wCwf/9+e4FAgJdffjmvrKzs4X4DBw4sjIuLc9ZoNLh48aI4IyPDOjIyMrf8PsOHDy+cOXMmO3XqlPSFF14oauhYCSFPl6e+hVqj0SB6cAhCrO4+3Jav0mK7zgkuM0dCKH78OwetWoMHK+IxTpD3MOkEgBNlvthy8GSzmh27pdePEEvinOOtcb0wvscVZBfosPSMO+wmhVV7XxWtj8OcoCy4OQiw9XQnfL3tJBgzbQhGVXJzczHh/XeR5i+EOKDxh/WprtyHz1WOr5eugZOTU6OeKy0tDZFzJgARftVeT+y8hm1LNz5MhE0pk/LdMXhH9ILYxa7GYxECNP8W6ifRmTNnJB988IHXb7/9JlOr1YKgoKCiVatW3X3uueeUNbVQjxgxIm/Dhg1pxm3vv/++x9KlS70eO4HBjRs3zt+8edN66NChAdXt8+WXX95+5513cqtqoa4t1npcAkLIE6imFupaJyVjjH3DGLvPGLtQbpszY+wgY+y64bFxP1k1ovg9u+Cuulth294SabXJJgAIxSK4zByJvSUVJ/fxUKcifs+uRovVHC29foRY0qFf98HP6RYAYN1pWbXJNKC/r+wmhWHdaRkAoIPjLRw+uL9e53d2dsbO9T9hrCQYpfuug2t19TpedbhWh9J9N/CSTU/sXP9joyfTAPDuojnVJsaA/noiwg/v/ntOncrIX++H9D2naz0WIaRxBAUFqRISEm7m5+ef3b179zW1Wi0IDw/vqNVqayxX+ctHZ2dnrVAo5EeOHLmclJT02I+Xl5fG1dVVCwCff/75nar2GTNmTEFjxEoIebqYMsv3JgCVB919AOAw57wjgMOGv59Ivx3cD2/bR630uUot1J3bVPuBzEgoFkHdyRe5ykdvql42Ohw7fKDRYjVHS68fIZa06+cv0V2uRmaeDgW+cpPuK4WPHJl5OnSXqxC7ZU29Y2CMYc67M7F+6n+Q/tkBqLMV9T5meaXZRRBuu4H1UxfjH+/8vV4t6qZKSUnRd9k24XrekxQjJSWlTmXErWRQZRU8tt14LEJI4xOLxfzFF18snD59elZ2drZVTk6O0MrKiqvVapNWoBk2bJhCp9Ox/Px8Uf/+/Usq/0gkEh4YGKhq1apVWUpKiriqfTw8PLQAYG1tXeN5q4q1oa4DIeTJV2vfXc75b4wxeaXNowCEGn7/DkAigPcbMC6zhYaG1mn//JRLeMXv0QfE5GIRZMO6m1RWNiwIyctuYohUn7CKBAyH98XVOYbG1NLrR4glCYvOYpQfQ8I1a9hEBplURjowCAnbr+L13mW4+tfxBr2ffEsykLUyFsWDQ+A8oHO9j/cg8SqKf70OXwd3vDd9RgNEaJrUvCy4vR9q0r7CEE8MGjUcAEwu49bPH/ePXobX6OAqj+Xj5F6XcImFJCYmWjoEUkcnTpyQxsTEeI8dOzavQ4cO6tzcXOGKFSs8/P39le7u7toOHTqokpKSZDt37pS5ublp/Pz81Makt7LAwEB1dHR09ptvvtkuOTk5MyQkpFipVAouXLgguX79umTr1q13hEIhFi9enPrOO++0VSgUghEjRijEYrHuxo0b4ri4OMf4+Phb9vb2uoCAANWDBw9Eq1atcunevbvS3d1dk5+fL6wp1qa+doSQ5svcwbDunPMMAOCcZzDGWlW3I2NsEoBJAODr62vm6UwTGhqKs2fPont30xJGABCwimPIizmDyF5iUlmRTILiSkPQKx/PXGfPngWAOtWlKs2hfg1VF0trKfUAqC4NRSjQ3w8KtaBO95VCv/wphAKO8p/K6lsXaxHQw74Il4+dxI1LGWj71oBaW2yrolVrkLbhN9hnc7R19qxz+frWQ8O1dbqeGq6/inUqU6Kuejuv+DmZ7pXm6ezZswgNDaWk+gnj7e1d5ubmplm2bFnr7OxsK3t7e23fvn0Vy5cvvwcAH330UfqECROs33jjjXZFRUXClStXpsyYMeNBdcf7/vvv7y5evFj1/fffu3322Weetra22g4dOqhef/31h2PNJ06cmOfg4KD99NNPW2/bts1VKBTC29tbPWTIkHyJRKIDgLfeeis3MTHRfuHChd55eXmiMWPGPFi1alVaTbESQohRo88uxTlfD2A9oJ+UrLHP17179zr9Bzth7AhAcfLh37aMQ1GogpVMWkMpPY1CBVml3o/BPXth4/Z9Jp+/OsZWq/p+WGgO9WuoulhaS6kH8OTXRaPRIH7PLvx2cD/yUy5BwDg6uNpA5uqB/oOHY+So8CaZPG/qyyEALkEm1iGnLveVWP9W2L6jP776KfHhc/V9Xaa+HILCzLPw9+DIFFrh9sZEtB7ZHbZtXE0+Rsmt+3BNLsHvG8xfe76+9fjXkoU4XJhl8vV8JUo/W3pdyohsxNUe6z9zFz7c9qTfK+W1xLqQJ4uXl5dm9+7dt6t7vnPnzqXHjx+/Vnl75cnCjAQCAebPn39//vz592s6b2RkpCIyMrLa8TA2Nja8/LJaRjXFSgghRiaNU6lCFmOsNQAYHmt8I2vOZK4e0Ooe5fk9bTVQHDhrUlnFgTPoZftoBQWNjsPBrXWDx1gfLb1+5Omi1WqxdPECRA8OweHPp8L9xh684qdDdEeOAMVJuN/Yg8PL3kH04BAsXbwAjT1xDLN2hU7HMdRPjZIjZ0wqozxyBsP81NDqOJi1KzjnOJiwF++8OQLCorOwLjmDqS+H4J03R+Bgwl7UZSUGZu2K0jKOIR1UsBdpIfV1wb3dp2svWE7epuPY9+12s5PphjAx6g1oT6SbtK/2ZDomRb9ZpzLZx67C5dkO1R6rJUpJSUFqXhZu56bjX0sW0lhxQgghpIGYm1D/AuB1w++vA9jTMOE0vf6DhyOt5NFlcJYKIb50R7+MSg20ag3El+/CSfpoXop7JQL0G1R5/jbLaun1I0+P1NRUjB8RiuyEtegluoMyTSkSM4txPK8QfxQU4nheIRIzi1FWpkYv0R1kJ6zF+BGhSE1NbbSYwsdPw9kUMTycBHC4m2LSfSVLTYG7kwBnUyTwbNMVb0f2QvKOVxHWIQlzIjSYFa7F6K6XENYhCX/ueA1vjeuFPbGbTY7HwV6MtBwOt7wMqDILYOVQe4ttec4d20IgMPe/hoYhl8vhpbQ16Xp6qWzRpk2bOpVR31dA0kpW7bFakrS0NIyeFI1xK96D2/uh8PnPCzjcJgvjVryH0ZOikZaWVvtBCCGEEFItU5bN2gLg/wD4M8bSGGNvA/gEwGDG2HUAgw1/P5FGjgpHlrhiS8wLNko8WBFf7Qcz4zrNL9ioKmzPEvtg5KjwRovVHC29fuTpkJqaiunRYQjWXEK+SoXEnCJ4BpRiRpQQk8dYYeJoK0weY4UZUUK09i9FYnYR8lUqBGsuYXp0WKMl1X8bMgLX8toBACYHK1C0Pq7G+6pofRym9ND3Ovzjui2Kb/2El4KvILhdKe4XcHx3wgqrksT47oQV7hdw9GinxvgeV3Bizxxs/O8yk+Ipk/jj7E0tJgcrYJ2WXqfu3gDA/Zzw56nkOpVpDGvmLwV2XqvxemLnNXw5/7M6lUn57hg8RwU/tr3ysVoC47rc94e6QjK4PaxkUjDGYCWTQjK4Pe4PdUXknAmUVBNCCCH1UGtCzTmP4py35pxbcc69Oedfc84fcM4Hcc47Gh5zmyLYxiASidBzUBiylI8GCztKhBgnyINyyQ482HocZQVKcM5RVqDEg63HoVyyA+ME+XCUPLp8WUqGXoNebJJxm3XR0utHWj6tVouZb0eht3UqLuapYOtZhhmRVujdWVRlEtqniwgzXrKCrWcZLuWq0Ns6FTPfjmqU7t+MMYyOjkHSFUe4OQgwJygLwnXboNhV8b5S7DoO4bpteD84C64yARLOSmBnVYTQTgXILtBh8VE7LMvthluR41Ew7TXcihyPZbndsPioHbILdBgQkI+bx1fU2lLNGEP4y7NgLbHH2ZtadHQug0vfx7s210Qc2Brf7vypPpelQXh7e2Pb0o1o9WsOVAdvVrieqoM30erXHGz/7Gt4eXmZVKbkwDVkfHEUbm6tIBAJaz1WS2DOWt6EEEIIqRvKjgDMmjsf448dgbPmEqyE+sTTUSLEy5JS5KZcRfKymyjmgIwBA201cHYWovx3EWVajhSbTvhk7ocWqkHNWnr9SMu2bMkitFVexS1VKVx9tBjeR4TsAh3WnZahwFcOm8ggiOwleFCowrIjZ+BwNgWTgxUY3keEfdDgVnop2kquYvmSf2P2vIUNHt+oMdHIvp+BpP9bgQEB+Zj3fBEy884jYftVKNQMMrF+jLVHBwEAARIvO+Kvuwz/eDEP2QU6LD3jDrvJYXAol/RYyaRwGP0stOoQLF0fhzlBWQjtlI+tW1bgxfCoGteCNsazb/Mi3BXZo5XE6rF9VPcLULTjGOzG9oOklUOF54QSK1y9fxuc8yZZc7om3t7e2L1uM1JSUrBhyybk5D2Aq5M7Js58H3K5vG5l/qEvU5djPcmM63JLxB417ld+/e2WeB0IIYSQxkYJNQChUIjlGzdjenQYelunPkw6Af2YY+M6zIa9K5Qt03KcKPXB6k2bIRRWfK65aOn1Iy2XRqNB8uE49JLocKmwFDP6WNUpCR3RR4RV20rhJ7HGycO/QPPBvEbpZTFhyizsadUaP29ejo5Ot9FdrsLrvcsePq/VMSTfFONGQTu07/I8Boo3AgDWnZbBbnJYjS2IdpPCsG7dNsx7vggdHG/h8MH9+NuQEbXGU1RSiku3Dz/2XNGxC/A8fwqzeyjx2frdyH2uF5yfr7hmdYEbw19//YVu3brV9VI0CrlcXmHm7fqUMedYT6INWzZB2Nu0Jc+EIZ7YsGXTU3FdCCGEkIZm2ZlnmhEfHx+s3hyHU8JOFbpH1yRTyXBK2AmrN5u/vExTaen1Iy1T/J5dcFfdxc38MvR+Rv/vdt1pGewmmZCEntZPOhXSheFWfhk81KmI37Or0WIdNSYa32z/EyHjfkD8jQHYfaEzdp3riN0XOmPfzVD0jkat7M4AACAASURBVPwB32w7ifQ7F9BdrkZmng4FvvJa14kWikVQ+MiRmadDd7kKsVvWmBTPrdwHcOrn//BvraoMd1fug/DAH2AKjtjzXfHxRz/gn33fQNmOK9CqHn0BYB3UGl9v/8G8C0Gahey8B3Valzsnr9qlfgkhhBBSA2qhLsfHxwdb9ydh+ZJ/48ThX+ChToWXjQ4iwaMEVKPjuFciQKbYByFDX8Sncz98YlpuW3r9SMvz28H98LblSMwsxagA4cMk1MHkJPQ8enUSYvXZUgxwsMKxwwcwOmJco8XLGMPfhoyosQWZl+ZAIGBIuGYNm8ggk44rHRiEhO1X8XrvMvDSHJPKXM68DVEf/YzV6ru5cP5DgW3fHoK3t/dj+w7o8//w9j9nIK+PDGJfZ4hsxbiUccuk85Dmyc3JBZo6rMvt6uTeBFGR5ubihg1uXSZOzLZ0HIQQ8iSjFupKhEIhZs9biC0HT2LQrLXI9huNKw4huGwbhCsOIcj2G41Bs9Ziy8GTmD1v4ROXbLb0+pGWRZGTCaGAQSrlhiRUDJuBdUhCr4kflhcJGAqyMxo54trptKUAAIVaUKcWRIVa/8UX15bVsjdw5coV5DrqwDmH+uhtDMrzxd5vt1eZTAP6ccf7vt2OgXm+UB9NAecceY46XLt2zcRakebGnLW8ydNFlZsrvLBunbc6L4/+oyeEkHqgFupqiEQijI4Y16itWZbU0utHWgau0yePxmWRzU1CjeW5pvZktLEJhNYAAJlYh5xClcktiDKxfq4DJnx8krHKNm79HszPEXzrVSyd/D5C+w2otYxQKMQn/1qEo8eSMG/dp0B/d6z/eRM+n/9xrWVJ82Ncl/u+WlPjsIKWuv42qd3tuDgnrUrFbsfFOQa89hr1+SeEEDNRCzUhpNliAn3yqNPp/5aJddAUqmoo8Uj5JNRYnolqT0YbG7N2hU6nn/m75MgZk8ooj5zBMD81tDoOZl37utKHEo+g7Wkt9n25xaRkurzn+w3A3jWb0fa0BoeOHqlTWdK8mLOWN3l6pCclOYBzdi8x0dHSsRBCyJOMEmpCSLMlc/WAVsehVLJ6JaFKJYNGx+Hg1rqRI65d+PhpOJsihoeTAA53U6pNdoy0ag1kqSlwdxLgbIoEY6LerXF/zjlmT56BbV99BwcHhxr3rY6joyO2ffU9Zk+eAc557QVIs2TOWt7k6cC1WhSnp4sBoDg9XcyN3zo2gZCQEP9hw4a1q+q5rl27doqIiJA3WTAGERER8q5du3Zq6ONu3LjRadWqVS4Ndbw///xTwhjrER8fb1/bvt99951jnz59/Ozt7btbW1sHy+XyrjNmzPDMyMhokt6pVcVqynWuSx3La+hrDQCrVq1y6dKlSydbW9sgmUzWvVOnTp0nTJjwcOxUY5yzsVS+9paIXafTwd/fv/Pq1asb/byrVq1yYYz1qPyzdOlSN+M+r776qm9kZGSDdM+iLt+EkGar/+DhOHw+Dm2k1vjzSil6dxbB4WwKtOqQWruxylJT4N5BgD8uaiCXWuNeiQCDBg1rwuir9rchI7B5QzsE4womByuwdH1ctbOWa9UaFK2Pw/s9FAAEuJHfDnMHD6/x+IwxvDw+ut5xNtRxiGWVX5d70Kjh0HAtXomKbrHrbxPTZJ85I1VmZ1sDgDInxzrnzBmpW48eSkvH1dLs2LHDKTc312rGjBlN2qV+4sSJ3t9884372LFjc2bMmJHl4OCgvXDhgvSbb75xu3z5svTgwYM3mzIeo0WLFmWUlJSYttRMHTX0tZ47d67HZ5995jVlypTMQYMG3VMqlSw5Odl2x44dzgDSGuOcjanytbdE7F9//bWTQqEQTpo0KbepzvnLL79cs7GxefiNYUBAgNr4+7x58zK7devW9cKFC5ldu3ZVV30E01BCTQhptkaOCsfmNUvQy/YOEv9So3dn1DkJPXmRI9TVCn9qfDByVHjTV6ISxhhGR8cgac8cDAjIx5ygLKxbtw0KHzmkA4MgkkmgUaigPHIGstQUvN9DAVeZAImXHTEqKgaMNcpnEdLCyeVy+Bhm8qb1psmNnTtdtSqVEAC0SqXwxs6drm49eqRaOi5Sf5s3b3bYuHGj+4oVK1L+/ve/P0yWXnjhhaJZs2Zlx8bGyiwVW5cuXeqVtDSlr7/+ulVUVFT2mjVr7hm3RUdHF3z++eemzfZYRxqNBhqNhkkkkkbpFtYcrv1XX33lPnbs2FyxWNxkXd/69+9f7ODgUGUXHH9//9IePXoUrVy50m3Dhg1p9TkPdfkmhDRbIpEIPQeF4b5KAE8ra+z/QwM3BwHmBGVBuG4bFLuOV+jGqth1HMJ12/B+cBZcZQLs+0MDT5E17qsE6DXoRYhEzeM7xFFjopGtC8Lek1q4OQgw7/kivCo6C+WqbciY/yOUq7bhVdFZzHu+CK4yAfae0CKHBWPUmChLh04IeQL8tXZtq/iwsE4HXnrJv6qf+ydPVhgPknXypKy6fePDwjr9tXZtq6aug7GL6q5du2R+fn6dpVJpUI8ePfyTk5MrzEyZnJws6devX0cHB4fuUqk0qF27dl2WLFniVn6fhIQEu169evlLpdIgR0fH7uPHj2+Tl5dX42dgU8rs37/frnfv3n42NjZB9vb23UNCQvx///13qTH+hIQEpz///NPO2N00JibGsy7H/+STT9w8PDy6SaXSoIEDB3ZIS0uzru26rVq1yr1z584l5ZNpI5FIhMjISIXx70OHDtkOHDiwQ6tWrbpJpdKggICAzl999ZVz+TKmvg6mxFpVl+/aypkaY32vdWWFhYVCDw+Px2YyFRhmOa3tnBs3bnTy8/PrbG1tHezh4dFt+vTpXmVljw5nvBY//PCDY4cOHbpIJJLgxMREW3Pjre0+KH/t63u9TLnnKrtw4YL4zJkztuPHj6/QOq3VaiGVSoOWLl3qNmPGDE93d/du9vb23cePH99Gq9XWdMgGMWrUqLxdu3a51PdczePTJQGg/3Yqfs8u/HZwP/JTLkHAOCaMHQGZqwf6Dx6OkaPCm01CQEhTmTV3PsYfO4Jg60u4dFeH/dBgeB8R5j1fhMy880jYfhUKNYNMrB9j7dFBAECfTOfeFaKzszVOiwLwydwPLV2Vh/bEboab4AykDhwrd6lwz8oFvFNb2LwXBHt7CTSFKnx/5AwQfxveZQ/Qt7MIJbrT2BO7GaPGUDdsQkjNukyceL/k/n2rtMOHXdS5ubXOxliSkSEpyXh8WUGxs3OZ96BBD7pMnHi/UQKtRXp6uvXcuXO9Z8+enWFjY6P717/+5TN+/Pj2165du2hMbMLDwzu0b99etX79+tsSiUR3+fJliUKheLgU2K+//mobFhbmN3jw4PxNmzbdysnJEX700UfeUVFRwgMHDtyq6rymlImPj7cfPXp0x969exeuXbv2tp2dne7YsWN2d+/etX7uueeUixYtyrh37561QqEQrl69+i4AyOXyUlOP/+OPPzrOnTvXNzo6OnvMmDH5R48etZ86daq8puulVqvZmTNn7CZNmpRlyvW9deuWdd++fYsmT56cLZVKdceOHbObMWOGXCAQYPLkyQ8Tn9peB3NiNbWOpsRY32tdlc6dO5d8/fXXrXx9fUvHjRuX7+HhUSHjqumcsbGxsokTJ7YLDw9/8PHHH6edPXtWunTpUq8HDx4IN2/efNd4jHv37ll/+OGH3nPmzElv3bq1pmPHjmpz463tPjA1dlPOX5dzGe3fv99eKpXq+vTpU2FoyeXLl8UqlUqwZs0a96FDh+b/97//TTl+/Ljt559/7jlixIiC1157LV+n08GUhNfK6vG3unbt2j1TUFAg8vb2Vk+bNi1z9uzZOeWf79+/f9EHH3wgOnnypLRv375mD3uh7KwZ0Gq1WLZkEZIPx8FddRfethyv+Bm6dSpOQpvPcfh8HDavWYKeg8Iwa+58Wh+aPDWEQiGWb9yM6dFh6O2cilvppVi1tRQhXRl6dRLi9d6PvvHV6hj+76IGf17g8LSyRmdna5wo9cHqTZubzT3DOcfuzcsxvkc+sgsE2J7uA7vJFbuvW8mkcBj9LLTDQ5C2Lg5tPbLg5pCPrVtW4MXwKOr2TQipkcDKCr0XLrzXLjw89+SCBW0Kbt60gU5n+huHQMAd2rcvCfnooztugYEWG1utUChESUlJV5555hk1AOh0Ovbaa6+1P3funCQoKEiVkZEhSktLE+/cufNmSEiIEgBGjRpVWP4Yc+fO9Q4KCirau3fvw2TEx8enbNSoUX5//vmnpFevXo8tHWFKmXnz5nkFBAQojx07dt2Y3I8dO/Zh62+XLl3Ujo6OGp1OxwYNGlRc1+N/+umnrfv166f46aef7gJARESEIicnR7R169Zql3rIysoSlpaWMl9fX5O6906aNCnP+LtOp8Pw4cML7927Z/3tt9+6lk+oa3sdzIkVAEwpZ0qM9b3WVcW2du3auxERER1mzJghf++999CuXTvVyJEj8+bPn5/p7Oysq+mcH330kWdISEhhbGxsCvDo38WSJUu8//3vf2e0b9++DADy8/NFe/fuvfbss88+vMciIyPb1TVeU+6D8upzvby9vTV1OZfR6dOnbdu1a6eq/Fns1KlTUgB4++237y9YsOA+AISHhyu+++47t2vXrokBYM2aNS7vvfeevLZzcM5PGX/38vIqmz17dnqfPn2KNRoNtmzZ4jxnzpw2JSUlAuN5AKBnz55KoVCI48eP29YnoaYu3xaWmpqK8SNCkZ2wFiFWd9HGHhAKKv6fJxQwtLHjCLG6i+yEtRg/IhSpqTTUiTw9fHx8sHpzHE4JO8FRIkGomx0yr1pj9RYt1sWWYcPuMqyLLcOan7XIumqNUDc7OEgkOCXshNWb4+Dj42PpKjx06Nd98HPS/z+17rTssWS6PKFYBLvJYVh3Wj/krYPjLRw+uL/JYiWEPNncAgOVw7dvv9I+IiJL7Oz8WPfVqoidncvaR0RkDd++/Yolk2kA8PT0VBuTOAAINMRz584dKwBo1aqVxsPDo3TKlCltNmzY4HTv3r0Kb6aFhYWCc+fO2Y0ZMyavrKwMxp8hQ4YUiUQi/scff9hWPqcpZRQKheD8+fO2UVFRD4zJtKlMOb5Go8Hly5elI0eOzC9fdsyYMXnVHbc8U790zc7OFr7xxhs+np6ez1hbW/ewtrbusWXLFtfbt29X6M5d0+tgbqymljM1xqqY8/ob9e7dW3n9+vULP/30041XXnklm3OOlStXtg4ODu5cUFBQ7Yuu0Whw6dIlm/Dw8Ar1eO211/J0Oh2SkpLsjNtatWpVVj6ZNjfe2u4DU5lyfnPPlZWVZeXs7PzYsibnz5+X2tnZad9///1s4zadTofCwkKhq6urBgAiIyPzk5KSLtf2U/64ERERiqVLl2aMGTNGERkZqdi1a1fKiBEj8lasWOFZvrXbysoK9vb2mszMzHqtq0oJtQWlpqZienQYgjWX4C41bXy+u5QjWHMJ06PDKKkmTxUfHx9s3Z+EVkOn4aSmDURWYgzwsMWzTvbo42CPZ53s0d/dFiIrMU5q2sB96DRs3Z/UrJJpANj185foLlcjM0+HAl95jbOVA/qkWuEjR2aeDt3lKsRuWdNEkRJCWgJja3X/NWuuSz08amy5lHp4qPuvWXO998KF9wRVdJ9sCCKRiGu12iozPq1Wy0Qi0cMPRDKZrEI/T+NkRkqlUgDoezDt27fvupubW9mMGTPkPj4+gT169Hg4jjknJ0eo1WrxwQcf+BqTMWtr6x5SqTRYo9Gw1NTUx8b5mlImOztbyDmHp6enSV9S1PX46enpIq1Wy9zd3Sscv3Xr1jWus+ju7q61trbmd+/erXWsNQCMHz9eHhcX5/zuu+9mxsbGXktKSro8bty4nNLS0gqvT02vg7mxmlrO1BirYs7rX55UKuXR0dEF33///d2bN29eXL58+Z07d+6IV61aVW3Le0ZGhkij0bDK46+9vb3LAODBgwcPm2hdXV0r7GNuvLXdB6Yy5fzmnkutVjNra+vHJge7ePGitGfPnkXlJ2O7dOmSWKVSCbp166YCgFatWmn79u1bUttPbfWLiIjIKygoEF69erXCdbSysuIqlapeOTF1+bYQrVaLmW9Hobd1KqyEFd8TcpVaJBeLUMwZbBlHT1sNnKWPukhYCRl6W6di5ttR2Lo/qdl0ZSWksQmFQsyetxCaD+Yhfs8uHDt8AIf3xUHAOIJ79oKDW2sMGjSsWc83wEtzIBAwJFyzhk1kkEllpAODkLD9Kl7vXQZemlN7AUIIqcTex6eUazQ1JiFco2EyX9/SxozDxcWlLDU1VVzVc9nZ2VZubm41JmKVBQUFqRISEm6q1WqWkJBg989//tM7PDy8Y0ZGxnkXFxctYwwxMTHpL774YkHlsr6+vo8lxKaUcXZ21goEAqSnp9f5WwdTju/p6akRCoU8KyurwvFrW0NaLBbz4ODgoiNHjjgAqHE26pKSEpaUlOT48ccf350zZ87D1sFVq1bVaUyRubGaUq6+MZrz+tdk5syZOR999JH3lStXqm0db926tUYkEj1Wr7S0NCtjTMZtlXsS1Cfemu4DU/MEU89vzrmcnJy09+/ff+x+uXLlik1YWFiF1vzk5GSpQCBAz549lYB5Xb5rUrlXSWFhobCq1vO6aJ6fOJ8Cy5YsQlvlVVhJH91M+Sot9pZIoe7cBrJh3SGyl0BRqMLuA2chvnQHL9go4SjR/0O1EjK0VV7F8iX/xux5Cy1UC0IsQyQSYXTEOIyOGIfQ0FAAwMbt+ywblIl0Wv1nVYVaAJF9rT3WAAAimQQKtf69gmvr3CBCCCG4HRfnpMrJqbFFTpWTY307Ls4x4LXXGm1t2ueee67oww8/dLp9+7ZV27ZtH76hHTlyxPbBgwei/v371zoesypisZi/+OKLhRkZGVlTpkxpm5OTI3R3d9cGBgYWX7t2TdK/f//HZ12rgkwm05lSplu3bsVbtmxxmTt37v3qun1bWVlxtVpdubXXpOMHBAQo4+PjHcsnkrGxsU61xT99+vSsl19+ucPq1atdpk+fXuF11Gq12LVrl2zs2LEKpVIp0Gq1EIvFD1sN8/LyBIcOHXJkjJm8rJFIJDIrVlPK1SXG+lzrqty7d0/k5eVVIclKT08XFRUVCd3d3TXVnVMkEqFLly4lu3btcirfjfmHH35wEggEGDBgQFF156xPvEbV3QeV92uI62XquQCgY8eOqtOnT1fosl5UVMRSU1PFQUFBFVqXz507Z+Pt7a2WyWQ6QN/lu3v37hW6dJsjNjbWydHRUdOxY8eHXxqmp6eLVCqVwN/fv8qx9KaihNoCNBoNkg/HIaRcN+98lRbbdU5wmTsSdpUmJ3KJ7Autuhe2r4jHOFXew6TaXcpx4vAv0Hwwr9m1xtGM5YRUTSDUf56ViXXIKVTBSlZ7jyyNQgWZYdlGJmycbpiEkJYtPSmpwlJZEAi4jbt7aUlWlnX5CcvuJSY2akI9derUB2vXrnXv37+//z/+8Y+Mtm3bll68eFHy2WefeQYFBRVHREQoaj+K3okTJ6QxMTHeY8eOzevQoYM6NzdXuGLFCg9/f3+l8YP9J598khYWFuY3evRojB07Nk8mk2lTUlKs9+/f7/Dpp5/e69at22Pd4E0p8/HHH6e9+OKLfgMGDOg4YcKEbDs7O93vv/9u16tXr+KoqKgCAPD391cdOnTI8YcffnBs06ZNqa+vb5lcLi8z5fhz5szJeP3119u//PLLvhEREflHjx61T0xMdKgca2XR0dEFR48ezZo5c6b8+PHjdqNGjcq3t7fXXrp0SfLNN9+08vb2Vo8dO1bh4uKi7dq1a8nSpUs9HRwctAKBAJ9//rmHnZ2dtri4uE7dX82NtbZydYmxPte6qti6devWZciQIflDhgxReHh4lN26dct61apVHhKJRDdp0qScms45f/789IiIiI5jx46VR0VF5Z47d066dOlSr5deeinbOCFZdcyJ15T7oDJzr5dSqRTU9VwA0K9fv6IvvviidXp6usjT01MDAKdPn5bqdDr07NmzQkJ94cIFaUBAwMOx5R4eHloPD49au3SXN3To0PY9e/YsDgwMLNFqtWzr1q3Oe/fudVq8eHFq+Vb0//3vfzaMMQwcOLDaLzpMQRmNBcTv2QV31V2g3OfivSVSuMwdWePkRC4zR2Lvkh14WfKoN5aHOhXxe3ZhdMS4xg7bJDRjOSE1Y9au0On0S3wtO3IGDqOfrbWM8sgZDPNTQ6tjYNY1TppKCCGP4VotitPTH3azNi6H1eODD9JPffKJZ/nltYrT08VcpwOr42RbpnJwcND99ttvV2fNmuW1aNEi74KCAqGLi4smLCwsd8WKFffq8pnA29u7zM3NTbNs2bLW2dnZVvb29tq+ffsqli9ffs+4z9ChQ4sOHDhwdcGCBZ5Tpkxpq9Vq4enpWfr8888XVG6BrEuZ4cOHF+3evfvaggULvKZMmdJWJBLxzp07l4wdO/Zh99VZs2Zlnzt3zubdd9+VKxQK4cyZMzOWL1+ebsrxX3vttfy0tLS7K1eubB0bG+sSEhJSuHbt2pSIiIiOtV2XDRs2pD333HNFX331VauJEye2ValUAi8vr9IhQ4bkz5s3L9O435YtW25NmDChzdSpU9s6Ojpq3n777fslJSXCb7/9tsY1hSszN1ZTypkaY32udVX+8Y9/pMfHxzu+//77PgUFBSJXV9ey4ODgop9//vlWQEBAaU3nHDNmjGL9+vW3Pvvss9Z79uxxdnZ21kyaNCmr/L/L6pgTryn3QWXmXi+VSsXqei4AGDFiRKGDg4N2165dsmnTpuUCwJkzZ6QSiUTXpUuXCl8SXLlyRRoZGVmvL/U6duyo+umnn1yXL19uxTln7du3V65Zs+a28dxG+/fvd+jVq1dh5WXR6opxbnKvjnrr2bMnT05ObrTjG7t+JiYmNto5GkLMlLfgfmPPw9m8c5Va7G4bAJfIvrWWfbD1OEanXH04plqj48j2G41la79u1JhNkZqaipgJ0ZCXXDFpkrUsJUOKTQCWb9zc7CaOqsqT8u/LFFQXyzmYsBfJO15FcLtSLD5qB+3kyBonJtOqNRCu24Z5zxfh1C0xQsb9gL8NGdGEEdfdk/aa1KSl1CUlJQWDRg2HhmvxSlQ0Jka9AblcbumwzNZUrwtj7BTnvGejnsRE586dSwkMDDRrEoX7ycnSo5Mn+2tLSwVVLYeVffas9OTChW0Kbt60EYrFuoHr1l1169HDojN8E0JaljfffNPn9u3b4sTExBuWjgXQ96b18vLqtmDBgrR33nknt7b9z5075xoYGCiv6jma5dsCFDmZFZbGSi4WQTasu0llZcOCkFz86MO3SMBQkG3WMIsGRTOWE2Kavw0ZgWt57QAAk4MVKFofB6266i/JtWoNitbHYUoPfQ/IG/ntMGjw8CaLlTz50tLSMHpSNMateA9u74fC5z8v4HCbLIxb8R5GT4pGWlqapUMkTeD69u1uQomEV7ccllv37g+X1xKKxfz69u3UFYYQ0qDmzZuXeeLECfvz589XOSlhU/vmm2+cJBKJbuLEibUm07WhhNoCuK7i8Ilizuo0OVFxpXyVayw7SVFtM5b/msOwK1uAX3MYcpUVe1SUn7G8/LpwhLRUjDGMjo5B0hVHuDkIMLt7JkpWbEXmz7+jrEAJzjnKCpTI/Pl3lKzYijlBmXCVCZB42RGjomJMXl+UkLS0NETOmYD7Q10hGdweVjIpGGOwkkkhGdwe94e6InLOBEqqnwI2rVqVDli79lpNy2EZl9casHbtNambG81+SAhpUO3bty9buXJlSmpqarOYDIZzzv773/+mWDXAEoE0htoCmKDiC2fLOBR1mZyo0udpJrLsv0uasZyQuhk1JhrZ9zPw3c7/oFRdhLEdCuDteh6/br8GhZpBJuaY0kGFVBHH7t+1sJJIMShiJkaNibJ06OQJ8u6iOUCEX41zc2gj/PDuv+dg97rNTRwdaUpBs2Zl1r6XnltgoLJyCzYhhDSESZMm5dW+V9OYPHlyvVumjaiF2gJkrh7Q6h41M/e01UBx4KxJZRUHzqCX7aPuoRodh4Nb6waP0VTGGcvdq5ixXDp3LFwi+1ZoFXGJ7Avp3LHYrnNCvupRi7S7lOPk4V+g0dRrGThCnhhcx9HaRYCJw63Ry18EZhgGwrn+kQkYQvxFmDhCDE8XeqsmdZOSkoJ70uIax+cD+qT6nqQYKSkpTRMYIYQQ0sLQpzQL6D94ONJKHl16Z6kQ4kt3qh1HaaRVayC+fBdO0kczYN4rEaDfoGGNFmttHs5YXs7eEilcZpowY3lJxRZ544zlhLR0e2I34/aJLzAkUIXsAh0WH7XDstxuuBU5HgXTXsOtyPFYltsNi4/aIbtAhyGBKtw8vgJ7YqkVkZhmw5ZNEPb2NGlfYYgnNmzZ1LgBEUIIIS0UJdQWMHJUOLLEFWe1fsFGiQcr4mucnOjBini8YFNx3fEssQ9GjgpvtFhr89vB/fC2fdQ6navUQt25jUmtIupOvhXGVHvZ6HDs8IFGi5WQ5oBzjt2bl2NAQD6yC3RYesYd2smRcBj9bIXeHA6jn4V2ciSWnnFHdoEOoZ3ysWfLCjTlygzkyZWd96BOc3Pk5DXassOEEEJIi0YJtQWIRCL0HBSGLOWjMceOEiHGCfKgXLIDD7YerzA50YOtx6FcsgPjBPlwlDx6ybKUDL0GvQiRyHJD4VvijOWENKZDv+6Dn9MtAMC60zLYTQqrsTeH3aQwrDstAwB0cLyFwwf3N1ms5Mnl5uQCTaGq9h2hn5vD1cmlkSMihBBCWiZKqC1k1tz5SLEJQJn2UWuTo0SIl51LMTrlKmTLdoDP/xGyZTswOuUqXnYurZBMl2k5UmwCEDP3Q0uE/1BLm7GckMa26+cv0V2uRmaeDgW+cpN65VtiowAAIABJREFUcyh85MjM06G7XIXYLWuaKFLyJJsY9Qa0J9JN2ld7Mh2Tot9s5IgIIYSQlokSagsRCoVYvnEzTpT6VEiqAf2Y6iGuHOFuHENcOZzLjZkG9Mn0iVIfLN+4GUJhxeeaWlUzltelVcS2mc1Y3pJpNBrs3rkdMVPeQn7KJSjuXMSEsSMQM+Ut7N65nSaEayK8NAcCAUPCNTFsBgaZVEY6MAgJ18QQChh4aU4jR0haArlcDi+lrUlzc3ipbNGmTZsmiowQQghpWSihtiAfHx+s3hyHU8JOFbp/1yRTyXBK2AmrN8fBx8en9gKNrCXNWN5SabVaLF28ANGDQ3D486lwv7EHr/jpEN2RI0BxEu439uDwsncQPTgESxcvoPXAG5lOWwoAUKgFderNoVAbZgHXUi8OYpo185cCO6/VODcHdl7Dl/M/a+LICCGEkJaDEmoL8/Hxwdb9SWg1dBpOlPniThGDRlexxVqj47hTxHCizBfuQ6dh6/6kZpFMAy1rxvKWKDU1FeNHhCI7YS16ie6gTFOKxMxiHM8rxB8FhTieV4jEzGKUlanRS3QH2QlrMX5EKFJTUy0deoslEFoDAGRiXZ16c8jE+vcFJqReHMQ03t7e2LZ0I1r9mgPVwZsV5uZQHbyJVr/mYPtnX8PLy8vSoRJCCCFPLEqomwGhUIjZ8xZiy8GTGDRrLbL9RuPHawJsvs5wxSEE2X6jMWjWWmw5eBKz5y20eDfv8lrSjOUtTWpqKqZHhyFYcwn5KhUSc4rgGVCKGVFCTB5jhYmjrTB5jBVmRAnR2r8UidlFyFepEKy5hOnRYZRUNxJm7QqdjmOonxolR86YVEZ55AyG+amh1XEwa9dGjpC0JN7e3ti9bjO2z1yJ7KWJSP3XXgy6647tM1di97rNlEw/pXQ6HU6dOiU5cOCA3alTpyQ6na5JzhsTE+PJGOvBGOshEAh6yGSy7l27du00ffp0r7t371puhtVG4uTkFBgTE2Pa+nVVuHr1qjVjrMeWLVscjNvmzZvnHh8fb98wERJTXiPGWI+PP/7YrTHOHxERITfeE+V/XnrppQYbh1M5/pCQEP9hw4a1M/4dExPj6eTkFGj8+/z58+KYmBjPnJycJks4du3aJQsLC2vr5eX1DGOsR33uG0tocW9eTzKRSITREeMwOmIcQkNDAQAbt++zbFC1eDhjecJauEv1LWiOEiHGqfKwd8kOqDv5QjYsCCKZBBqFCooDZyC+fBfjbFSPz1g+1LIzlrckWq0WM9+OQm/rVFzMU8HVR4sZffQtm5l5OiRcs0aBSgAHiQ5D/dTo00WEPl2A/X+U4dJdHXo7p2Lm21HYuj+pWX2B0xKEj5+G5B1/ILhdKRzOpkCrDqlxYjKtWgNZagrcOwhw6pYYY6LebcJoSUshl8vh4+QOAPjP3IWWDYZYjE6nw9LF891PHNrrJFNlSCRcJVRBoi2Qtlb3+dsLuXPmLcoSCBq3rcXOzk67e/fu6wCQn58vTE5Ottm0aZPbjz/+6PrLL79c79evX0mjBvAE8fX1LTt06NCVwMDAhy0QX375pUdJSUn2yJEjCy0ZG2k4bdu2VW3YsCGl/LbWrVs32PiuQ4cOXfHz81NX9/y0adOyw8PD841/X7x4UbJixYrWkydPznF1dW2ScYD79u2TXb582ea5555TxMXFOTfFORsSZS+k3mbNnY/xx47AWXMJVkL9OE9HiRD/n707j2viWvsA/pvsgRAIhDWAiCCgqAUErdalVURFFBGxgG0VF3AvWKv2WntdbrHW5aotrnWpgCJ6FUWRqn311ov7Vve1IIsgYQsQEpJJ3j9oMCgipYCi5/v58EdCZuacOYHkmfPMecJ51SjOvIuLKx+iUgsIKeAjQzVMTZnQT46oWbHcDcte84rlb5OVsYvRvuouHimqIbajMaQnC4VlGmy8LESZvQMMQjzAMuKhqFyBlb9egfHVTER6yjCkJwtHoMajvGq0593FqtglmLPgn6+7O2+VgYOGInGzIzxxB5GeMizfdOilpbNopRoVmw5hrpcMAAMPSh0x33dI6zeaIIg2T6PRIOLjke1Ncs+Y9DbUMMADar4GqplAtkFO+iZexI3rBlt37/+jJYNqFoulHTBgQKXu8ahRo2SzZ88u7NWrl0t4eLjjo0ePbpCL6zX4fH6dc0XUpdFooFAoKAMDA+2rX/3mMjAw0LTkOL9q3x06dFB16NDhtS7QsmHDhhwmk5kDACKRyOR1tqUpSMo38be9LSuWvy3UajUunjgEC54Gearq2mB6+RVL0JEhMA7sBbaQD4qiwBbyYRzYC3RkCJZfsURhmQZDe7KQp66GBU+D8ycOktW/mxlFUQgMi8GpOyYwN2bgS48CMDfugWx/3frzsv0ZYG7cg7meBRALGTh52wQjQmNAUY1bwJAgCELf8qULLU1yz5jYGmrq/e5na6hhmOSeMVm+dKFla7dNLBbT3377bU52djb3wIEDQt3zcrmcioqKsrWysurK4XA8XVxcOiUlJRnrbyuRSLpMnjzZ9quvvrIyNzfvamRk9N6kSZNsNRoNkpKSjJ2cnDobGhp6DBw4sENhYWHtFw2ZTMb49NNP7R0cHNz5fL6HRCLp8sknn9gXFxfXOT8URXktWbLEYvr06RKRSNTN1NS02yeffGJfVVV3Ndm0tDSBi4tLJy6X69m5c2e3Y8eOGTam76tXrxY7OTl15vF4niKRqJu3t7fLxYsXecCLKd8SiaRLaWkpa/Xq1da61GBd+jdN0/jqq6+s7O3t3TkcjqeDg4P7unXr6hSYT09PF3h5ebkIBAIPgUDg4erq2mnr1q2ihtpXUVFBRUVF2drY2HThcDieEomky7Rp02rvFVGr1YiJibGxtrbuwuFwPJ2cnDpv2LChdoZxzZo1ZhwOx/P59OGLFy/yKIrySklJqU1fj4+PN3F3d3fjcrmeYrG4W1RUlK1Sqaw9z7rU5PT0dIG7u7sbj8fz3LZtm0jXN29vbxc+n+9hYmLy3scff9yupKSkzlg2dYwAoLq6mjF+/Hg7Y2Pj94yMjN777LPP7BQKBQUABQUFTC6X6/n8+dZoNJBIJF0mTpxo29jj6Lty5Qpv2LBhjlZWVl35fL6Hk5NT58WLF1s8v3hsfn4+MywsrJ25uXlXLpfr6eDg4L548WIL3e9flbKun/KdmppqFBYW5gQArq6uXSiK8pJIJF2a2sfY2FhzQ0NDj7KysjpjcejQISOKorzOnTvHB9DmYwByCZBoFroVy6MnhKJ91d3a9O+G5FdRyOS7Yl3irjdmkbU3iVqtRmrKfvz3WBpk0nxoNSpQDDaEYiv09R2CYSNG1psin5qyH5aKx3ioVqFHl5rPoY2XhRBE1j8LCtTUOhZMDsDGjXuw4MMK+HSm8OiuClbsbKSm7EfgqNEt2td3xbMxPY4b94xQXlaKYT0YWPBhBfJLfkd68l3IlBSE3Jp7rK2cGABqgukOvaIxIij0dXeBIIg2SKPR4Ozxw6YfvCSY1rE11DD+d/ywqaYVUr+f5+/vX85kMrUZGRmC4OBg2Z/Pdbh27Zrh3Llz85ydnZVJSUmi8PBwJzs7u1u9evWq0m2bkpJi2q1bt8r169dnXrhwwWD58uUSjUZDnT17VvD111/nyuVyxty5c+1nzZolSUxMfAwAFRUVDJqm8c033+RaWFiosrKyOCtWrLAePnx4h9OnT9/Xb1tcXJxlr169yrds2fLH1atX+bGxsbbt2rVTLl26tAAAMjMz2UFBQc5du3at3L59+8Pc3Fz2uHHjHBUKRYMnMS0tTTBnzhz7OXPm5PXu3buyrKyMkZGRISgpKak3utizZ8+DwYMHuwwdOrRk8uTJUgDw8PCoAoBx48bZ79u3zywmJiave/fu8vT0dOHnn3/uIBaL1aGhoWXFxcWM4OBgJ19f39IFCxY80Wq1uHbtGv9lxwJq3jd+fn5OV69eFURHR+d5e3vLs7OzOadPnxboXhMdHS1Zv369ZUxMzJMePXpU7t27VzRlypT2FEUhMjKyeOzYsaVz5sxpl5CQYDJr1qwi3Xbx8fGmpqaman9//3IA2LJliygyMtIxNDS0cPHixbn379/nLl26VKLRaLBp06Yc3XYKhYIxceJEh5kzZ+a7uroq7e3tq3/55RfDgICAjr6+vqXbt29/JJVKmYsWLbINDQ1lHj169NHfGSP994CHh0fl5s2bH924cYO/bNkyCY/H027cuDHH0tKSHjRoUMnOnTvFM2bMqO3j4cOHjfLy8jiTJ08uamjfAKBS1Z0gZrPZePz4MdvZ2VkRFhZWJBQKNZcvX+Z///33NlVVVYzY2Nh8oOaCR9++fV2KiorYc+bMyevUqZPi3r173AcPHjSujMhzevXqVblw4cKcxYsX2+7YseOhRCJR8Xg8TVP7OGnSpOJFixbZ7dixQzRz5sza12zbts2sU6dO8h49elTVt11bQwJqotnoVixfFbsE504chJUyGxIDDViMZxdx1RotcuUM5HPt4OM3HN/N/7rNX5VqbjRNY2XsYlw8cQiWisewNdTCRu8c0qVanPj9EBJ/iEX3AQGYPX9hnXP432NpsDXU4mR+NUa4MpFfokGZvQOMG7hPF6gJqmV2Dsgv+R3ebkysu1qNfsZs/HbiKAmo/6Z6x9SIwt1cCmuTquHjTsHbjYnPejz7QKU1FC4+5OJBmSMCQ6MxIijsNfaAIIi27MqVKzxjxRMuGvEVW6jI5165coXn5eXVuDIEzYTP52tFIpG6oKCABQApKSlGJ0+eNE5NTb3r7+9fAQBBQUGy7t2785YsWWKdlpb2SLctl8vVHDly5CGLxUJwcLDsyJEjoh07dljcuHHjuqurazUAXLt2zSA5OdkMwGMAsLGxUSckJDzW7UOlUsHJyUnp5+fnev/+fY6zs3O17ncSiaR63759mUBNivqZM2cEhw4dEukC6mXLlllyuVzt8ePHHxgZGWkAwNDQUDN16tT2DfX5zJkzhi4uLlW64AgAwsPDy172+t69e1exWCytRCJR6afx3rhxg5uQkGC+Zs2aTF2wExgYWJ6fn8/+17/+ZRMaGlp248YNXkVFBfOnn356LBKJNLrz2VD79u/fL8zIyBDGx8c/0G/X9OnTi4CamdktW7ZYzJo168ny5cuf6M5PXl4eOzY21iYyMrLYzMyM7tOnT9nevXtN9QPqAwcOmPr7+5ewWCxoNBosXLjQduTIkUXx8fG1Y8LlcjXz5s1rt3jx4idWVlY0UBNQx8bG5owdO7b2nl8vLy8HDw+PisOHD9e+J+zs7FQjRozoeOHCBZ63t7eiqWOkY2hoSB85cuQhk8lESEiITKlUUmvXrrVevHjxE0tLS3rChAnSoKCgjrdu3eJ06tSpGgC2bt1q1rlzZ7mPj0+DQePNmzcNOByOl/5z169fvzFixIjyESNGlAO1FzfK5XI5Y+fOnea698z69evNHjx4wD99+rT+RaYm319vamqqcXV1VQBAjx495C4uLrV/B03po1gspv38/Ep27twp1gXUZWVljKNHj4oWLFiQU982bRFJ+SaaVVtesfxN0BxlrmTSfDAZFPh8LRgMCun3uDD4yKNRx+d/5IH0e9za7VkMCmWFT1qqu++Ehsa0hFENLhv4v4saLNmqwoZ91YjbV41V+5nYd7MneoTsxNY95xsdTGu1WhxLP4yp44diSrgPIj9+D1PCfTB1/FAcSz8MrbZN32ZGEEQTFRYWsnhaRaM+cHkaBUMqlb6WCRetVlt79fiXX34RisVi1aBBgypUKhV0P/369ZP9/vvvdVJ133///XL9jC0HBweFjY2NUhdMA4CTk5OipKSEpUvTBYAff/zR1M3NrZOBgYEHh8Px8vPzcwWAmzdvcvX3/9FHH9UJPF1dXRX5+fkc3ePLly8bfvDBBzJdoAYAn3zyScmr+uvp6Sm/ffu2wYQJE+zS0tIE+m37K9LS0owYDAbCw8NL9M/VRx99VH7nzh2+Wq2Gm5ub0sDAQDNq1CjH+Ph4k8as4Hz8+HEjY2Nj+mVB/uXLl/kKhYIRFhZWp6/BwcElWVlZ3NzcXBYAjB49uuTMmTNGT548YQFARkYGPysrixsWFlYMANevX+c+efKEExISUqzf/iFDhpQrlUrq0qVLfN2+KYpCcHBwbXvKy8sZ165dEwQFBdXp+6BBgypYLJb27Nmzhn+2tUljpDN48OBS/e+sY8aMKVUoFIzLly/zAWD48OHl1tbW1Zs3bxYDQElJCSM9PV0UHh4ufdW+HR0dFadOnbqt/9OhQ4dquVxORUdH29jb27tzuVxPDofj9d1330lyc3M5uhntkydPCt3c3OT6GRstpal9nDhxovTSpUuCW7ducQBg27ZtIpqmqQkTJhS3dJtbC5mhJlpEW1yx/HXTlbnqwcnGI0U1blVUo4c7hRGuTDD0Zqg1Gi3O367GyRtK2LA58OTUlLlal3gIdnZ20Gpq/snqsvVkSgZYRo3L/GEJeZD9ebuSbnut+rWuU9Gm/bUxpXH+hhY2bA4cjVg4l10EF7cujb5nOuU/iUjZtQrOJo8Q4KR8Yf8X9p5D4ub2CAyLIbPdBPGOMTc3VysoHl2zAFnDFAyeRiwWt/riGXK5nCotLWVaWlqqAaCoqIgllUrZz8/cAS/eb2lsbFznplIOh6MVCoUvPKfVaqFUKikej6f9+eefTaZPn94+PDy8cNGiRTlisZjOzc1lf/rppx2qqqrqTDiZmJion99XdXV17T/ZwsJCVqdOneqsTi4QCLQGBgYN1iMLDAwsX7NmTeaGDRsstm3bZmFgYKAJDAwsiouLyxEKhY2uZSaVSlk0TcPMzKzeq+dZWVnsDh06qFJSUu4tWrTIJiIiwlGj0eCDDz6QxcXFPdbNNj6vuLiYZW5u/tIvATk5OWwAkEgkdV6jW6FaKpUyJRKJOjQ0tDQ6OlqbkJBg8sUXX0gTEhJMLSwsVIMGDaoAAF1WwpgxY5xf0v7aixdCoZDm8Xi1V4elUimTpmnMmzfPft68efbPb5udnc0Bmj5GOhYWFnXeAzY2Nir9c8BgMBAaGirdtWuXeOXKlXnbt283pWmamjhx4iuDRj6fr+nbt+8Lq9uPHz/ebvfu3eLZs2fnde/eXW5qakrv27fPZO3atdZyuZxhbGysKSkpYVlYWLTKF7Wm9tHf37/c1tZWuWnTJvG///3vvJ07d4oHDhxYamlp2SoriLcGElATxBugOctcUYya7XRlRYVcDaTlCrCF/JcdvpZapoCQq62zPcViN3+H3wGtWbpsc9wK/HHu3xjjWfrn/rUv7N/LUQkv3MGplC9R+PQJJkbNbvFzQBDEm8HDw0NRxrNWAtkGr3qtjGel9PDwaNV0b6BmMSSapqnevXtXAIBIJFJbWFiokpOTH7TE8ZKTk0Vdu3at1E8xPnz4sKChbV7G3NxcLZVK63xYVlRUUHK5/JWZoDNmzCiaMWNGUV5eHishIcFk4cKFdkKhkI6Li8tt7PFNTU1pJpOpPXbs2J36Pi8kEokaAAYOHFg5cODA+xUVFdTBgweF8+fPtwsNDXW8du3anZfsV11YWPjSLwG2trYqAMjLy2PrUrIB4MmTJ2wAMDc3pwHA2NhY079//7J9+/aZfvHFF9KDBw+KAgICinX36etKM61YsSLL29v7hcBSv+QTRVF1Uq3MzMxoiqIQExOTN3z48Bdm0u3t7VV/tqXJYwQAT58+rRMz5eXlsfXPAQBERUVJV69ebZOammoUHx9v5uvrW6o7B01x+PBh0fjx45/qbi0AgJSUlDqL8olEInVmZib3xa1bRlP6yGAwEBYWJt25c6f5hAkTii5fvixITk6+39A2bQ0JqAniDdCcZa6EYivQpVpUVVHQaGoWt1r56xUYB/Z6ZTuqfr2CwR2VoDUUqqooqI21MDa3boUz8PZprdJlKf9JxB/n/o1+rqWN2n8/11KczFiNFAtrMlNNEO8IBoOBngP9i3PSN/Fetso3AORUMjQ9/PyLW3tBMqlUylywYIGtvb29csSIETIA8PX1Ld+8ebOVkZGRpiUCfIVCweBwOHWCs/j4eLOXvb4hHh4elUlJSeLy8nKGLqV4586dDa6e/TwbGxv1nDlzpCkpKaI7d+689Ao4m83WPp8aPnjwYNn8+fOp0tJS1siRIxu8LxqomZkNCwsru379On/dunUv/ZD39fUt37Bhg9WuXbuMQ0NDXwhWPT09q3g8niYxMVHk6elZe3/Yvn37RO3atVPa2NjUzuqOGTOmeOLEiR0SExONc3JyuOHh4bWzmt26dVNYWFioMjMzubNnz35lirQ+oVCo6datW+W9e/d4ffv2fek9an93jI4ePWpC03Su7oJFUlKSCY/H03h6etamWjs5Oal69+4tW7Rokc3ly5cFe/fu/VtBo0KhYHC53Nr3qFqtxv79++vUaP7www9lX375Zbtz587xm2uBL90x67vY0NQ+RkVFFa1YsUIybtw4BwsLC1VgYOAr36dtCQmoCeI105W58uZpcKu8GjN7smvLXAkiA+osJlZb5krpg+WbDuFLjwIM7cnC2j3V6Mjj4PyJg/h4ypc4+fshtONzcOFONXp0YsH4aiZopc9LV/kGamoeC7MzYenEwNmbajjwOciVMzBgwODWOA1vleYeU/W8BfWu6K7VanEgcRU+9ir9S/vv71aKpF2rMXxkKCnDRRDviC8XLC6IuHHdAC8pnZVTydCUSt4vXbVgcUF92zcXtVpNnThxwhAAZDIZ88KFCwbbt283r6qqYhw8ePC+7n9dYGCg7IMPPigbMmRIx5kzZz7p0qWLoqysjHnlyhW+QqFg/Pjjj42ewa3PgAEDZPPnz7efO3eu1fvvv1+ZmppqfPr0aaNXb/miefPmFfz888/mvr6+TrNmzSrIzc1lr1692prH4zWYThwdHW1TXFzM/PDDD8vNzc3Vly5dMrhw4YLRP/7xj5cu1uTo6Kg4fvy4cWpqqkwoFNJdunRRdOvWTRkWFlY4fvx4x4sXL+b7+PhUVlVVMW7cuMG7f/8+LykpKWv37t3G27ZtEw8fPrzEwcGhOjs7m/Pzzz+b9+zZ86WBzZ9jIJs0aZLj7du387p37y7Pzc1l//bbb0aJiYlZlpaW9MSJE5+uWbPGmsViaX18fOR79+41OXXqlPHGjRsf6e8rJCSkbPr06ZrPP/+8nUQiqf7www9rZ6KZTCaWLl2aPXXq1PYymYwxdOhQGZfL1Tx48IB76NAhk9TU1Ef69z4/b9myZTkBAQEdAwMDERwcXCIUCunMzExOWlqa8XfffZfbtWtXZVPHSKeyspI5dOjQDpMmTSq8fv06f/Xq1TafffbZ0+fTlsePHy+NiIhwtLS0/NtB4wcffCDbvn27uZOTk8LMzIxev369eXV1dZ2/3alTpxZt3rzZwt/fv+OXX36Z5+bmpnj48CHn3r17vL+S5aDP3d1dAQA//PCDeXh4eLFAINDoLzrWlD46ODio+vTpU3by5EnjadOm5T//nebevXuc//3vf4YAoFKpGHfu3OFt27ZNZGhoSIeEhLzxwTdZlIxoEWq1Ggf2JSMmKgKlmbcgy7qJicFDERMVgQP7kkltYz21Za5KnytzNbkRZa4u15Tr9OlM4VGpClbKmsXJCrh26GDCxrnrNRc2Iz1lqNh0CLSy/vNOK9Wo2HQIUV41/7PO39TC0YSNAq4dho0Y2az9fRc095impuyvd5vjvxxBR9GjJu3fyeQRThxL+1v9JAii7WAwGNi6e/8fVn6T8/6nsJNfL2XT94tp7fVSNv0/hZ3cym9y3tbd+/9o6dnpiooK5sCBA119fX1dP/30U8eDBw+KRo0aVXzt2rWbffr0qQ2yGAwG0tLSHoaGhko3bNhgGRQU5Pz555+3O3/+vKBPnz4Vf7cdX3zxReGkSZMKNm/ebDl27Fin7Oxs7o4dO/5oyr7at2+vSk5OflBcXMz67LPPOmzZssVi27Ztj14VrPn4+FTeu3ePHx0d3S4oKKjj1q1bLWbPnp23YMGCpy/b5vvvv8/h8/ma0aNHO/Xr189NF4T8/PPPj2NiYvKSkpLMRo8e7TxlyhSH9PR0E925cnNzU1AUpV2yZIntyJEjO37zzTe2/fr1K0tISMh82bH+HIMHYWFhhRs3brQMDg52Xrp0qcTMzKz2y8Tq1atzp0+fnr99+3aLMWPGOJ07d84oLi7uj8mTJ9dZ8MvAwEA7YMCA0sLCQvaIESNeuOd20qRJJQkJCQ9u3LhhMG7cOMexY8c6bdmyxaJbt27yV51HPz+/iqNHj94tKipiRUVFtR8zZozTmjVrrCQSSbUu3b2pY6QzderUAktLS1VERITjqlWrrMeMGSNdu3btCwHrmDFjSplMpjYkJET6dxfe3bhx4+Pu3btXzJ07t920adMc3NzcFNHR0XVm4Q0MDLSnTp26O3DgwNJly5bZBAcHO69Zs8ZKd493U3Ts2LF64cKFOWlpaSaDBg1yHTlypJP+75vax4CAgFIAiIyMfCEL4ejRo0YRERGOERERjpWVlYy0tDRRRESEY3R0dLum9qM1Ua256mv37t21Fy9ebLH96xa/OnnyZIsdo7W01b7UVx6IqV/ySaNFjpyBAq5dvSWf3mQtNSYxURGwfJCCk/mVmBnKxNMyLVYWd21UirZsfwZizH6HuTGFdbto9LMyRGHHQFja2KIwPQ6lCgUMbVR10o1ldg7gf+QBlpAHtUyBql+vQJidiSgvGcRCBo6cVUOex4YJjwcLv2kNphu/Cd7Ev5WWGNOVcT+98Nqp44ciwOlUk/ef+qAf4rY1/2KBb+KYNBXpy5uptfpCUdQlrVbbvUUP0kjXrl3L7Nat219Kh30ZjUaDK1eu8KRSKUssFqs9PDwUrZ3mTRBvo6SkJOPQ0FCn33///Ya7u7vy1Vu0PU3t49ChQx1NM+5KAAAgAElEQVQLCgrYly5dutuS7Wsp165dE3fr1s2hvt+9dSnfV69erf2gbcuuXr0KAG2qL0qlArLse/C11cJHyATYAFA3nZTJoNBOoEU7PEZO6lp03bAOQruO4HKbVH++VbXUmJRm3sLYjvplrjgwCPkLZa6S7+KzHqraMlcnjhyCcTs3SP+gMdaFg1uPNUiDGkN6srDgwwrkl/yO9OS7kCkpCLk191hbOTEA1ATTxY+Z6GTKQfxdGuJj/4fDx082a3+b25v4t9ISY1pf/5gVVzGiY9P3f/d6RouctzdxTJqK9OXNdPXqVbz33nuvuxltFoPBQGvXmSaIt1lmZib75s2b3K+//lrSr1+/srcxmG5qH8+fP88/c+aMwS+//CLavHnzo1dv0fa8dQE18XoolQpU5dzBWBcm2MzGXeW2FTIx1kWLpHt3AFvXNhFUtwTGnwtWNleZKwalBUVRENp1RNK9OxjTkYdHedVYm1QNH3cK3m5MfNbjWSYQraFw5qYaF/4s2dTJlIOkezSEdq7k/tomaokxrQ+Tof1b+2cytHhralYQBEEQxGuydu1a87Vr11q7ubnJ169f//jVW7Q9Te3jyJEjnUpKSlhjx459On78+EbX/m5L3rqA+r333iPpbK2MpmmMGdIPXh2ZYDPrBmDFVTQuVrJQqaVgSGnR3VANU/6zFG82k8KYjkxcYrKQlHbijU7/bqkxmRg8FJCdb7YyV57dvWtrfmdn15Reas+7i44mHDy6q8K6q9V/zpzWbKNQUGjH46C/ORsFCgYuMV1wKGMX7OzsmrWfLeVN/FtpyTHVNyXcB8CtJu+/g7ML1iecbFSf/oo3cUyaivTlzfQ2zLITBPH2WLVqVd6qVavyXnc7WlJT+5ibm3u9JdrzJiE3zBB/m648kH4wXaqgkVDMwYH2rpB9EQxqcThkXwTjQHtXJBRzUKp4Ni/GZlJoX1VTHuhdJBRbgdbULXMl//VKo7Z9VuaqZnu1pm6ZKzs7OySlnYKF3zScV7cDi81FPytD9BIZoaexEXqJjNDX0hAsNhfn1e1g6TcNSWmn2kww/aZqyTHVR3HEf2v/FEfc6D4RBEEQBEEQL2rzATVZTfr10pUHsuQ/S0ktVdBI1ojAnx8Ms5D3wRbyQVEU2EI+zELeB39+MJI1ojpBtSVfW1Me6B0cr76+Q5AjZ/xZ5oqGlYgB48eZL12RW6e2zJWIgQu36doyV32eK3PFZDIxZ8E/sevYeQyYHYfCjoGIv8dA4n0Kd4x9UNgxEANmx2HXsfOYs+Cfb3SWQFvR0mOqM/LjabiayW3S/q9m8hAUOr3JfSQIgiAIgiDacEBN0zSWL/0GYb4+OLFiCiwfpGBsRw3CnLVwlZ2H5YMUnFg5FWG+Pli+9BvQNLlTsCXoygPpOyznwyx6WIPle8yih+GwvG56akPlgd5mw0aMbJUyVywWC4GjRmNl3E8wcegEYbvO2JJ8BCvjfkLgqNH11jkmmqa1xnTgoKG4V+LYpP0/KHXEAN8hf6ufBEEQBEEQ77o2GVBnZ2fj46H9UZgeBx/2Y7QzQp3STMCz1aR92I9RmB6Hj4f2R3Z29mtq8dvrv8fSYGv4bHa6uIqGslO7lwbTOkwuC0o3exRXPbvQITHQ4LcTR1usrW8qFouF7gMC8FTBgA2bg7SzapgbM/ClRwGYG/dAtj8DqrIqaLVaqMqqINufAebGPZjrWVBb5sqGxcFTBQPeA4aTwPgN0FpjSlEUAsNicOqOyV/a/8nbJhgRGkMWnSOId9yq5cvMX3cbCIIg2ro29807OzsbM8IC0IOTDTa/cV8GLflamKpvYUZYANYlHiL3hzYjmTQfNnoXMy5WsiAc3LhSJsLBHri48iEG/ZkuzmJQKCt88oqt3k6z5y/Ex7/9Ck/OrSaXubrMcsWy+V+/7q4Qf2qtMR0RFIbCp09w6sxq9HMtfeX+T942QYde0RgRFNoq54EgiDdTYWEhc1nsv2w/jZhYLBaLSRofQRBEE7WpgJqmaURPCK0JppuwmnQPTs2Kx0lpp8h9os1Eq1HVeVyppf5S+Z7K56oBadWq+l/8lmMymVi1JbHmYpFp9l8uc3Wu2g7rtieS9/UbpDXHdGLUbKRYWGN34io4i/7Aew6KF/Z/8SEXD8ocERgajRFBYS3SZ4Ig2o7k3fGij2wpKnl3vMmU6Z8Xve72EARBtFVtKuWbrCb95qEY7DqPDSkt1OWKRm2rlilg+FySAcVi1//id4CdnR3WJR7CJaYbTHg89DcXIP8uB+t20dj4HxU2H1Bh439U+GE3jYK7HPQ3F8CYx8MlphvJvHhDNWVMDZisJo3piKAwbE2+AJ/RO5H6oB8O3OiE/decceBGJxx52B89QnZi657zJJgmCAIAcObEUWNPKzaVcTzNpLWOGRMTY0NRlNfzP7169erYXMeQSCRdJk+ebKt7PGrUKAd3d3c33eO1a9eaURTlVVZWxgCA3NxcVkxMjM3du3c5zdWGV/nvf/9rMGrUKAcHBwd3BoPhNWrUKIfWOjZBEM2vzcxQ61aT9qlnNWmz+cMg0LtnV7eaNK30RvLqVIxWlMCEVzPLY8nX4tyJg1DPW0DuNW0GQrEV6FJt7T3s3Q3VOHD0KsxC3n/ltrKjVzDAUA2gZmwaKg/0rtCVuVoVuwTnTxyEFTsb/YzZYOml1as1WuTKGTivtoOP33B8N/9rMjP9BvsrY5p0Tw0l1wRX/9e0LBqKojBw0FAMHDS0ObtAEMRbhqZpVDzN5jIEFCoKs7kajQYMRuvMsQgEAvrAgQP39Z8TiUTNlnK+Z8+eBxYWFi/dX3BwcFnnzp3vCAQCDQDk5eWxVq9ebf3RRx+Vu7i4VDdXOxpy6tQpwYULFwQeHh6Vcrm8TU1uEQTxojYTUdauJq03gXlYzofZ/EasJh27F+G8Z/8jdatJB44a3dLNfuv19R2CE78fQjtBzYUOUz4T3FtZoJXeDS5MRivV4N5+DJHps6AhV87AgJeUB3qX6MpcqectQGrKfvx24ijKCp9Aq1aBYrFhbG6NAQMGY9iIkeSiUBvR2DH9fe0PEFAUuUBCEESLOnMmg2+ilnIAwERVxDlzJoPfu/cHVa1xbBaLpR0wYEBlS+2/d+/eDfbDxsZGbWNj81prdH711VdPv/7666cAoD97ThBE29RmroqR1aTfTLryQPr8DapQtDq1wfI9RatT4W9QNzW8ofJA7yL9Mldbko/gp/3HSJmrNu5VY0pW3SYIojXs3blV7GioZgJAe0MVc+/OreLX3aasrCz26NGjHWxtbbvweDxPBwcH95kzZ9ooFIo6/xgrKiqoqKgoWxsbmy4cDsdTIpF0mTZtmkT3++dTvp+nn/J99+5djo+PT2cACAgI6KhLQVepVLCwsOg6e/bsF9LmvL29XQYNGtShvn3v3r3bmMFgeN25c6dO+vidO3c4DAbDKyEhwRgAuWhKEG+ZNvONnKwm/WbSlQcqSI+D5Z/n14THxGhFCQ7H7oXSzR7CwR5gCXlQyxSQHb0C7u3HGG2ggAnv2fWcgioK3n6k5BNBEARB/F3f/WuJxS8pe8wsTYWa+n6vKH3KthXWfAYbsBm4evW0MGxwb5f6XltQLGMMGhFSNPcfNTOqzUGlqrsAKZPJREFBAUskEqljY2OzTU1N1Xfu3OF99913NlKplJ2YmJgFABqNBn5+fk5Xr14VREdH53l7e8uzs7M5p0+fFjSlHfb29qr169f/MWXKlPaxsbGPvb295QDAZrMxevToot27d4u///77J7p0+Fu3bnEuXbokiI+Pf1Df/oKDg8tmzZql2rRpk3jVqlV5uuc3btwoFolE6pCQkLKmtJMgiDdbm4leyGrSby5deSBT9a3aBeOMOAx4llfg/qmreHL6DtQMBlgaDaxpBZzNODDiPMvdV9FaZBq4kZJPBEEQBNEMYr6c97ToaR4768wRM09hBZvJeC77RVj3YS9hMQ+a4jrP0RotLssEKq/3hxbFfDmv2YLp0tJSFofD8dJ/bv/+/fcCAwPLfXx8cnTPDRo0qMLQ0FAza9YsB4VC8ZjH42n3798vzMjIEMbHxz8IDw+vDU6nT5/epFXK+Xy+1svLSw4A7u7uCv1U9KioKGlcXJzV4cOHjQICAsoBYNOmTWJTU1P16NGj6w2MWSwWxowZI01KSjJbsWJFHoPBgEajwZ49e8xGjRpVxGa/uwuvEsTbrM0E1PWtJi0rV4At5L9yW7VMASFZTbrF6JcH8mY/xqUn1ShV0HAVc+Df0RDPPsgZoDWGyCpTI/2hHCY8JrysObigsiclnwiCIAiimbDZbCxfsz73wrmzxYu+mNquEx4bWPDR6HtKnsqhvUW1k3+zLi7Lu0fPZr23WiAQ0IcPH76n/1yXLl0UGo0GS5cutdixY4d5bm4uV6lU1rb3wYMHHHd3d+Xx48eNjI2Naf1guqV06dJF2b1794pt27aZBQQElGs0GiQnJ78yMI6KipL+8MMP1rpAPDU11SgvL48zefJkaUu3mSCI16PN3EMtFFuB1jybZu5uqIbs6NVGbSs7egXehs/u5yWrSTc/Ozs7zF+xEXseaOFgzMIQJwNooMXJ/EpklJTjbFk5MkrKcTK/EhpoMcTJAA7GLOx5oMX8FRtJySeCIAiCaGbePXpW7f/13B14ji64UGqo0v8eVR9ao8WFUkMVvEYX7P/13J3mDqaBmkXJ+vbtK9f/EYlEmiVLllgsWrTIbujQoaWJiYkPTp48eTs2NvYxAFRVVVEAUFxczDI3N2+1FMPPPvtMmpaWJiopKWEcOnSoUYFxp06dqn18fMq3bt1qBgBbt24Vd+nSpbJ79+6NqylKEESb02YC6r6+Q5BV/uxWoGerSTe8UGPtatL8Z7Ofj8s16ENWk25W2dnZiP0iEh87M1BO0zgprYCNazVmhjIRGcTGpEA2IoPYmBnKhLVLNU4WVqCcpvGxMwOxX0QiOzv7dXeBIAiCIN46utnqL9Yl3T9dJlI29NrfykTKL9Yl3V++Zn1ua6cnHzhwwHTIkCEl69atyw0KCpL169dPbmhoWOcecFNTU3VhYWGrNWzcuHHFLBZLu2PHDtG2bdvEXbt2rfTy8nplYDxu3Djp0aNHRX/88Qc7PT3dZOzYsU1KSScIom1oMwH1YP8AXCmoW1awD7MSD1ceaXA16Ycrj6APs251hssFGgz2D2ixtr5raJpG9IRQ9OBk42aJAoY2KswMYaNHJxaelmmx4xwba09xseMcG0/LtOjZmYWZY9gwtFHhVrECPTjZiJ4QCpputjKUBEEQBEHocXDsUM2l6AbTvvkUTbXv4NQqtZifp1AoGBwOp04AvXv3blP9x76+vuVlZWXMXbt2GTfXcblcrvbP479wbgQCgXb48OHFmzdvtvgzMG5U2vann35awmaztcHBwY5arZaKiIgofvVWBEG0VW3mHuqjhw/BgKFBXrkaNkY1zf6NNoTthL54nJABroUQ5n1caleTLvztLpRPZbAb3xe/bTyKcNR8PuSVq2HIpHH08CFSh7qZrIxdjPZVd/FIUQ2xHY0hPVkoLNNg42UhyuwdYBDiAZYRD0XlCqz89QqMr2Yi0lOGIT1ZOAI1HuVVoz3vLlbFLsGcBf983d0hCIIgiLdO8u54kT2zjNPQXIods5STvDveZMr0z1t9RrVfv36ybdu2WSxbtqzS2dlZGR8fb5qVlVVn9dnAwEDZBx98IJs0aZLj7du387p37y7Pzc1l//bbb0a6lcD/Kicnp2oej6fZsWOHmYmJCc3hcLR9+/aV634fGRkp7devnzmPx9NERESUNGafBgYG2sDAwOKdO3eaDxs2rFgsFteZMcjLy2Olp6cbAUBZWRkzJyeHs23bNhEAjB8/vlHHIAjizdFmZqj/eywNA9tzcD5XCRWtra1DbWBjgvYRfWHq3R5P/+82Hu86i6f/dxum3u3RPqIv+NYmtXWoVbQW53OVGODAIXWom4larcbFE4dgwdMgT1VdG0wvv2IJOjIExoG9wBbyQVEU2EI+jAN7gY4MwfIrligs02BoTxby1NWw4Glw/sRBqNUNp/ATBEEQBPHXnTlx1Nha8GwS9qkc2hPFIuXTKtTeWG0tYCDjeJrJ62jfd999lxcQEFAcGxsriYiIcORwONrvv//+sf5rGAwG0tLSHoSFhRVu3LjRMjg42Hnp0qUSMzOzJn95MDAw0K5atSrr+vXrhkOGDHHp16+fm/7v+/btK7ewsFANGjSo1MzMrNGpdEFBQSUAMGHChBdmtS9fvsyPiIhwjIiIcMzJyeGeP3/eSPe4qf0gCOL1aTMz1DJpPmyYDPR34OHIfTk4poZ16lDzLI0hCfSsd1vhYA+c+/4Bqosr0d+BBw6TQepQN5PUlP2wVDzGQ7UKPbrUfFBvvCyEIDIATG79by8mlwXB5ABs3LgHCz6sgE9nCo/uqmDFzkZqyn6SOUAQBEEQzYimaVQ8zeZSAqq2HFa794cW/WfZqrxv5sXYXNArr1VRmM3VaDTQ1V5uTqtWrcrTr8+sz9jYWLN3797M558PDQ29pP9YIBBoN23alLNp06ac518LALm5udf1H+/bt6/OPmfOnFk0c+bMOjPwU6ZMKZ4yZUq9admXLl3iPX36lB0REfGXVuk+evSosbW1dbWu5Ja+YcOGlWu12kv1bUcQRNvTZmaodXWoTXhM9HPg4Z6M/kt1qO/JaPRz4MGEV7M4GalD3Tz+eywNtoZaZFVVw9uVifwSDcrsHV4aTOswuSzI7ByQX6KBtxsTmVXVkBhoSOYAQRAEQTSzM2cy+CZqKeepHNrflO0qdQuP8fl87fI163Nnr919/zelfeXTKmhNVEWcM2cyXl2T9C2Xn5/PPHbsmOH06dPtnZ2dq+oLjOtz7do17s8//2yyc+dO84kTJz4lJUEJ4u3XZgJq/TrUJjwmXE2YUJc3rgKBWqaAqwmzNpgGSB3q5iKT5oPJoMDna8FgUEi/x4XBRx6N2pb/kQfS73Frt2cxKJI5QBAEQRDNLGnHZnNpNVv7snJYPj3fr9r/6/k78BxdIK1maZN2bBa/rra+Kfbs2WPi5+fn+vTpU/ZPP/2U2dgZ+0mTJjlMnjzZsX///mVfffXV0xZuJkEQb4A2k/ItFFuBLtWCyahJK/Y2pHHg6FWYhbz/ym1lR69ggCENoCagJnWom48uc0D3OSNTMv5S5oBMSdXZnmQOEARBEETzMre0qf504757DdWV1pXXunDus+K0QweabRXttqq+1PDGOH/+/N2WaA9BEG+uNhNQ9/UdghO/H0I7Qc3aGc/qUHs3mF5cW4fa9NnsdK6cgQGkDnWz0GUOaP4sdCHkaiAtV4AtfHW2mFqmgLCmWkXt9iRzgCAIgiCa18Kly/Ib+1rvHj2rGgq8CYIgiLraTMr3sBEjUcC1q/Ocv0EVilanNliHumh1KvwN6qaGF3DtMGzEyBZr67tEKLYCrdGiqoqCRqOFX0cl5L9eadS2Vb9eweCOytrtSeYAQRAEQRAEQRBtSZsJqFksFroPCEBB1bOSDyY8JkYzSlAVuxdFSRlQlVVBq9VCVVaFoqQMVMXuxWhGKUx4z7pZUEXBe8BwsFhtZnL+jdbXdwhy5Ay043Nw4Q4NKxEDxo8zX3qRQ4dWqiHMzoSliIELt2k48DnIlTPQh2QOEARBEARBEATRRrSZgBoAZs9fiEwDV6jo2pKJMOExEW5ajcDMuxCu3AvtwngIV+5FYOZdhJtW1wmmVbQWmQauiJn/9eto/ltJlznQwYSNc9drxiXSU4aKTYcazByo2HQIUV4yAMD5m1o4mrBJ5gBBEARBEARBEG1KmwqomUwmVm1JxLlquzpBNVBzT/UgsRYjzbUYJNbClF+3TIGK1uJctR1WbUkEKWHQfHSZA08VDNiwOUg7q4a5MQNfehSAuXEPZPvrZg7I9meAuXEP5noWQCxk4MhZNWxYHDxVMEjmAEEQBEEQBEEQbUqbi17s7OywLvEQoieEon3VXVjyta/cJr+KQibfFesSd8HOzu6Vryf+mtnzF+Lj336FJ+cWbj3WIA1qDOnJwoIPK5Bf8jvSk+9CpqQg5NbcY23lxABQE0wXP2aikykHl1muWEYyBwiCIAiCIAiCaEPa1Ay1jp2dHZLSTsHCbxrOqeyRVVGzoJU+tUaLrAoK51T2sPSbhqS0UySYbiH6mQOdTHmozGNjbZIKZ2+qYW5M4bMeKszoW43PeqhgbkzhzE011iapIM9jo5Mpj2QOEARBEARBEATRJrXJgBqoCeLmLPgndh07jwGz41DYMRDx9xhIvE/hjrEPCjsGYsDsOOw6dh5zFvyTBGstTJc5cInpBhMeD/3NBci/y8G6XTQ2/keFzQdU2PgfFX7YTaPgLgf9zQUw5vFwiemGdYmHyMUOgiAIgnjLxcTE2FAU5UVRlBeDwfASCoXvubu7u82YMUPy+PHjNpc1+SoikahbTEyMTVO3v3v3LoeiKK9du3bV1gVfsGCBZWpqqlHztJBozBhRFOX17bffmrfE8UeNGuWg+5vQ/xkzZky75jrG8+338fFxGTx4sKPucUxMjI1IJOqme/z7779zY2JibKRSaasET2q1Gv/4xz+svLy8XExMTN4zMTF5r3fv3s6nTp0yaI3jN4c2/8+LxWIhcNRoBI4ajf79+wMAtiQfeb2NekfpMgdWxS7B+RMHYcXORj9jNliMZyuzqzVa5MoZOK+2g4/fcHw3/2tysYMgCIIgWtG9e/c4m3/81rJCJmUbCcWqidO+KujYsWN1axxbIBDQBw4cuA8ApaWlzIsXLxps377dPD4+Xnzw4MH7ffr0kbdGO9oCe3t71fHjx+9069attv7rjz/+aCWXywuHDRtW/jrbRjSf9u3bKzZv3pyp/5y1tbWqufZ//PjxOx07dlS+7PfTpk0rHDlyZKnu8c2bN3mrV6+2joyMlIrFYrq52vEylZWVjHXr1lmFhIRIv/zyy3yKorRxcXEWvr6+ridOnLjTFv4ntPmAmniz6DIH1PMWIDVlP347cRQnjhwCg9LCs7s3jM2tMWDAYAwbMZIsQEYQBEEQrUipVFKfR4U4sCsvGPVzLWMLrChUVGnxw4JfRCpD7/J/b9iTyeVyX704zd/AYrG0AwYMqNQ9HjVqlGz27NmFvXr1cgkPD3d89OjRDfL9oAafz69zroi6NBoNFAoFZWBg0KLv2ZZmYGCgaclxftW+O3TooOrQoUOzBfB/laGhoebhw4fXzc3Na4P34cOHl3fo0MF9zZo1Fn369Ml8XW1rrDab8k282XSZAyvjfoKJQycI23XGluQjWBn3EwJHjSbBNEG8ZbRaLY6lH8bU8UPBrLgKjvwKpoT7YOr4oTiWfhhabZv+vkMQb4XPo0IcvM1OmPp7yNgCfk32mIBPwd9DxvY2O2EaPSXE4XW0SywW099++21OdnY298CBA0Ld83K5nIqKirK1srLqyuFwPF1cXDolJSUZ628rkUi6TJ482farr76yMjc372pkZPTepEmTbDUaDZKSkoydnJw6GxoaegwcOLBDYWFhbUqcTCZjfPrpp/YODg7ufD7fQyKRdPnkk0/si4uL63w3pijKa8mSJRbTp0+XiESibqampt0++eQT+6qqKkr/dWlpaQIXF5dOXC7Xs3Pnzm7Hjh0zbEzfV69eLXZycurM4/E8RSJRN29vb5eLFy/ygBdTviUSSZfS0lLW6tWrrXWpwbr0b5qm8dVXX1nZ29u7czgcTwcHB/d169aZ6R8rPT1d4OXl5SIQCDwEAoGHq6trp61bt4oaal9FRQUVFRVla2Nj04XD4XhKJJIu06ZNk+h+r1arERMTY2Ntbd2Fw+F4Ojk5dd6wYYOp7vdr1qwx43A4ns+nD1+8eJFHUZRXSkpKbfp6fHy8ibu7uxuXy/UUi8XdoqKibJVKZe151qUmp6enC9zd3d14PJ7ntm3bRLq+eXt7u/D5fA8TE5P3Pv7443YlJSV1xrKpYwQA1dXVjPHjx9sZGxu/Z2Rk9N5nn31mp1AoKAAoKChgcrlcz+fPt0ajgUQi6TJx4kTbxh5H35UrV3jDhg1ztLKy6srn8z2cnJw6L1682IKm604a5+fnM8PCwtqZm5t35XK5ng4ODu6LFy+20P3+VSnr+infqampRmFhYU4A4Orq2oWiKC+JRNKlqX2MjY01NzQ09CgrK6szFocOHTKiKMrr3LlzfBaLBf1gGgB4PJ7W2dm5SiqVtomAoU00kiBeF7VajdSU/fjvsTSUZt4Cg9JiYvBQCMVW6Os7hMy0EwSAlP8kImXXKjibPEKAkxIjOuq+/9yCRqPFhb3nkLi5PQLDYjAiKOy1tpUg3lV3797lsCvPG0k61v97iRlwNeu80b179zitlf6tz9/fv5zJZGozMjIEwcHBsj+f63Dt2jXDuXPn5jk7OyuTkpJE4eHhTnZ2drd69epVpds2JSXFtFu3bpXr16/PvHDhgsHy5cslGo2GOnv2rODrr7/OlcvljLlz59rPmjVLkpiY+BgAKioqGDRN45tvvsm1sLBQZWVlcVasWGE9fPjwDqdPn76v37a4uDjLXr16lW/ZsuWPq1ev8mNjY23btWunXLp0aQEAZGZmsoOCgpy7du1auX379oe5ubnscePGOSoUigYnrtLS0gRz5syxnzNnTl7v3r0ry8rKGBkZGYKSkpJ674Xbs2fPg8GDB7sMHTq0ZPLkyVIA8PDwqAKAcePG2e/bt88sJiYmr3v37vL09HTh559/7iAWi9WhoaFlxcXFjODgYCdfX9/SBQsWPNFqtbh27Rr/ZccCaoIlPz8/p6tXrwqio6PzvL295dnZ2ZzTp08LdK+Jjo6WrF+/3jImJuZJjx49Kvfu3SuaMmVKe4qiEBkZWTx27NjSOXPmtEtISDCZNWtWkW67+Ph4U1NTU7W/vx/Pri0AACAASURBVH85AGzZskUUGRnpGBoaWrh48eLc+/fvc5cuXSrRaDTYtGlTjm47hULBmDhxosPMmTPzXV1dlfb29tW//PKLYUBAQEdfX9/S7du3P5JKpcxFixbZhoaGMo8ePfro74yR/nvAw8OjcvPmzY9u3LjBX7ZsmYTH42k3btyYY2lpSQ8aNKhk586d4hkzZtT28fDhw0Z5eXmcyZMnFzW0bwBQqepOELPZbDx+/Jjt7OysCAsLKxIKhZrLly/zv//+e5uqqipGbGxsPlBzwaNv374uRUVF7Dlz5uR16tRJce/ePe6DBw94jenX83r16lW5cOHCnMWLF9vu2LHjoUQiUfF4PE1T+zhp0qTiRYsW2e3YsUM0c+bM2tds27bNrFOnTvIePXpU1bddVVUVdePGDcNRo0a98ty9CUgkQBD1oGkaK2MX4+KJQ7BUPIatoRZjdUGC7DzoUi1O/H4IiT/EovuAAMyev5DcC068kzbHrcAf5/6NMZ41t1/ll2iRfo+DMgUDxjwN/Doq4eWohBfu4FTKlyh8+gQTo2a/5lYTxLtnS1ysZT9XGRugXvqafm4y9pYfv7VcvmZ7dis2DUBNerNIJFIXFBSwACAlJcXo5MmTxqmpqXf9/f0rACAoKEjWvXt33pIlS6zT0tIe6bblcrmaI0eOPGSxWAgODpYdOXJEtGPHDosbN25cd3V1rQaAa9euGSQnJ5sBeAwANjY26oSEhMe6fahUKjg5OSn9/Pxc79+/z3F2dq69qCCRSKr37duXCdSkqJ85c0Zw6NAhkS6gXrZsmSWXy9UeP378gZGRkQaoSWOdOnVq+4b6fObMGUMXF5cqXXAEAOHh4WUve33v3r2rWCyWViKRqPTTeG/cuMFNSEgwX7NmTaYu2AkMDCzPz89n/+tf/7IJDQ0tu3HjBq+iooL5008/PRaJRBrd+Wyoffv37xdmZGQI4+PjH+i3a/r06UVAzczsli1bLGbNmvVk+fLlT3TnJy8vjx0bG2sTGRlZbGZmRvfp06ds7969pvoB9YEDB0z9/f1LWCwWNBoNFi5caDty5Mii+Pj42jHhcrmaefPmtVu8ePETKysrGqgJqGNjY3PGjh1be8+vl5eXg4eHR8Xhw4dr3xN2dnaqESNGdLxw4QLP29tb0dQx0jE0NKSPHDnykMlkIiQkRKZUKqm1a9daL168+ImlpSU9YcIEaVBQUMdbt25xOnXqVA0AW7duNevcubPcx8en3qBR5+bNmwYcDsdL/7nr16/fGDFiRPmIESPKgdqLG+VyuZyxc+dOc917Zv369WYPHjzgnz59Wv8iU5Pvrzc1NdW4uroqAKBHjx5yFxeX2r+DpvRRLBbTfn5+JTt37hTrAuqysjLG0aNHRQsWLMipbxsAmD9/vrVMJmNOnTq1sKl9aU0k5ZsgnpOdnY2Ph/ZHYXocvFlZUKmrcTK/Ehkl5ThbVo6MknKczK+ESqWENysLhelx+Hhof2Rnt/r3D4J4rVL+k4g/zv0b/VxLUVimwdL/E2BlcVc8CvkYZdM+xaOQj7GyuCuW/p8AhWUa9HMtxcOM1Uj5T+LrbjpBvHMqZNLaNO+XEfAplMuK2K3UpBdotdraBv7yyy9CsVisGjRoUIVKpYLup1+/frLff/+9Tqru+++/X66fLebg4KCwsbFR6oJpAHByclKUlJSwdGm6APDjjz+aurm5dTIwMPDgcDhefn5+rgBw8+ZNrv7+P/roozqBp6urqyI/P5+je3z58mXDDz74QKYL1ADgk08+KXlVfz09PeW3b982mDBhgl1aWppAv21/RVpamhGDwUB4eHiJ/rn66KOPyu/cucNXq9Vwc3NTGhgYaEaNGuUYHx9v0pgVnI8fP25kbGxMvyzIv3z5Ml+hUDDCwsLq9DU4OLgkKyuLm5ubywKA0aNHl5w5c8boyZMnLADIyMjgZ2VlccPCwooB4Pr169wnT55wQkJCivXbP2TIkHKlUkldunSJr9s3RVEIDg6ubU95eTnj2rVrgqCgoDp9HzRoUAWLxdKePXvW8M+2NmmMdAYPHlyqP3EyZsyYUoVCwbh8+TIfqLnn19raunrz5s1iACgpKWGkp6eLwsPDpa/at6Ojo+LUqVO39X86dOhQLZfLqejoaBt7e3t3LpfryeFwvL777jtJbm4uRzejffLkSaGbm5tcP2OjpTS1jxMnTpReunRJcOvWLQ4AbNu2TUTTNDVhwoTi+l6/e/du43Xr1lkvWLAgp1u3bi9dTO1NQgJqgtCTnZ2NGWEB8FTfQqlCgZPSCti4VmNmKBORQWxMCmQjMoiNmaFMWLtU42RhBUoVCniqb2FGWAAJqol3hlarxYHEVbXB9PIrlqAjQ2Ac2AtsIR8URYEt5MM4sBfoyBAsv2KJwjIN+ruVImXXanJPNdFkmZmZyC4pwB/FefhH7D+RmZn5upvUJgiEYlVFVcN/dxVVWhgJzV7L4kRyuZwqLS1lWlpaqgGgqKiIJZVK2RwOx0v/Z9WqVTYFBQUc/W2NjY3r3H/J4XC0QqHwhee0Wi109+T+/PPPJtOnT2/v5eVVsX379ocnTpy48/PPPz8EgKqqqjrfj01MTNTP76u6uro2+C0sLGSJxeI6500gEGgNDAw0aEBgYGD5mjVrMs+ePSvw9/d3EYvF740dO9ZeJpP9pe/nUqmURdM0zMzMPPTP1cyZMx1omqaysrLY5ubmdEpKyj2VSkVFREQ4WllZdevfv7+TLsipT3FxMcvc3Pyl74ecnBw2AEgkkjqv0a1QrQvaQ0NDS9lstjYhIcEEABISEkwtLCxUgwYNqgAAXVbCmDFjnPXb7+rq2gUAsrKyatsoFAppHo9X+0aWSqVMmqYxb948e/1t+Xy+p1qtprKzszlA08dIx8LCos57wMbGRqV/DhgMBkJDQ6V79uwx02g02L59uylN09TEiRPrDRr18fl8Td++feX6P3w+Xztt2jTbDRs2WH766aeFycnJ90+dOnV75syZTwBALpczAKCkpIRlYWHRKn+zTe2jv79/ua2trXLTpk1iANi5c6d44MCBpZaWli+sIH7q1CmDiIgIx9DQ0MKFCxc+bam+NDeS8k0Qf6JpGtETQtGDk42bJQqI7WjM7FlzoT6/RPNCGmvPziz07AyknVXh1mMNephmI3pCKJLSTpH0b+Ktd/yXI+goqsmu23hZCEFkAJjc+j9SmFwWBJMDsHHjHiz4sAJOJo9w4lgaBg4a2ppNJtq4nJwcTF/8JXL5lTCf2x8sIx5OlBfgl9WzIKkyxA8Ll8PWtklr/7wTJk37quCHBekif4/yl85An7otVE3/11cFrdkundTUVCOapqnevXtXAIBIJFJbWFiokpOTH7TE8ZKTk0Vdu3at1E8xPnz4sKChbV7G3NxcLZVK65zXiooKShf0NGTGjBlFM2bMKMrLy2MlJCSYLFy40E4oFNJxcXG5jT2+qakpzWQytceOHbtT3/cPiUSiBoCBAwdWDhw48H5FRQV18OBB4fz58+1CQ0Mdr127ducl+1UXFha+9P1ia2urAoC8vDy2LiUbAJ48ecIGULvQlLGxsaZ///5l+/btM/3iiy+kBw8eFAUEBBQzGDWnR1eaacWKFVne3t4vlEjSL/lEUVSdq0JmZmY0RVGIiYnJGz58+Asz6fb29qo/29LkMQKAp0+f1vmAy8vLY+ufAwCIioqSrl692iY1NdUoPj7ezNfXt/T5xbb+isOHD/8/e/cZFtW19QH8f6YPZYYBhjK0ERFBUQQUayzBEjUoNhBMYuxGjUaMGhNjboy5tigJVsTEDgo2BMWCefEmV2PvChYCIkgvA8K0M+f9gENARRFpcvfvefjAzClrzxn0rLP3XlsyYcKEHP3UAgCIiYmpVpRPIpFoU1NT+S/u3TDq0kYWi4WgoKC8Xbt2SSdNmpR/5coVo+jo6PvPb3fjxg3+iBEj2nTv3l2xffv2Ry87VnNFeqgJ4pk1y5eiVXkyUhRqmNvRGNyNU6thrIO7cWBqTyNFoUar8mSsXf5DUzeFIBrcob0b0EmuQlahDsX28hqTaT02nwOFnRxZhTp0kitxMHJ9I0VKtASPHz+G/4LJyBlkDsGA1tVGQQgGtEbOIHP4L5iMx49rnJL3P8/Z2VmtMfQuyaihxE9GPqAx8i5pioJkeXl57MWLF9va29urhg8frgCAAQMGlOTn53ONjY1f6L3r3bv3W69Lq1QqWTwer1pytnv3brOatn8VDw+Pp3/++aeopKSk8r56165dr6ye/TyZTKadP39+npeXV2lSUpKwpu24XC7z/NDwDz74QKHT6aiioiLOyz6rqj26QEXPbFBQUHFQUFDew4cPazzXgAEDSoqLi9n6KuPP8/T0LBcIBLqIiIhqbT1w4IDEwcFBJZPJKnt1AwICCi5evGgcEREhfvz4MX/cuHGVvZru7u5KCwsLTWpqKv9l8VdN1p8nEol07u7uT+/duyd42b5yuVwDvP01On78uEnV6tr79u0zEQgEOk9Pz8qh1k5OTpqePXsqvv/+e9mVK1eMJkyY8Nrh3q+iVCpZVZex02q1OHTokGnVbfr166e4e/euwfnz52u8jm9Kf86XPWyoaxunT5+en52dzfv000/lFhYWGj8/v2rTKNLS0riDBw92tre3Vx0+fPjvd63g77sVLUFUUbUCtyIvC4xOA4rFrVMFbq1Wi0unY9FFoMOdEjVmd+NWDmM1muYLcZVkoXIYq8obq7bEYoFHNoZ04yA0Sg1nAQ8XTh+B9qvFb3Tu+moHUT/INXk9Rp0HFovCiXs8GPh71Gof4fseOBGdjPFdNWDUb3WfQfyPmbV0ATDK+ZWjIOhRzpj1wwIcDiNz9Gvy8+ao1Lmf+eNa2gXjPq4VS2eVlDP4z12RRmvsXfLz5qjUho5Bq9VSp0+fNgQAhULBvnjxosH27dul5eXlrCNHjtzX/9vq5+en6NWrV/HgwYOdZ8+e/aRDhw7K4uJi9tWrV4VKpZK1YcOGWvfgvoyPj49i0aJF9gsXLrTq3r3707i4OPGff/5p/Po9X/TVV19l79y5UzpgwACnOXPmZGdkZHBDQkKsBQLBK4cTz507V1ZQUMDu169fiVQq1V6+fNng4sWLxt98802NT4YcHR2VCQkJ4ri4OIVIJKI7dOigdHd3VwUFBeVOmDDB8dKlS1ne3t5Py8vLWbdu3RLcv39fsG/fvrS9e/eKt23bZj5s2LBCuVyuTk9P5+3cuVParVu3GguTPbsGiilTpjjevXs3s3PnzmUZGRncP/74wzgiIiLN0tKSnjx5cs4vv/xizeFwGG9v77L9+/ebnDlzRhwWFpZS9Vj+/v7Fs2bN0n3xxRcONjY26n79+lU+FGGz2Vi2bFn6jBkzWikUCtaQIUMUfD5f9+DBA35sbKxJXFxcStW5z89bsWLFY19fX2c/Pz+MHj26UCQS0ampqbz4+HjxypUrMzp27Kiq6zXSe/r0KXvIkCGtp0yZknvz5k1hSEiIbPz48TnPD1ueMGFC3sSJEx0tLS1fSBrfVK9evRTbt2+XOjk5Kc3MzOhNmzZJ1Wp1tSR3xowZ+eHh4RZDhw51XrBgQaarq6vy4cOHvHv37gneZJRDVW5ubkoAWL9+vXTcuHEFRkZGuqpFx+rSRrlcrnnvvfeKExMTxTNnzsyqeg9VWlpKDRo0qI1CoWCvWbPm0YULFyofDggEAl3Pnj0bfH742/rfviMk3kkvq8AtY/3zsLYuFbjjYg7BUvkID7UadO1Qcaw3Hcbq3Z5CSrIGVtx0xMUcgt+oMY3eDuLtkGtSezq6ohNLoWKBY1y71Tk4IgEUz5YUZegmmaZJvINSU1ORIXwKAd/qldux+RxkCJ4iNTUVcrm8cYJ7x/D5fGbjbzF/37t3j7d1w78tS9LzucYiM82sH7/Obqye6dLSUnb//v1dKIqCoaEh7eDgoBo1alTB/Pnzs+3t7St7NFksFuLj4x9+/fXX1ps3b7Z88uQJTywW066urmUzZ85867mVX375ZW5KSgo/PDzccsOGDayePXsqduzY8bePj4/Lmx6rVatWmujo6AfBwcF248ePb+3o6Kjctm1bSkBAgNOr9vP29n4aGhpqeeTIEdOysjK2tbW1et68eZmLFy+usX2rV69+PGvWLPsxY8Y4KZVKVmxs7L0PP/ywZOfOnY+WLVum3Llzp3T16tUyQ0ND2snJSTl+/Pg8AHB1dVVSFMX88MMPtgUFBRyJRKL18fEpCgkJqTHpenYNHgQHB9uEhYVZrlixgiOVSjUjR46s7F0OCQnJ4HA4zPbt2y3WrFnDsbe3V23cuPHvqVOnViv4ZWBgwPj4+BQdOXLEdMaMGVnPn2vKlCmFYrGYXrlypXVUVJQ5m82Gra2tauDAgUWvS3oHDRpUevz48eTvvvtONn369FY0TUMmk6n79etXrB/uXtdrpDdjxozslJQU/sSJEx0ZhkFAQEBeaGjoC59dQEBA0ZQpUxh/f/+8t70/CAsLezRx4kSHhQsXOvD5fN2YMWPyhw0bVvTll1866LcxMDBgzpw5k/zFF1/YrlixQvb06VO2TCZTTZo0qc7VsZ2dndVLlix5HB4ebrFjxw4LS0tLdUZGxs23baOvr29RYmKieNq0adWeqGdkZHCTk5OFABAYGFjteshksmrnbq6oxiwM07lzZ+bSpUsNdvy+ffsCABITExvsHI2FtOXl0tPTETw5CPKyJFgIdHhYpEFauRpCIQMWC9DpgPJyCg5CHlqbcJGjZCHVwAVrt0bAzs6uxuMGT58IywcxSMx6itmBbOQUM1hT0BFivx6vjUlx6CyCzW5AKqawLpJGHytD5Dr7Yc3GXxu9HbVFvl8vauprArxb1+Wzcd7wc7uDHee5SPEfC67o9aPNNMXlcIzei/FdNTh8qx027bnQCJG+nXfpmrzOu9qWb5b/C6cdsmv9HfN5ZIkfF/2rXs5NUdRlhmE618vB3tL169dT3d3dydAOgmjG9u3bJw4MDHS6cePGLTc3t3eiQvWbqmsbhwwZ4pidnc29fPlyckPG11CuX79u7u7uLn/Ze6SHmnhn6Ctwd+WlI0Wpxp1SNbq6URjuwgarSi+iTsfgwl01Em+pIOPy4MmrqMC9LiK2xsRHkZcFGYt6ljzVfRirUMiAw6JQnPukSdpB1A25Jm+O4plDp2MwyFmFNb9frdXDp/Lfr+IDZxVoHQWKZ94IURItQW5hPjhutR8FkVdYwyRhgiCIBpKamsq9ffs2/9tvv7Xp06dPcUtMpuvaxgsXLgjPnTtncPLkSUl4eHjK6/d495CEmngnNHQFbkZXMfz0WcHJOg9j1e/PaF8+nJVUEm9+yDWpmxFjZ+LS/r/g6aiG+FoqaJX3KwuT0SotROmpsHRi4XIKHyMDZzVitERzl5qaivDI7cgtyIPU1BxTAj+tHLYtlZhBW1K7HmqtQglziWUDR0sQBFFdaGioNDQ01NrV1bVs06ZN71SF6tqqaxtHjBjhVFhYyPnoo49yJkyYUOu1v98lpMo38U5o6ArcFKsigdI9m6Uj4uugLVHWKjatQgnRsyKM+v0pzstXmSCVxJsfck3qpv/AIbhX6AgAmOapQOmWWNAq7Uu3pVValG6JxXSvitolD4oc4TNgcKPFSjRfjx8/ht/UIIwJmYPTDtm405uL0w7ZGBMyB35Tg/D48WNMCfwU9PnMWh2PvpCJqUETGjhqgiCI6tauXZup1Wov37x5866Li0ujV8pvDHVtY0ZGxs2ysrKr27dvT2/I+JrSWyXUFEXNpSjqNkVRtyiKiqQoqnZdegTxBvQVuC0EOmRq1JUJz6qrlqCn+UPs16PaEipivx6gp/lj1VVL5BbrMKQbB5laNSwEuooK3NoXb/pF5lagdQzKy6nKYaxlv1+tVXz/DGOt2F+rYyCWWjdJO4g3Q65J3VEUhfcGjceRvxhIxSws8MgGOywKikNnoSkuB8Mw0BSXQ3HoLNhhUVjomQ1zEQtH/mLQa+B4UBT1+pMQLVptl8LicDiwKTes8YGNHq3SwkZpCAcHh1duRxAEQRD1qc4JNUVRNgBmA+jMMIwbADaAsfUVGEHoVVbgLnquAvfUWlTgviICgIoK3EUaWKkqKnA/r/eAwXhcxoKDkIeLSTSsJCyIH6XW6gZOlJ4KSwkLF+/SkAt5yChj4T2fD5qkHcSbaQ7XRKvV4vCBaARPn4ii1DtQpN3G5NFDEDx9Ig4fiG62SXp6ejqO7PwVhWlA3FkNpGIWFvcrRbDZDThG74XJxh1wjN6LYLMbWNyvFOYiFmLPalCYBhzZuRXp6S32QTVRS7VZCgvPlsJav2QVcODeK0dB4MA9bFiyuiFDJgiCIIgXvO2Qbw4AIUVRHAAGAGo3Josg3sB/TsXD1pBBWrkaXVzYyCrUodhe/sr5mkDFzZjCTo6sQh26uLKRWq6GjYEOf5w+/sK2Hw4fgWy+HVqbcHH+ZsXw7TcdxnrhNgNHEy6y+Xb4cPiIJmkH8Waa8prQNI1Vy75D0ABvnP7pM1g+iMFHzjoEtWHgorgAywcxOL1mBoIGeGPVsu9A0/TrD9pIqs47Z7GAJwU6hB9T4UKyFjpdxd8Pw1Q8oNDpGJxP0iL8mApZBTqwKaArr2LeeXNqE9G49Eth1eZvLUPwFFqtFlGrtsLiZB6Upx5WGwWhPPUQFifzEL36V9jY2DRSCwiCIAiiQp2LkjEMk0FR1E8AHgEoB3CSYZiT9RZZHV27dq1yaZB32bVr1wCAtAVAUeodfORcfxW4Tx+LfWkseRmFkJnpIOPyEP+XBoO7cbDAIxthYVFQ2MkhfN8DHJEAWoUS5b9fhSg9FQu9FDAXsXDsLy1kHB4ySnS4W1CI/v37N1k7aoN8vyo01TVRqZRQpN/DAFsGnoYU/sgvx/kcLURGAJsF0DpAUQpI2Ry8Z5eKzLhQdNy8DiI7Z/D5TT+zJi8jDf3NipBCa5/NO+cjp4jGmv+KUUbLYervAY6xAPklSiyPvwqDv1Mxr2cxLEzYOPaXFimZatiyb6OTqxPMZM17eC75W2kY6YXZkC6sXRxsbxl8hg+G3bNiY2ylErej/4SpuRk+CgzClLkLybrTdfTz2uXSL4IX1Xm9WoIgCOItEmqKoiQAhgNoBaAIQDRFUR8xDLP7ue2mApgKAPb29m8RKvG/ikVV9HjVVwVu/fGeZyazx6mHxfioLQ93HukQDy0Gd+Ngcb9SZBXewInoZChUFET8ijnWVk4sABXJdMEjNtqZ8rA7mYF565d/zxurHUTtNcU1UamUKH+chCBnFk6llYNW0PDpykZXF94LS3Sdv0Mj7koJOGo2gpwNEH0/CbB1adKkmmEYCDVFsDFmITFXjdnduMgt1mH1NSsYzfWFcZUeR65ICMuAHqBV3li9JRYLPLIxpBsHoVFq9DXhgf+kCAxjT+ZT/w/SMvQb/a1pmX9GMwgEArDLaLQyldXbetP/i3Jzc9krV/zb9qNPphSYm5uT4SIEQRB19DbLZvUH8DfDMLkAQFHUQQA9AFRLqBmG2QJgCwB07ty5wTOATp06ITExsaFP0+D0PQikLcDk0UMAxYVqFbjzSpS1XkLl+Qrcnp27YGv0sZduX7kesWk6UjLVCN2nhrcbhS6ubIzv+s9SWLSOwrnbWly8xUDG5aGdKQ/n1XY4fq7m9Ygbsx2vQ75fFRr7mtA0jYDBfeBkT2H/vVK850lhSDcerqfosOGIGo9VQqjAAh862PLL8V4HDhZ/zMOxv7TYf6UUHzgY4oEhB/viTzfZEl2HD0Tj9E+f4WGRuvq882m1mHceFoXF/Uor5p0na9Ddhg+f2bPgN2pMYzbhjZC/lYbxzfJ/4fQbLIX1UWBQteS5OfSyv+sORu+WjOujpQ5G7zaZ+tkXZPFugiCIOnqbOdSPAHSjKMqAquhe8AFwt37CIoh/NEYFbj07Ozusi4jFZbYrTAQC9JUaISuZh3WRNMIOahB+WIOwgxqs30sjO5mHvlIjiAUCXGa7Yl1Ezcl0Y7eDqJ3GviZrli+FedFtnEx9ij6eFKSmFEJj1Ii4K8KjDl4QLBgHsx8mQLBgHB518ELEXRFCD6sgNaXQ25PCydSnMC+63aRLdJFaAER9IEthNb1LZ4+JfTqxqIv/PWrSWOcMDg6WURTl9fxPjx49nOvrHDY2Nh2mTp1qq/991KhRcjc3N1f976GhoWYURXkVFxezACAjI4MTHBwsS05O5tVXDK+zevVq8x49erQxMzNzNzY27uTp6ely8OBBUWOdnyCI+lXnhJphmPMA9gO4AuDms2Ntqae4CKJSY1TgrsrOzg774s/AYtBMXNA6gMPlo4+VIXpIjNFNbIweEmP0tjQEh8vHBa0DLAfNxL74M69MppuiHcTrNeY10Wq1uJhwBDeelMFKCnD5QHqeDo9NbGEYHAB+9/bI+f0uHkWcQ87vd8Hv3h6GwQF4LLFDep4OPAFgJaVw40kZzifENFn1b0VeFtisqvPO+TB4/w3mnd/jV+7PYVEozn3SwBETzZFcLidLYTUhmqahLknns1gU1CXpfJ1+mE0jMDIyohMSEpKq/qxfv/5RfR0/Kirqwfz583Nqen/06NHFCQkJSUZGRjoAyMzM5ISEhFjfv3+fX18xvM7atWutHRwc1D///HPazp07U+RyuXL06NFt9uzZI26sGAiCqD9vVeWbYZjvGIZxYRjGjWGYjxmGUdVXYASh1xgVuJ/HZrMxf/G/EHnqAnzmbUSusx9232Mh4j6FJLE3cp394DNvIyJPXcD8xf+q1fDbpmgH8WqNeU3iYg6h4NF92Ik5kJozYADcVZuCO6ofHu05i4JLf8PifVfYB3WHxfuuKLj0Nx7tOQvuqH64qzaFTgeYm+lgJ+agMP1+ky2bxugqpj7U17xzRqt5xR5ES0aWwmo6586dFdqLc3gAYC/O4Z07rvgdmwAAIABJREFUd/b1Y+/rCYfDYXx8fJ5W/fH09FTW1/F79uxZ3qZNG3VN78tkMq2Pj8/Tppo2AwBXrly5GxkZmfbxxx8XjRgxQnHw4MFUd3f3p6GhoZZNFhRBEHX2tstmEUSD43A46Ozjixwl61kFbi2kYhYWeGSDHRYFxaGz1ZZQURw6C3ZYFBZ6ZlerwJ2jZKGLzzBwOLUvHcDhcOA3agzWbPwVJvJ2EDm0x9boY1iz8Vf4jRrzxsdqqnYQL9eY1yTxxFHoGBrFjBalKqBDKzbyzGR4EncV9uN6QDa0E7giISiKAlckhGxoJ9iP64EncVeRbypDR0c2ytRAMaOFjqZx5lTd5s+/LYrFBYBq8861JbW7F37ZvHOKw633GIl3g62tLVkKq4nERP9q3kmuYgOAu1zFPhL9q3lTx5SWlsYdM2aM3NbWtoNAIPCUy+Vus2fPlimVympVC0tLS6np06fbymSyDjwez9PGxqbDzJkzK78kzw/5fl7VId/Jyck8b2/v9gDg6+vrrB+CrtFoYGFh0XHevHkvzOPp0qVL24EDB7Z+2bH37t0rZrFYXklJSdWGjyclJfFYLJaXvgfa2tr6hadIbm5uZfn5+eQfRIJ4B5E7cuKdMG/REoz943d48u7UuQL3FY4LViz6lrSDqKaxrknSretwNefhTmkZerVm48Q9Pop1DOTj33tlMS/5+PeQuuMPnLjHh3trHU7n0WgnFeDuzWsN8Gm8nsjcCnRR9Xnna36/CrFfj9fu+8+8c6pi3rmY1AL4X2dra4vDYRFITU1FeOR25BXmw1xiSZbCeks/rVxq8X8n9pnZWIpeOpabLs/mGnWtyFONhRTybvxHNDWwe9uXbZuRrWD1GxSQ/+XCJTUOo35TGk31kSlsNhvZ2dkciUSiXb58ebqpqak2KSlJsHLlSlleXh43IiIiDQB0Oh0GDRrkdO3aNaO5c+dmdunSpSw9PZ33559/GtUlDnt7e82mTZv+/uyzz1otX778UZcuXcoAgMvlYsyYMfl79+41X7169RPWsyE1d+7c4V2+fNlo9+7dD152vNGjRxfPmTNHs2XLFvO1a9dWFgkICwszl0gkWn9//+KaYrl8+bJhmzZtyuvSDoIgmhZJqIl3ApvNxtqtEW9VgXvd9ogmq4ys11La0ZI01jUpLMiFgy0H10oYeLVh4/eTDISukloV8xJamyArSYePurAR/5cW9mIOrjzOq5f2v6neAwbj9I3YZ/PO1ejajgPxtVTQKu9XtqVy3rkTC3/d1lbOO/dphrUAGIZBwsljOLR3A9il18BmMfhsnDconjlGjJ2J/gOHkKW+6plcLidLYNWjOcGLcoryM7lFf8eaDXEv4rLZr/6++nfNFgDZ1V6jaQbHrploPDr75s8JXlRvyXRRURGHx+N5VX3t0KFD9/z8/Eq8vb0f618bOHBgqaGhoW7OnDlypVL5SCAQMIcOHRKdPXtWtHv37gfjxo2rTE5nzZpVpyrlQqGQ8fLyKgMANzc3pY+Pz1P9e9OnT8/buHGj1dGjR419fX1LAGDLli3mpqam2jFjxrw0MeZwOAgICMjbt2+f2U8//ZTJYrGg0+kQFRVlNmrUqHwu9+Ud0D///LPZ3bt3DVauXPn4pRsQBNGskYSaeGfoK3DPnRSIVoJkOJvwkJKswbpr6mcFkiqGkSqVFBwEPPSVcpGtZOEyuy3WRUS+tmhYY2kp7WhJGuOasHRasFkUjA0BFotCvpINae+Xdgi9QNrbBfnXboDNomFsAHBYFChd0xQl+3D4CESsX44uhmlIvKlC13YV885XbYmF0dSXL52ln3e+0EsBgIULtxn0Nefiorb51QKIORiBmMi1aGOSAl8nFYY76xORO9DpGFzcfx4R4a3gFxSM4SODmjRWgqgJl8vFslWbMy5d/LRg1b+mOwxo+9DAXsrU+ilQWi7FJCQ7lS341+a0zl261WuvqZGREX306NF7VV/r0KGDUqfTYdmyZRY7duyQZmRk8FUqVWW8Dx484Lm5uakSEhKMxWIxXTWZbigdOnRQde7cuXTbtm1mvr6+JTqdDtHR0a9MjIGKRHz9+vXW+kQ8Li7OODMzkzd16tSXPgX9448/DBYtWmQ/YcKEHH3iThDEu4XMoSbeKQ1VgbuxtZR2tCQNfU14z27AKFTcI5obMW9UzEtqWDH3WN8zyuM1zVS7llwLIHzjTzgfswABnknwdFQjp5jBjvNchJ7hY8d5LnKKGXg5qjDWKwnnYxZg6+Y1TR0yQbxS5y7dyvccvpiUxhmXHXtFrKFp5pXb0zSD2MtizSPOuOw9hy8m1XcyDVQUJevdu3dZ1R+JRKL74YcfLL7//nu7IUOGFEVERDxITEy8u3z58kcAUF5eTgFAQUEBRyqVNlolw/Hjx+fFx8dLCgsLWbGxsa9MjPXatWun9vb2Lvntt9/MAOC3334z79Chw9POnTu/UGzizp07vBEjRrTp3r17yZYtW9Ibqh0EQTSs5nMnQxC1pK/Arf1qMeJiDuGP08dRnPsEjFYDisOFWGoNH58P8OHwEc3qZv15LaUdLUlDXhOxmQWANLCfJdSWxgxSSpTgil5fXFerUMJCVHEjzH7WyWRiKn2zxtWjllgLIOZgBP4+/zP6uBQht1iHsCsiFNvLYeDvAY6xAPklyoq54tdSMc1TgT4uRUg8G4IYC2vSU000a1V7q3/+V1Drj3vl1Lg81J6zFqq530c+bIhE+nUOHz5sOnjw4MJ169Zl6F+7ceNGtX8gTU1Ntbm5uY32NPHTTz8tWLRokd2OHTskiYmJoo4dOz718vJ6bRXGTz/9NG/u3LkOf//9d8aJEydMvv/++xeGcmdkZHAGDx7sLJPJVDExMSnk/3mCeHeRv17inaWvwO03akxTh/JWWko7WpKGuCatXTuAfpgKnYpVWczrp9NXYTLi9cW8np6+UlnMS6dmQatj4NjOvd5ie1MtrRYAwzA4HLEWY70qkulVVy1hNM0X4irD17kiIcR+PUCrvLFqSywWeGSjr2sR9kWGYNiIQDKnmmj2HOSt1UZ8zSu/qMZCLSVv5VTjklMNSalUsng8XrUianv37jWt+vuAAQNKNm/ebBUZGSkODAysl2HffH7F0gPPVxMHACMjI2bYsGEF4eHhFikpKYKlS5fWqhf5k08+KVywYIH96NGjHRmGoSZOnFhQ9f3i4mLWoEGD2gDA8ePHHxgbGzfeQuAEQdQ7MuSbIAiiEfQZOBRpJTo4CHk4n0TDSsKCSXpqjWvw6tEqLUwep8FSwsL5OzTkQh4elejQZ8DgRor85fTzzi+zXWEiEKCv1AhZyTysi6QRdlCD8MMahB3UYP1eGtnJPPSVGkEsEOAy2xXrImKb1fSFhJPH4CxJAQCEXRHVOBccqCgSZzTVF2FXRAAAJ5MUnD4V32ixEkRdHYzeLeloW8B71TYdbAp4B6N3mzRWTFX16dNHcfToUdMVK1ZIDxw4IBoxYoQ8LS2t2rwYPz8/Ra9evRRTpkxxXLJkieWRI0eMN23aZBoUFORQ1/M6OTmpBQKBbseOHWYJCQmG//nPfwyqvj9t2rS8O3fuGADAxIkTC2tzTAMDA8bPz6/gypUrRgMGDCg0Nzenq74/ZMiQ1snJycJFixZl3r17l3/69GlD/U9d20EQRNMhCTVBEEQj+HD4COQatEJrEy4u3qwYvj3NU4HSLbE1JtX6Yl7TvRQAgEt3GDiacJFr0KpZFPNqKbUADu3dgE5yFbIKdSi2l9eq8rrCTo6sQh06yZU4GLm+kSIliLq7dPaY2NHqn9/Tcinm10QL1aNcqnJidWsr4OJ/jzZJQr1y5cpMX1/fguXLl9tMnDjRkcfjMatXr35UdRsWi4X4+PgHQUFBuWFhYZajR49us2zZMhszM7M6V2k0MDBg1q5dm3bz5k3DwYMHt+3Tp49r1fd79+5dZmFhoRk4cGCRmZkZXdNxnjdy5MhCAJg0adILc67Pnj0r0mq11Geffdaqf//+LlV/6toOgiCaDhnyTRAE0Qg4HA66+Pgi6/j6Z8W8NBjcjYMFHtkIC4uCwk4O4fse4IgE0CqUKP/9KkTpqVjopahWzCurHPD+oPkU83rZvPPTx2LBohh4du7yTtQCYNR5YLEonLjHg4G/R632Eb7vgRPRyRjfVQNG3TRLmBFEbdE0DXVJOp+iqMrlsEwcffN3HA7J/PG7ubLrV/5ZXktdks7X6XTQr71cn9auXZtZdX3mqsRisW7//v2pz78eGBh4uervRkZGzJYtWx5v2bLlpUtMZWRk3Kz6+4EDB6odc/bs2fmzZ8+utszWZ599VvDZZ59VG5atd/nyZUFOTg534sSJb/SHfvz4cbG1tbX6ZZW7GYa5/LJ9CIJ4NzXPuxuCIIgW6IsF36DLllCMbcPDqSQ1dJQGQ7tysbhfKW6mXsOu0PsoVbNgxNPh405P0aEfBwALcX9pcOcu0N+Oh733dbi44OumbsoLqs4779u3LwBga/Sxpg2qlnR0xZRRhYr1RpXXFc9W9WHoRis6TBB1cu7cWaG9OIf3suWwlq3anHHxwviCVd9/5jCw7UMDe3EO79y5s8KePXs1emGy5iQrK4t98+ZNwZIlS2zatGlTXtslra5fv86/fv26cNeuXdJ58+ZlNpdaEQRBNBwy5JsgCKKR/LzqR3S3AqKTStCxLSA1ofDLISUWxBliJ90Jwjn+sF76EYRz/LGT7oT5cYb45ZASFhIKbi4V+3W3An5Z9e+mbkqLwmJXTCsV8XXQlry2gC+AisrrIv6zpczYTbOEGUHU1qF9W6SP8nhMTcthdfHuXh7xbHmtR3k85tDeLeZNFWtzERUVZTJo0CCXnJwc7q+//ppa2x77KVOmyKdOnerYt2/f4q+//jqngcMkCKIZID3UBEEQjUCr1eLS6Vh0EbOQqgIGd+cit1iH6Ew7GE2rXgSrsqL0YG88DotFK6tseLdlITlNjdZiFi6cPgLtV4ub7RDqdw3FM6+svL7m96sQ+72+8nr571crK69TvP/53INo5sykMnXgJ4fvvWo5rKrLa52MPyRuzPiao5cNDa+NCxcuJDdEPARBNF+kh5ogCKIRxMUcgqXyER4WadCjY8U/vWFXRC8k01Wx+RwYTfunonT3DiykFGlgpUpHXMyhRou9pRsxdiaupfJhJWFB/Kh2lddF6amwlLBwLVWAkYGzGilSgqibr5eszKrt2tKdu3Qr/3rJyqyGjokgCKKlIAk1QRBEI/jPqXjYGjJIK1ejiwu7ThWlu7iykVquho2BDn+cPt5Ikbd8/QcOwb1CRwBvXnn9QZEjfJp4CTOCIAiCIJoOSagJgiAagSIvC2wWBaGQeVZRmg+D99+govQ9fuX+HBaF4twnDRzx/w6KouAXFIwzSSaQillY4JENdlgUFIfOQlNcDoZhoCkuh+LQWbDDorDQMxvmIhYS75pgeGAwKIpq6iYQBEEQBNFEyAQ8giCIRsDoKipB6+va1LWitH5/RksqS9en4SODkJvzBGfOhaCPSxEW9ytFVuENnIhOhkJFQcSvmGNt5cQCUJFMt+4xF8NHBjZ16ARBEARBNCGSUBMEQTQCilVRCVqnq/hdxNchr0QJrkj42n2rVpTW709xSGXp+jZ5+jzEWFhjb8RatJH8jU5yJcZ3/efBBa2jcOkhHw+KHeEXOBfDRwY1YbS1wzAMEk4ew6G9G8AuvQY2i8Fn47xB8cwxYuxM9B84hPSwEwRBEMRbIAk1QRBEIxCZW4EuYlBeTr1VRenycgpaMQOx1LoRov7fM3xkEIaNCMTpU/E4GLkeyTfPgs1i0LpNW7D5UviNnYmvBwx+J5LQmIMRiIlcizYmKfB1UmG4sz7mO9DpGFzcfx4R4a3gFxT8TjwcIAiCIIjmiCTUBEEQjaD3gME4fSMWDkIeLiap0bUdB+JrqaBV3q8sTFZZUdqJhb9uayEX8pBRxoKPzweNGP3/Foqi0H/gEPQfOAR9+/YFDWDTnsSmDuuNhG/8CX+f/xkBnkUAgKxCBifu8VCsZEEs0GGQswpejip4IQlnYhYgN+cJJk+f18RREwRBEMS7hxQlIwiCaAQfDh+BbL4dWptwcf5mxfDtN60ofeE2A0cTLrL5dvhw+IhGi514t8QcjMDf539GH5ci5BbrsOz/jLCmoCNS/MeieOYnSPEfizUFHbHs/4yQW6xDH5ciPDwbgpiDEU0dOtHCBQcHyyiK8qIoyovFYnmJRKJObm5urp9//rnNo0ePWlwnj0QicQ8ODpbVdf/k5GQeRVFekZGRleuCL1682DIuLs64fiIkanONKIry+ve//y1tiPOPGjVKrv+bqPoTEBDgUF/neD5+b2/vth988IGj/vfg4GCZRCJx1/9+48YNfnBwsCwvL49dXzG8iV27dplQFOXl5ubm2hTnr4sW948XQRBEc8ThcNDZxxc5JzZCxuUh/i8NBnfjYIFHNsLCoqCwk0P4vgc4IgG0CiXKf78KUXoqFnopYC5i4dhfWsg4POQoWegyaBg4HPLPN/EihmFwOGItxnpVJNOrrlrCaJovxFVGQXBFQoj9eoBWeWPVllgs8MhGX9ci7IsMwbARge/EcHbi3WVkZEQfPnz4PgAUFRWxL126ZLB9+3bp7t27zY8cOXL/vffeK2vqGJsLe3t7TUJCQpK7u7tS/9qGDRusysrKcj/88MOSpoyNqD+tWrVShoeHp1Z9zdraut4qjyYkJCQ5Ozuranp/5syZuSNGjCjS/3779m1BSEiI9bRp0/LMzc3p+oqjNsrKyqhFixbZmZmZvbynoZkid2QEQRCNZN6iJRj7x+/w5N3BnUc6xEOLwd04r60ofewvLQoesdHOlIcrHBesWPRtUzeFaKYSTh6DsyQFABB2RQSjab41Tilg8zkwmuqLsLAoLO5XCieTFJw+FY/+A4c0ZshEI1OpVNSPP6+yOHP7gkTNolk8HVvXu12XosVzF2bz+c+qHzYgDofD+Pj4PNX/PmrUKMW8efNye/To0XbcuHGOKSkpt8gDwwpCobDaZ0VUp9PpoFQqKQMDgwb/3jYkAwMDXUNe59cdu3Xr1prWrVs3i6VDvvvuOytLS0u1XC5XJScnv75qazNBhnwTBEE0EjabjbVbI3BebYd2pgI8zeQidJ8Gf93WQiqmML6rBp/3VmN8Vw2kYgrnbmsRuk+Dskwu2pkKcF5th7VbI8BmN8koLOIdcGjvBnSSq5BVqEOxvfyV8/OBiqRaYSdHVqEOneRKHIxc30iREk1BpVJRwyYGOB0zvG+r829jyBntItT5tzGMN34oGzYxwEmlUjXJ8ARzc3P63//+9+P09HT+4cOHRfrXy8rKqOnTp9taWVl15PF4nm3btm23b98+cdV9bWxsOkydOtX266+/tpJKpR2NjY07TZkyxVan02Hfvn1iJyen9oaGhh79+/dvnZubW/mPp0KhYH3yySf2crncTSgUetjY2HT4+OOP7QsKCqrdG1MU5fXDDz9YzJo1y0Yikbibmpq6f/zxx/bl5eXVPqv4+Hijtm3btuPz+Z7t27d3PXXqlGFt2h4SEmLu5OTUXiAQeEokEvcuXbq0vXTpkgB4cci3jY1Nh6KiIk5ISIi1fmiwfvg3TdP4+uuvrezt7d14PJ6nXC53W7dunVnVc504ccLIy8urrZGRkYeRkZGHi4tLu99++03yqvhKS0up6dOn28pksg48Hs/Txsamw8yZM23072u1WgQHB8usra078Hg8Tycnp/abN2821b//yy+/mPF4PM/nhw9funRJQFGUV0xMTOXw9d27d5u4ubm58vl8T3Nzc/fp06fbVv1O6ocmnzhxwsjNzc1VIBB4btu2TaJvW5cuXdoKhUIPExOTTmPHjnUoLCysdi3reo0AQK1WsyZMmGAnFos7GRsbdxo/frydUqmkACA7O5vN5/M9n/+8dTodbGxsOkyePNm2tuep6urVq4IPP/zQ0crKqqNQKPRwcnJqv3TpUguart5pnJWVxQ4KCnKQSqUd+Xy+p1wud1u6dKmF/v3XDVmvOuQ7Li7OOCgoyAkAXFxcOlAU5WVjY9Ohrm1cvny51NDQ0KO4uLjatYiNjTWmKMrr/PnzlUnz/fv3eRs3brT65Zdf0t/gY2oWSEJNEATRiOzs7LAuIhaX2a4wEQjQV2qErGQe1kXSCDuoQfhhDcIOarB+L43sZB76So0gFghwme2KdRGxsLOza+omEM0Yo84Di0XhxD0+DN73qNU+wvc9cOIeH2wWBUad18AREk3px59XWeR3F4mEcvNqrwsdzKj8HmLjH39eZVHDrg1u6NChJWw2mzl79qxRlddaR0VFmc2dO/fJ3r17H3Tq1OnpuHHjnM6ePVut5yomJsb00qVLhps2bUqdMWNG1tatWy2nTJlit3TpUtm3336b8dNPP6VduHDBeM6cOZWJYGlpKYumaXz33XcZ+/fvv//NN99k/Pe//zUeNmxY6+dj27hxo+WTJ0+4W7du/XvmzJlZkZGR0h9//LHys0pNTeWOHDmyjYmJiXb79u0PJ0yYkPvpp586KpXKV95nx8fHG82fP99+zJgx+fv377+/fv36VG9v79LCwsKXPjWNiop6YGRkRPv7++clJCQkJSQkJPXo0eMpAHz66af2P//8s/Unn3ySGxUVdX/w4MGFX3zxhVyfjBcUFLBGjx7t5ODgoNq1a9fDnTt3PgwICMiv6VxARbI0aNAgp127dkknTpyYEx0dfX/RokWZ+fn5lU/q5s6daxMaGmr18ccf50VGRj7o0qVL6WeffdYqLCzMFAA++uijIgDYs2ePSdVj796929TU1FQ7dOjQEgDYunWrZPz48a07der0NDIy8sH8+fMz9+zZY/7555/bVN1PqVSyJk+eLB8/fnzugQMH7vfq1evpyZMnDX19fZ0tLCw027dvT/nxxx8f/f777+LAwED5214jvY0bN1pmZmbywsPDU+bOnfskMjJSqv8+WVpa0gMHDizctWtXtT+so0ePGmdmZvKmTp2a/7rjazSaaj8A8OjRI26bNm2Ua9euTYuOjn7wySef5K5evVq2ePFiK/1+paWlVO/evdueOHHCZN68eU+io6Pvz5o1KyszM5NXm3Y9r0ePHk+XLFnyGAB27NjxMCEhISkqKupBXds4ZcqUApqmqR07dlR7cLNt2zazdu3alXXt2rVc/9rs2bNthw4dWtCrV693btoHGVNDEATRyOzs7LAv/gzWLv8BF04fgRU3HX3EXHBY/3R4aHUMMspYuKC1g/egYVi56FvSM028lo5WAwAUKhY4xoJa7cMRCaB41gnE0M1i1B/RQM7cviAR+rd56XtCBzPqTNQFCYDsxo3q2fmFQkYikWizs7M5ABATE2OcmJgojouLSx46dGgpAIwcOVLRuXNnwQ8//GAdHx+fot+Xz+frjh079pDD4WD06NGKY8eOSXbs2GFx69atmy4uLmoAuH79ukF0dLQZgEcAIJPJtHv27HmkP4ZGo4GTk5Nq0KBBLvfv3+e1adNGrX/PxsZGfeDAgVSgYoj6uXPnjGJjYyXLli3LBoAVK1ZY8vl8JiEh4YGxsbEOAAwNDXUzZsxo9ao2nzt3zrBt27bly5cvz9K/Nm7cuOKatu/Zs2c5h8NhbGxsNFWH8d66dYu/Z88e6S+//JL6+eef5wOAn59fSVZWFvfHH3+UBQYGFt+6dUtQWlrK/vXXXx9JJBKd/vN8VXyHDh0SnT17VrR79+4HVeOaNWtWPlDRM7t161aLOXPmPFm1atUT/eeTmZnJXb58uWzatGkFZmZm9HvvvVe8f/9+0zlz5lQmXYcPHzYdOnRoIYfDgU6nw5IlS2xHjBiRv3v37sprwufzdV999ZXD0qVLn1hZWdFARUK9fPnyx/pEHQC8vLzkHh4epUePHq38TtjZ2WmGDx/ufPHiRUGXLl2Udb1GeoaGhvSxY8cestls+Pv7K1QqFRUaGmq9dOnSJ5aWlvSkSZPyRo4c6Xznzh1eu3bt1ADw22+/mbVv377M29u7/FXHvn37tgGPx/Oq+trNmzdvDR8+vGT48OElQOXDjZKysjLWrl27pPrvzKZNm8wePHgg/PPPP+/06NFDf546z683NTXVubi4KAGga9euZW3btq38O6hLG83NzelBgwYV7tq1y3z27Nn5AFBcXMw6fvy4ZPHixY/128XGxhr/8ccf4jt37tysa+xNifRQEwRBNAE2m435i/+FyFMX4DNvI3Kd/bD7HgsR9ykkib2R6+wHn3kbEXnqAuYv/hdJpolaYbErOiVEfB20JcrXbF1Bq1BC9GzqLMXmNlhsRNNTs+hX3ve97v2GxjBM5VPFkydPiszNzTUDBw4srdpz16dPH8WNGzeqDdXt3r17SdV513K5XCmTyVT6ZBoAnJyclIWFhRz9MF0A2LBhg6mrq2s7AwMDDx6P5zVo0CAXALh9+za/6vHff//9aomni4uLMisrq7IH8MqVK4a9evVS6BM1APj4448LX9deT0/Psrt37xpMmjTJLj4+3qhqbG8iPj7emMViYdy4cYVVP6v333+/JCkpSajVauHq6qoyMDDQjRo1ynH37t0mtangnJCQYCwWi+makvwrV64IlUolKygoqFpbR48eXZiWlsbPyMjgAMCYMWMKz507Z/zkyRMOAJw9e1aYlpbGDwoKKgCAmzdv8p88ecLz9/cvqBr/4MGDS1QqFXX58uXKEQkURWH06NGV8ZSUlLCuX79uNHLkyGptHzhwYCmHw2H++usvw2ex1uka6X3wwQdFVf8fDggIKFIqlawrV64IAWDYsGEl1tbW6vDwcHMAKCwsZJ04cUIybty41w77cXR0VJ45c+Zu1Z/WrVury8rKqLlz58rs7e3d+Hy+J4/H81q5cqVNRkYGT9+LnZiYKHJ1dS2rkkw3mLq2cfLkyXlclOjhAAAgAElEQVSXL182unPnDg8Atm3bJqFpmpo0aVIBUPEwa968eXZffPFFpr29/TtVjEyPJNQEQRBNiMPhwG/UGKzZ+CtM5O0gcmiPrdHHsGbjr/AbNYZU8ybeCMUzh05XUdSu7Pertdqn/Per+MBZBVrHgOKZv34H4p3F07F1b/N+QyorK6OKiorYlpaWWgDIz8/n5OXlcXk8nlfVn7Vr18qys7OrDWcVi8XVJpXyeDxGJBK98BrDMNDPyd25c6fJrFmzWnl5eZVu37794enTp5N27tz5EADKy8ur3R+bmJhonz+WWq2uTH5zc3M55ubm1YZ3GBkZMQYGBq/8PP38/Ep++eWX1L/++sto6NChbc3NzTt99NFH9gqF4o3uz/Py8jg0TcPMzMyj6mc1e/ZsOU3TVFpaGlcqldIxMTH3NBoNNXHiREcrKyv3vn37OumTnJcpKCjgSKXSGoetPH78mAsANjY21bbRV6jWJ+2BgYFFXC6X0Q/73rNnj6mFhYVm4MCBpQCgH5UQEBDQpmr8Li4uHQAgLS2tMkaRSEQLBILKImR5eXlsmqbx1Vdf2VfdVygUemq1Wio9PZ0H1P0a6VlYWFT7DshkMk3Vz4DFYiEwMDAvKirKTKfTYfv27aY0TVOTJ08ueN2xhUKhrnfv3mVVf4RCITNz5kzbzZs3W37yySe50dHR98+cOXN39uzZTwCgrKyMBQCFhYUcCwuLRhlaVNc2Dh06tMTW1la1ZcsWcwDYtWuXef/+/YssLS1pAFi7dq1UoVBwpk2blp+Xl8fOy8tjq9VqiqZpKi8vj91UtR3eBLlTIwiCIIgWYsTYmbi0/y94OqohvpYKWuX9ysJktEoLUXoqLJ1YuJzCx8jAWY0YLdHY+rT3LjyW9sBA6GD2wg1qeVo+M6S9d6177OpbXFycMU3TVM+ePUsBQCKRaC0sLDTR0dEPGuJ80dHRko4dOz6tOsT46NGjRq/apyZSqVSbl5dXbXhHaWkppU96XuXzzz/P//zzz/MzMzM5e/bsMVmyZImdSCSiN27cmFHb85uamtJsNps5depU0stGM9nY2GgBoH///k/79+9/v7S0lDpy5Iho0aJFdoGBgY7Xr19PquG42tzc3BqHrdja2moAIDMzk6sfkg0AT5484QKAVCqlAUAsFuv69u1bfODAAdMvv/wy78iRIxJfX98CFqvi49EvzfTTTz+ldenS5YX5s1WXfKIoqlpFbzMzM5qiKAQHB2cOGzbshZ50e3t7zbNY6nyNACAnJ6faP6SZmZncqp8BAEyfPj0vJCREFhcXZ7x7926zAQMGFOk/g7o4evSoZMKECTn6qQUAEBMTU60on0Qi0aampvJf3Lth1KWNLBYLQUFBebt27ZJOmjQp/8qVK0bR0dH39e8nJycLsrOzufb29u7P7yuVSjtt2LDh7xkzZrz2wURTIgk1QRAEQbQQ/QcOQUS4IzyRhGmeCqzaEgujqS9fOotWaVG6JRYLvRQAWHhQ5IhFAwY3ftBEo/nmiwU55ycGiPIB46pJdXlaPmN2trjk2+1fNcn86by8PPbixYtt7e3tVcOHD1cAwIABA0rCw8OtjI2NdR4eHrWbv/AGlEoli8fjVUvOdu/ebVbT9q/i4eHxdN++feYlJSUs/ZDiXbt2vbJ69vNkMpl2/vz5eTExMZKkpKQalwvicrnM80PDP/jgA8WiRYuooqIizogRI145Lxqo6JkNCgoqvnnzpnDdunXWNW03YMCAks2bN1tFRkaKAwMDX0hWPT09ywUCgS4iIkLi6en5RP/6gQMHJA4ODiqZTFbZqxsQEFAwefLk1hEREeLHjx/zx40bV5kgubu7Ky0sLDSpqan8efPmvVFlRJFIpHN3d3967949Qe/evZ/UtN3bXqPjx4+b0DSdoX9gsW/fPhOBQKDz9PSsHGrt5OSk6dmzp+L777+XXblyxWj//v33azxgLSiVSlbVpey0Wi0OHTpkWnWbfv36KRYsWOBw/vx5YdUCX29Df86XPWyoaxunT5+e/9NPP9l8+umncgsLC42fn1/l9zQ4ODhn5MiRRVW3X7lypVV6ejp//fr1ae7u7g0+nP1tkYSaIAiCIFoIiqLgFxSMMzEL0MelCAs8shEWFgWFnRzC9z3AEQmgVShR/vtViNJTsdBLAXMRC4l3TTA8MBgU1exH1hFvgc/nM0d+2/fgx59XWZyJ+mcd6iHtvQu/3f5VNpfb8HPotVotdfr0aUMAUCgU7IsXLxps375dWl5ezjpy5Mh9/TQXPz8/Ra9evYoHDx7sPHv27CcdOnRQFhcXs69evSpUKpWsDRs21LoH92V8fHwUixYtsl+4cKFV9+7dn8bFxYn//PNP49fv+aKvvvoqe+fOndIBAwY4zZkzJzsjI4MbEhJiLRAIXjmceO7cubKCggJ2v379SqRSqfby5csGFy9eNP7mm28e17SPo6OjMiEhQRwXF6cQiUR0hw4dlO7u7qqgoKDcCRMmOF66dCnL29v7aXl5OevWrVuC+/fvC/bt25e2d+9e8bZt28yHDRtWKJfL1enp6bydO3dKu3XrVmMC/uwaKKZMmeJ49+7dzM6dO5dlZGRw//jjD+OIiIg0S0tLevLkyTm//PKLNYfDYby9vcv2799vcubMGXFYWFhK1WP5+/sXz5o1S/fFF1842NjYqPv161fZE81ms7Fs2bL0GTNmtFIoFKwhQ4Yo+Hy+7sGDB/zY2FiTuLi4lKpzn5+3YsWKx76+vs5+fn4YPXp0oUgkolNTU3nx8fHilStXZnTs2FFV12uk9/TpU/aQIUNaT5kyJffmzZvCkJAQ2fjx43P0w5b1JkyYkDdx4kRHS0vLakljXfTq1Uuxfft2qZOTk9LMzIzetGmTVK1WV0tyZ8yYkR8eHm4xdOhQ5wULFmS6uroqHz58yLt3757gTUY5VOXm5qYEgPXr10vHjRtXYGRkpKtadKwubZTL5Zr33nuvODExUTxz5sysqtPZ3NzcVG5ubqqq22/bts2ssLCQ8+GHH9a5wFpjIgk1QRAEQbQgw0cGITfnCc6cC0EflyIs7leKrMIbOBGdDIWKgohfMcfayokFoCKZbt1jLoaPDGzq0IlGwOfzmaULv81GE1XzLi0tZffv39+FoigYGhrSDg4OqlGjRhXMnz8/u2pBIhaLhfj4+Idff/219ebNmy2fPHnCE4vFtKura9nMmTNz3jaOL7/8MjclJYUfHh5uuWHDBlbPnj0VO3bs+NvHx8flTY/VqlUrTXR09IPg4GC78ePHt3Z0dFRu27YtJSAgwOlV+3l7ez8NDQ21PHLkiGlZWRnb2tpaPW/evMzFixfX2L7Vq1c/njVrlv2YMWOclEolKzY29t6HH35YsnPnzkfLli1T7ty5U7p69WqZoaEh7eTkpBw/fnweALi6uiopimJ++OEH24KCAo5EItH6+PgUhYSE1Jh0PbsGD4KDg23CwsIsV6xYwZFKpZqRI0dW9i6HhIRkcDgcZvv27RZr1qzh2NvbqzZu3Pj31KlTq00fMDAwYHx8fIqOHDliOmPGjKznzzVlypRCsVhMr1y50joqKsqczWbD1tZWNXDgwKLXJb2DBg0qPX78ePJ3330nmz59eiuapiGTydT9+vUr1g93r+s10psxY0Z2SkoKf+LEiY4MwyAgICAvNDT0hc8uICCgaMqUKYy/v3/e2xYTDQsLezRx4kSHhQsXOvD5fN2YMWPyhw0bVvTll1866LcxMDBgzpw5k/zFF1/YrlixQvb06VO2TCZTTZo0Kbeu53V2dlYvWbLkcXh4uMWOHTssLC0t1RkZGZXVt+vaRl9f36LExETxtGnTWtz6jBTDMK/fqp507tyZuXTpUoMdv2/fvgCAxMTEBjtHYyFtaX5aSjsA0pbmqqW0paW0A3i32xJzMAKHI9aijeRvdJIrwa6yLButY3D1bwEeFDvCL3Auho8MasJI31xjXReKoi4zDNO5QU9SS9evX091d3dvcTeiBNGS7Nu3TxwYGOh048aNW8/3urYUdW3jkCFDHLOzs7mXL19Obsj4Gsr169fN3d3d5S97j/RQEwRBEEQLNHxkEIaNCMTpU/E4GLkeyTfPgs1i0LpNW7D5UviNnYmvBwwmw7wJgiDeUmpqKvf27dv8b7/91qZPnz7FLTGZrmsbL1y4IDx37pzByZMnJeHh4Smv3+PdQxJqgiAIgmihKIpC/4FD0H/gEPTt2xc0gE17Eps6LIIgiBYlNDRUGhoaau3q6lq2adOmR6/f491T1zaOGDHCqbCwkPPRRx/lTJgwoclWEmhIJKEmCKJeabVaxMUcwn9OxUORlwVGpwHF4kJkboXeAwbjw+EjyNrK/8PI94MgCIJoadauXZu5du3azKaOoyHVtY1V51+3VOSuhSCIekHTNNYsX4pLp2NhqXwEW0MGsqpzNosYnL4Ri4j1y9HZxxfzFi3B2xbsIN4d5PtBEARBEERLRBJqgiDeWnp6OoInB0FeloQuAh0eajVIzFJDKGTAYgE6HVBeTsFByEMXwzTknNiIsX/8jrVbI2BnZ9fU4RMNjHw/CIIgCIJoqUhCTRDEW0lPT8fnQb7oyktHilKNO6VqdHWjMNyFDVaVHkidjsGFu2ok3lJBxuXBk3cHnwf5Yl1ELEmaWjDy/SAIgiAIoiVjvX4TgiCIl6NpGnMnBaIrLx23C5UwlGkw25+Lru04yClmsOM8F6Fn+NhxnoucYgbd2nMwO4ALQ5kGdwqU6MpLx9xJgaBpuqmbQjQA8v0giOZt1c8/SZs6BoIgiHcdSagJgqizNcuXolV5MlIUapjb0RjcjYPcYh2W/Z8R1hR0RIr/WBTP/AQp/mOxpqAjlv2fEXKLdRjcjQNTexopCjValSdj7fIfmropRAMg3w+CaL5yc3PZ/165wjYvL48UKyAIgngLJKEmCKJOtFotLp2OhYVAh0yNujJZWnXVEvQ0f4j9eoArEoKiKHBFQoj9eoCe5o9VVy2RW6zDkG4cZGrVsBDocOH0EWi12qZuElGPGIYh3w+CaMYiD0ZJrMZ2piIPRpk0dSwEQRDvMpJQEwRRJ3Exh2CpfISHRRp07VAxFzbsighGU33B5r+8PAObz4HRVF+EXREBALzbU0gp0sBKlY64mEONFjvR8IoL8sj3gyCasYSLf4jN+7lSpy78p9ES6uDgYBlFUV7P//To0cO5vs5hY2PTYerUqbb630eNGiV3c3Nz1f8eGhpqRlGUV3FxMQsAMjIyOMHBwbLk5GRefcXwJv773/8K2Wy2l0QicW+K8xME8fZIUTKCIOrkP6fiYWvIIDFLjeEubGQV6lBsL4e4hmRJj83nQGEnR1bhDXRxZWPdNTX6iLn44/Rx+I0a00jREw1NU1oIW0vy/SCI5oimaWSri/g8lgw56iK+TqcDi9U4fSxGRkb04cOH71d9TSKR1FuhhKioqAcWFhY1Hm/06NHF7du3TzIyMtIBQGZmJickJMT6/fffL2nbtq26vuKoDZ1Oh88//9xBIpFoSa0Ignh3tbiE+tq1a+jbt29Th/HWrl27BgCkLc1IS2kHUD9tKUq9g4+cqWdLH1E4cY8HA3+PWu0rfN8DJ6L/n717j6uqzPcH/llrr30D3BsIBNGtqEV46yjKZaxRJzLDnwRWmloznZNN1lTOMaeLc+wyNfOymnTm5BwbrJlqKkydiQiTzHA0Z0yx1DRRLAnZiiAksAX2bV1+f2xRMFTkujd83q+Xr17Aftb6Pg+L3fru51nPtxj3JHthNmuQRAEFG/PaFQ9/L/5n3759uEpyQSeG9Pj10VG95XcC9L6+jB07tqfDCFiff/652T3IbDAAcA0yGz7//HPz9ddf7+yOc0uSpKWmpjZ01fEv14+YmBg5JibGL54hefXVV8Orq6ulOXPmVL/77rsRPR0PEbUPl3wTUbuIgub779l3EYdbhNTP1Ka2ksUEh1to0b7peNQ76M5WxOL1QeR//pa7NsJ83QAdAJivG6D7W+7aHk/mjh07pp81a1bsoEGDxphMpoTY2NjRCxcujHG5XELz19XX1wsPPPDAoJiYmDEGgyFh4MCBYx566KGBTT+/cMn3hZov+S4uLjYkJSWNAoD09PS4piXoXq8X/fv3v27x4sUDLmyfmJh47c033zy8tWO/9957VlEUxx8+fLjF8vHDhw8bRFEc/+6771qbvldTUyP+5je/GfS73/3uuMFg4BscUQDrdTPUY8eOxdatW3s6jA5rmkFgX/xHb+kH0Dl9ue+O6YCjEKrq+9piVFF9xgW9xXzZtrLDBYvRd//Q1D5hQiJeX7/xiuPg78X/TJkyBbWlRQDUHr8+Oqq3/E6A3tkXat3vXn6h/wdbNl4VNjBSbe3nNXKD3hQyEgAghZiwp6rIcvPPb7+21deeqBIzb5z+/f/86slTnRWf1+tt8bVOp0NlZaUUFhYmL1u2zB4eHi4fPnzY9OKLL8ZUV1frs7OzjwG+JdLTpk27et++fSGLFi0qT0xMbLTb7YZ//etfIe2JY/Dgwd5XX331uwcffHDosmXLyhITExsBQK/XY9asWd+/9957Eb///e9PNi2HLyoqMnz55Zch77zzzretHe+OO+6o++Uvf+ldvXp1xIoVK8qbvp+VlRURFhYmz549u67pe08++WTM8OHDXT/96U9r9+7dG9Se+InIP/S6hJqIuoclIhpKrQanU4CqapgW58byLXthzZx42bbOLXtxS5wbiirA6RQgWzVYI38wEUABzCtIUFQ3rw+iHvD4Lxefqqyp1v+r5tBVQdOu0Qu6lgsSL1wrYrp9pOnCddKaoqLx42+8N4xL+v7xXy7utGS6trZWMhgM45t/Lycn50hmZuaZpKSk403fu/nmm+uDg4PVX/7yl7Eul6vMZDJpOTk5lh07dljeeeedb++6665zyenDDz/8fXtiMZvN2vjx4xsBYPTo0a7mS9EfeOCB6lWrVkV/9NFH/dLT088AwOrVqyPCw8PlWbNm1bV2PEmScOedd1avXbv2qpdffrlcFEWoqop169Zddfvtt3+v1+sBAF999ZXxb3/7W+S2bdsOtyduIvIvXPJNRO0yaWoajjeKGGI2YPdhBdFhIqxlpVDcl340TXHLsNhLERUmYvchBbFmA040ivhx6i3dFDl1B31IGK8Poh6i1+vxyu9ePvHqvc98o71zqMFlr7miJcWustOa9s6hhlfnP/PNK797+URTItgZQkJClG3bth1q/m/y5MkNqqriueee6z98+PBRJpMpwWAwjH/wwQeHejwe4dtvvzUAwKefftrParUqzZPprjJmzBj3hAkT6t94442rAN/s+Pr161skxq154IEHqk+ePGn46KOP+gHAhg0b+pWXlxvuv//+6qbXPPzww4Nvv/3275OSkrrluXUi6lpMqImoXWZkzESl0YbhoXrsOuC7V1uQ4ED96ryLJk2KW0b96jw8MN4BACg8qGFYqB6VRhtmZMzsttip61nDI3h9EPWw5AlJzq3ZGw7/6PhVlQ0bi72a0uoK8HM0RUXDR8XeH52IqNyaveFw8oTOT/gkSdImTZrU2PxfWFiY+vzzz/f/zW9+Y5s+fXptdnb2t1u3bj20bNmyMgBwOp0CAJw+fVqKjIz0XvoMneeee+6pzs/PD6upqRHz8vJ+kBi3ZuTIkZ6kpKQzf/3rX68CgL/+9a8RY8aMaZgwYYILANatW2fZs2dPyJNPPllZXV2tq66u1rlcLkHTNKG6ulrX1FciChxMqImoXSRJwoTUdJxyiYjRG5C/U0akVcTj4yqhy1oHR84OeOuc0DQN3jonHDk7oMtahycSKhFhEbFxp4wYyYBTLhGJqbdCkvgESm8iCAKvDyI/0Hy2unHt1+5LvbbhvQPurpiVbosPPvggPC0trWblypUnbrvtNsfkyZMbg4ODW3wCEB4eLldVVXVbYP/5n/95WpIk7a233gp74403Iq677rqG8ePHu9rQrvrjjz8O++677/SbNm0Kvfvuu88tST98+LCpsbFRHDNmzOjIyMixkZGRY1999dXouro6XWRk5Nhnnnkmumt7RUSdjXcoRNRui5c8jTnbtyDBUISiMhX5kJGWImHpT+pRUbMfm9YXw+EWYDH6nqGNvloE4EuWTpfpMDLcgD1SPF5Y8lRPd4W6AK8PIv8xbMhQD0L0l5z9FPsZhOGxw7q1FnMTl8slGgyGFgn0e++9F97866lTp57585//HL1mzRrr3LlzO2XZt9Ho2wHxwt3EASAkJES79dZbT7/22mv9S0pKTM8995y9Lcf82c9+VvP4448PvuOOO4Zpmibce++9p5t+dtddd9UkJCS0mPl/4403rvrkk09C16xZczQuLu6SH3oQkf9hQk1E7abT6bDi9Ww8Mi8dyeF2lJR78MpaD5JGC0gcocM9yedX5imqgM8Pytj9tYYYvQEjww3Y5bFh5ZvZ0Ol0PdgL6iq8Poj8x5r314VhdIThUq/RRkUY1ry/LvSR+3/Rrk2+OmLy5MmON954o/8LL7zQcM0117jfeeed8GPHjrXYPy0zM9Nxww03OH7+858PO3ToUPmECRMaT5w4od++fXu/pp3Ar9TVV1/tMZlM6ltvvXVVaGioYjAYtEmTJjU2/XzBggXVkydPjjSZTOq9995b05ZjBgUFaZmZmafffvvtyBkzZpyOiIhQmn42fPhw7/Dhw1ssW9+yZUs/SZK0GTNmnGlPH4ioZzGhJqIOsdlsWJmdh0Xz52KoqRhxoQaUFHuxcp8HZrMGUfSVPnK5BAwxGTAlUo9Kl4gvdddiZfYa2Gy2nu4CdSFeH0T+4dPd261BGed3y3eVndbkLcc8UmqswWQLEwAgaFgENud+1iMJ9YsvvlheXV0tLVu2bCAA3HLLLTW///3vy+bNm3d102tEUUR+fv63jz766MCsrKyoF154QYqMjPTedtttpy9+5EsLCgrSVqxYcezFF1+MSUtLu1aWZUHTtC+bfj5p0qTG/v37e1NSUs5cddVVyqWO1dxtt91W8/bbb0fOnz//ks9cE1HgY0JNRB1ms9mwNn8bVix7HoUFHyJab8dkqx6SeH4FnaxqONEoolC2IWnarXhxyVOceewjeH0Q9SxFUVDpqTUahJjz5bDCR3z/4tuvlj/x26di/nXgfHmtU55ao6qqaKq93JlWrFhR3rw+c3NWq1X9+9//Xnrh9+fOnftl869DQkK01atXH1+9evXxC18LACdOnDjQ/Ot//OMfLY65cOHC7xcuXNjiA4MHH3zw9IMPPthqUv7ll1+aTp06pb/33nuvKDH++OOPrQMGDPA0ldy6lEuNCxH5PybURNQpdDodHlv6LOQnl2JDbg62F3yMuqqT0GQvBEkPa+QApKbeghkZM7nBVB/E64Oo53z++edm9yCzQS07rRn+ebLx1SeeP9a0g/crv3v5xM7du04vfvGpIe7UgUHeQWbD559/br7++uv7dEmniooK3YEDB0xPP/30wGuuucbZlsQY8NWY/uqrr8xvv/125OLFi8v5wSBR78e7FiLqVJIkIfP2Wci8fVZPh0J+iNcHUfd78/3sSLmqTpskDK9cnv3aD3bwTklMdm5d89Hhxc8uGbjFfizizfezI66//vo2bcDVW61bty70v//7v2OHDh3qevPNN79r64z9z3/+89j9+/cHp6am1v76178+1cVhEpEfYEJNRERE1ItFR/T3/GXefx65VF3ppvJau74oPJ33yUZrd8bnj1pbGt4WhYWFxV0RDxH5LybURERERL3Yb3/9bEVbX5s8Icl5qcSbiIha6vwdJ4iIiIiIiIj6ACbURERERP5PVVVVuPzLiIioM51971Uv9nMu+SaigCPLMjbk5uCzzfmoLS2CKGi4747psEREY9LUNO4UTUS9jiAIFU6n0xocHMzl2ERE3cjpdJoEQbjoozO84ySigKEoCpYvew5fFOQhylWGQcEa7o47O2HjKIRSq6Fgfx6y/7QME1LTsXjJ06xlTES9gizLvyktLf1TbGwszGazSxRFradjIiLqzVRVFZxOp6m0tNQgy/JvLvY6JtREFBDsdjsevW8eYhsPI9Gk4qjsxdYKD8xmDaIIqCrgdAoYYjYgMfgYTm1ahTnbt2DF69mw2Ww9HT4RUYckJCRs2rNnz8NHjx59RtO0aPCxPSKirqYKglAhy/JvEhISNl3sRUyoicjv2e12PDIvHckGO0pcHhTVe5A8WkBGvA6ieP6RQlXVUHjIg61fuxGjNyDBUIRH5qVjZXYek2oiCnhnb+guelNHRETdjwk1Efk1RVGwaP5cJBvsOFjjQoRNwcIUPQCgokbFpiMG1LlEWE0qpsW5kTJKQsooIH+nF0VlKpLD7Vg0fy7W5m/j8m8iIiIi6lRMqInIry1f9hyGOotR4vIgwqYgLUVCVZ2KrD0W1A2ORdDscZD6mfD9GReWb9kL675SLEhwIC1FwkbIKCn3YKipGCuWPY/Hlj7b090hIiIiol6Ez98Qkd+SZRlfFOShv0lFuddzLpl+aW8UlAWzYc2cCL3FDEEQoLeYYc2cCGXBbLy0NwpVdSqmp0golz3ob1JRWPAhZFnu6S4RERERUS/ChJqI/NaG3BxEucpwtNaL5DG+Z6Wz9lgQcn86dMbWF9jojBJC7k9H1h4LACBplICSWi+i3XZsyM3pttiJiIiIqPdjQk1EfuuzzfkYFKzhmNODxHgdKmpU1A2OvWgy3URnlOCwxaKiRkXiCB1KnR4MDFKxveDjboqciDqbpmnYvOkj/OK/pkNXvw+Gxr148K4k/OK/pmPzpo+gaawiRURE3Y/PUBOR33JUVyBGFM6WxhKw6YgBQbPHtamt+cZx2LS+GPcke2E2a5BEAXVVJ7s4YiLqCrnvZyN3zQpcE1qC9KvdyGiqP48iqKqG3X/fhezXhiJz3qPIuG1ej8ZKRER9C/oab3YAACAASURBVBNqIvJbmuoFAIhn19I43CKkfqY2tZUsJjjcQov2muzt9BiJqGu9tuplfLfrj7gzoRYAUFGj/WB3//HD3BiPw9iW+ziqTp3EfQ8s7uGoiYior2BCTUR+SxB95bFU1fe1xaii+owLeov5sm1lhwsWo9aivSDpuyROIuoaue9n47tdf8Tk+No27e4/Ob4WW3f8Abn9B3CmmoiIugWfoSYiv2WJiIaianA6BaiqhmlxbjRu2dumts4te3FLnPtce1nVYI0c0MURE1Fn0TQNH2SvOJdMt3V3/ykjapG75g98ppqIiLoFE2oi8luTpqbheKOIIWYDdh9WEB0mwlpWCsV96fJXiluGxV6KqDARuw8piDUbcKJRxI9Tb+mmyImooz79ZCPiwkoAXPnu/leHlqBgc363xUpERH0XE2oi8lszMmai0mjD8FA9dh3wzTYtSHCgfnXeRZNqxS2jfnUeHhjvAAAUHtQwLFSPSqMNMzJmdlvsRNQxOe/9H8bGutu1u//YWBfeX/OnboqUiIj6MibUROS3JEnChNR0nHKJiNEbkL9TRqRVxOPjKqHLWgdHzg5465zQNA3eOiccOTugy1qHJxIqEWERsXGnjBjJgFMuEYmpt0KSuG0EUaDQPNVnd/c3IujGK9jd/4gROlGA5qnu4giJiIi4KRkR+bnFS57GnO1bkGAoQlGZinzISEuRsPQn9aio2Y9N64vhcAuwGH3PWEdfLQLwJdOny3QYGW7AHikeLyx5qqe7QkRXQFU8ANq/u7+mcFd/IiLqekyoiciv6XQ6rHg9G4/MS0dyuB0l5R68staDpNECEkfocE/y+ZtmRRXw+UEZu7/WEKM3YGS4Abs8Nqx8Mxs6na4He0FEV0rUGQC0f3d/Qcdd/YmIqOsxoSYiv2ez2bAyOw+L5s/BYP0hTAk1oKTYi5X7PDCbNYiirzSWyyVgiMmAKZF6lDdo+FIXj5XZ78Fms/V0F4joCgmGiHO7+y/fshfWzImXbXN+d38BgiGiG6IkIqK+js9Q+5GNGzb0dAhEfk7AwVMebPymARX1P9yUTNOAinoZG79pQNEpDwCh+0Mkok4xc85D2FdqbNfu/vtKTbht7sPdFCkREfVlnKH2E3V1dfj5vT/DoW9LYbFYejocIr9it9t9S74NdpSECSj3qviP0UDyCB1E8XzSrKoadhYp2H1Qw0C9gGHKITwyLx0rs/P8dpZalmVsyM3BZ5vzUVtaBFHQcN8d02GJiMakqWmYkTGTm6lRn3TTzdOR/dowJOAwFiQ48NLqvIuWzmra3f+J8Q4AIr6tHYYlU9O6P2giIupzeJfmJ/6+5h38ZICCf7z3Lv7r/gd7Ohwiv6EoChbNn4tkgx0Ha1yIsClYmOJ7trKiRsWmIwbUuURYTSqmxbkxcbSEiaOB/J1eFJWpSA63Y9H8uVibv82vnqNWFAXLlz2HLwryEOUqw6BgDXfHnf1wwFEIpVZDwf48ZP9pGSakpmPxkqf9Kn6iriYIAjLnPYptuY9jcnwtHh9XiaysdXDYYmG+cRwkiwmywwXnlr2w2EvxxHgHIiwith4KRcbcRyEIXKFCRERdjwm1n/h3wUb8R38J/9q8gQk1UTPLlz2Hoc5ilLg8iLApSEuRUFWnImuPBXWDYxE0exykfiZ8f8ble85yXykWJDiQliJhI2SUlHsw1FSMFcuex2NLn+3p7gDwzbg/et88xDYeRqJJxVHZi60VLZ8HdzoFDDEbkBh8DKc2rcKc7Vuw4vVsv51pJ+oKGbfNQ9Wpk9j2+R8wOb72srv7bz0UiuETFyHjtrk9HToREfURTKj9QENDAxoqvoNgFlBf8R0aGhp6OiQivyDLMr4oyEOiSUXRGQ8WpuhRVafipb1RCFmQDmuzpZ96ixnWzIlQ3El4aXUeHh9XiekpEl5Z50GcyYDCgg8hP7m0x5dPt1i+7vKgqN6D5NECMuJ/uHy98JAHW792I0ZvQIKhyO+XrxN1hfseWIzc/gPwXvYKXBP2HcbGun6wu/8XR434tm4YMucuQsZt83owWiIi6muYUPuBD/6xDjFyBQARMUolPnx/fU+HROQXNuTmIMpVhqOyF8ljfMlm1h4LQha0/hwlAOiMEkLuT0dW1jos/Uk9kkYJKCn2Ilpvx4bcHGTePqs7u9BC68vXfaV9Wlu+njJKQsoo/1++TtTVMm6bh1tnzkXB5ny8v+ZPKD6wAzpRw/BrroXOGInMOQ/h11PTuMybiIi6HRNqP/DPj3JwbYjvJiAmGCjY8H4PR0TkHz7bnI9BwRq2VniQEa9DRY2KusGxLWamW6MzSnDYYlFRsx+JI3RYuc+DyVY9thd83KMJdVctX2++sZmjugKa6oUg6jt9Y7PuOg9RawRBwE03T8dNN0/HlClToAB49d2tPR0WERH1cbzz6WEulwuO8qMQzL6EWhAEOMpLoArhEEVWNaO+zVFdgRhROPtssYBNRwwImj2uTW3NN47DpvXFuCfZC7NZgyQKqKs62cURX1xXLF8XBOEHG5vFNFs23lkbm7W2gdqlzqNpGmcKiYiIqE9gxtbDNuTmIFquaPG9aKUCdaereygiIv+hqb7nJJs+W3K4RUj9TG1qK1lMcLiFFu012XuJFl3r3PL12guWr1+kDBDQbPn6Hl8pvaRRAkpqvYh22/HmX17DnOlTULVpFRKlY/DKHmytaMCOmjPYWXcGO2rOYGtFA7xeNxKlY6jatApzpk+B3W6/orjtdvsVn6f66AG43a6ODRgRERFRAOAMdQ/7JHc9rg5p+b1BwRqU8u+BiP49ExSRnxBE3/PFqur72mJUUX3GBb3FfNm2ssMFi1Fr0V6Q9F0SZ1t09vL1/1v2FGYP17p0Y7P2bqB297UGrD1yGHa7nRuoERERUa/GGeoe5PF4UHfiW4gXLI0UBQH9BDfUpiyAqI+yRERDUTU4nQJU1Vcep3HL3ja1dW7Zi1vi3Ofay6oGa+SALo744hzVFdC1WL5uRNCNV7B8/YjxXHtJFBAuNOBgjQvBMV4snK1H8kgJp+o0vLVLj1e2GfHWLj1O1WlIGSVh4Z16BMd4UXTahWSDb2MzRVEuec4LN1C70vPcGadr03mIiIiIAhlnqDvZyy/8Dgd2/xtBpssvSz3T0IAB8knA+MOfjYsA/vldER6867bLHqfR5cJ1Sddj8RP/056QifzWpKlpKNifhyFmA3Yf9iB5pATrvlIo7qSLLpMGAMUtw2IvRdTVInYelBFrMqChzoQbbpzWjdG31NnL1xsUFRE2rcvqcvfG+t9EREREna1DM9SCIIQKgvB3QRAOC4JwSBCEH3VWYIHq3vsfBCDAcGwHhld9dsl/Yxu/xKBgrdXjDAuTMH8ELnsMw7F/A4KIe+//Rfd2lKgbzMiYiUqjDcND9dh1wPe3siDBgfrVeVDccqttFLeM+tV5eGC8AwBQeFBDXIgZIxpD8eORo7st9gu1tnxdPtO254wvXL6uaRr0Ieq5JPelvVFQFsyGNXMi9BYzBEE4v7HZgtl4aW8UqupUTE+RUC570N+k+jY2k1sfw6YN1PqbVJR7PV12HiIiIqJA19El3/8L4GNN0+IB/AeAQx0PKbCFh4fjzb9vwLCMhfiyPgyq1nrC3FGqpuHLhjAMz1yEN9fnISwsrEvOQ9STJEnChNR0nHKJiNEbkL9TRqRVxOPjKqHLWgdHzg5465zQNA3eOiccOTugy1qHJxIqEWERsXGnjBjJAO2MGRqAE5s391hfOnP5+jc1HtyY4NutuyMbm23IzWm1TWdvoHax8xAREREFunYn1IIgWABMAvAXANA0zaNpWm1nBRbIBEHALx/7NZa8uh475eGodXfus9C1bhU75eFYsmo9Fv7qSZanoV5t8ZKnURoUj2EWA74v051Lqpf+pB6PXrUfw9a/h9BVb2HY+vfw6FX7sfQn9bgqWEThJyYEfWfFGMmKUE8IBABHc3Jw9P33cfT99/Hdhx9Ccbu7rR+TpqbheKN4dvm6gugwEday0ovOtDc5t3w9TMTuQwpizQYcqXcjZcT5jc0utfwdaL6xmYrEETqUOj0YGKRie8HHrb6+aQO1Y04PEuO77jxEREREga4jz1APA1AF4A1BEP4DwJcAfqlpWkOnRNZO+/btw5QpU3oyhBYUxYj37UaMszoxLqrjj6zvqZSxt86MCJsRC3/5350QYdfbt28fAPjV76U9eks/gMDri9vtxTfHFdwZZ0JJuQevrPUgabSAxBE63JN8vhSWogr4/KCMrw4IuFW+CgboINdpEATfSpH6qir866mnIAFoFEX8/eWX4e6meu+apqGxXMbsa/TYesCN5JG+5esvrc676Mxv0/L1J8Y7AIgoPKhhSoQe33icnVKXu2BjXqvXQG1pEe6O67z63xc7TyAItL+VS+ltfRk7dmxPh0FERNShhFoCkADgEU3TdgmC8L8AngTwVPMXCYJwP4D7AWDw4MEdOF3rZFnGhtwcfLY5H7WlReivd6G2tAheQYI+JAzW8IgencHV6XToH3stDlZX4rtvTiJ9mA563ZXH41U05JUoaAwegKjYqC6IlMh/GY0mYFA83i4+gpsHSZgSakBJsRcr93nOJn2+Z4tdLgFDTAZM7K/HAUcVQmpCMVxvPvdGJwHwAig1GLC1Xz94uymZBnwrV5z6UJw4U3t2+boXaSkSHh9XiaysdXDYYmG+cRwkiwmywwXnlr2w2EvxxHhHi+XrJ+sV6CXfe0hHNzYThdYfSWn6fmdtoHax8xAREREFuo4k1McBHNc0bdfZr/8OX0LdgqZpqwGsBoAJEyZ02l2VoihYvuw5fFGQhyhXGQYFa7g7TgAQAkCForpxvPEUKkUjJqSmY/GSp6HT6Trr9O1SVlaGXy34KWLrD6L/5cvonnPKJaA0eBTWfvZOQNZ0bZoN2bp1a4/G0VG9pR9A4PZFURSsWPY8Cgs+RLTejslWPaRm9ZBlVcOJRhGFsg1J6bdi0ZNLkXfzzXBWVp57jSUqCr8uKMD/9MAHbYqiYM70KUiQi1BUpiIfMtJSJCz9ST0qavZj0/piONwCLEbfM9bRV4sAfMn06TIdRoYb8NE3jegf5Yu9o3W5EyYk4vX1G3/w2vvumA44Cjut/vfFzhMIAvVvpTW9sS9EREQ9rd3TM5qmVQCwC4Jw7dlvpQIo6pSoLsNut2PO9Cmo2rQKidIxeGUPtlY0YEfNGeysO4MdNWewtaIBXq8bidIxVG1ahTnTp8But3dHeBc1ePBgrNmwBUdMI6+o3RHjCKzZsCUgk2mizqTT6fDY0mexZnMhUhevQlVcJt45IiL7GwGHrUmoistE6uJVWLO5EI8tfRaukyfhqqqCzmSCqNdDZzLBVVWFhuPHeyz+Fa9nY5fHhpHhJjSU6/HKWi92HpQRaRVwT7IXj0zy4J5kLyKtvuXrr6z1orFcj5HhJuQeEzFpsKnL63L3pvrfRERERF2pow/1PgLgXUEQDABKAPxXx0O6NLvdjkfmpSPZYEeJy4Oieg+SRwvIiNdBbDZTpaoaCg95sPVrN2L0BiQYivDIvHSszM7r0cRUFEWYNCdwBZNjJs0JsRuXphL5O0mSkHn7LGTePuvcTFVrM6DHNm2CpqoYNnMmxi5ahH0rVuCb995D2SefYOT8+d0ctY/NZsPK7Dwsmj8XQ03FiLvM8vUpkXpUukR8qbsW8x+7C/vferrjdbnNBpxoFJGaekurr++0+t+XOQ8RERFRoOtQlqZp2j5N0yZomnadpmmZmqbVdFZgrVEUBYvmz0WywY6DNS4Ex3ixcLYeySOlFsk0AIiigJRREhbeqUdwjBdFp11INtixaP5cKIrSlWFe0u7CXQhpuLLZsZCGE/hi9+4uioio9wobMQJTsrKQuHQp9MHBSHzqKUzJykJofHyPxmWz2bA2fxv6T3sIhfIQSHojJkcHY2JYP6RY+2FiWD9MigqGpDeiUB6CqGkPYW3+NvzX/J93Sl3uYaF6VBptmJExs9U2nVX/+3LnISIiIgp0ATXtuXzZcxjqLEaJw4MIm4K0lLZNsKelSAgfrKDE4cFQZzFWLHu+iyO9uLVvvYZhQZ4rajMsyI333szqooiIeq+Y669HzA03tPzeDTcg5vrreyii8650+bpOp+u0utynXCISU2+FJLX+Htpd5yEiIiIKdAFzlyPLMr4oyEOiSUXRGQ8WpuivqP30FAmvrPMgzmRAYcGHkJ9c2u03eZqm4cSRrzGglV2+a1wqDngiMcZQhTBTy885DDoBJ775GpqmseY0US/T1uXrTRYveRpztm9BgqH9G5vtkeLxwpKnLnqO7jwPERERUSALmBnqDbk5iHKV4WitF8lj2pdUJo0SUFLrRbTbjg25OZ0c4eXt/+orBLWy3PtIown18en428e7cObaGTjS+MPyNOYzJ3DgwIHuCJOI/FhHNzbb5bFhxevZl6160NHzrD2itOk8RERERIEsYGaoP9ucj0HBGrZWeJAR374btMQROqzc58Fkqx7bCz5G5u2zOjnKS8t+488YZnai6XMMj6LhS1cU5j78P7hj7l0AgFde+xvWZb+NP/zPw0gfJsFwdjZ7mLkRa/76Z1z3x1XdGjMR+Z+ObGy2MntNmzdmbO953i5WYLXFszIBERER9XoBM0PtqK6AThTO3sS1b4a6qb0kCqirOtnJEV6e/fB+mCTfkFc6BXxlHIP/XfvJuWS6yex5PwWiR+DtYl8NagAw60UcO7Sv22MmIv/U3o3NrjTJbc95IoePgdH4w5U2RERERL1NwMxQa6oXANDR6lFN7TXZ28GIrszhw4ehr7ND66fhQKMFwyffjuznX7zockij0YT+w0cjeGIiDnz2D4wOckA6Y8eRI0cQFxfXrbETkX9q2thMfnIpNuTmYHvBx6irOglN9kKQ9LBGDkBq6i2YkTGzQ3tGXOl5Pvp0a+d1koiIiMiPBUxCLYi+TchUtWPHaWovSFe2qVlHvfuXPyNaV48d7iFY9LsVmDTlxsu2EQQBzyx7GZ9tTcMfnl6MOPEY3n59FZ5/6Y/dEDERBYrmG5v1hvMQtUbTNHz6yUbkvPd/0NXvg07U8OBdSRAMEZg55yHcdPN0btxJRETdLmASaktENJRaDU6nAFVt37JvRfW1l60arJEDuiDKi9vy6Se4Nu7HeHP127BarVfUdtKUVFz34VYsuv9nOPLpZvRc0S8iIqLul/t+NnLXrMA1oSVIv9qNjLime4AiqKqG3X/fhezXhiJz3qPIuG1ej8ZKRER9S8Ak1JOmpqFgfx6GmA3YfdiD5JFXHvruQwpizQacaBSRmnpLF0TZOk3T8PCvlmDOvLvb/el5aGgo/ro2F+9lv8PyWURE1Ge8tuplfLfrj7gzoRYAUFGjYdMRA+pcIqwmFdPi3Bg/zI3xOIxtuY+j6tRJ3PfA4h6OmoiI+oqA2ZRsRsZMVBptGB6qx64DWruOUXhQw7BQPSqNNszImNnJEV6cIAiYe9dPO5wEd9ZxiIiIAkHu+9n4btcfMTm+FlV1Kn77zxAsP30dSmbPQd1DP0PJ7DlYfvo6/PafIaiqUzE5vhZHd/wBue9n93ToRETURwRMQi1JEiakpuOUS0SM3oD8nfIVtd+4U0aMZMApl4jE1Fs7tEEPERERdS1N0/BB9opzyfRLe6OgLJgNa+ZE6C1mCIIAvcUMa+ZEKAtm46W9UaiqUzFlRC1y1/wBmta+D9+JiIiuRMAk1ACweMnTKA2KxzCLAVVlOnz477bt1J37by+qy3QYZjGgNCgejy55qosjJSIioo749JONiAsrAQBk7bEg5P506IytfxiuM0oIuT8dWXssAICrQ0tQsDm/22IlIqK+K6CmaXU6HVa8no37br8ZZ6q/w0BZh/+1exDVH2hwazDozy+F9ng1BBkFnDoFBKsSTtQqqNb3x+v/yL5oqSoiIiLyDznv/R/Sr3ajokZD3eBYWC+STDfRGSU4bLGoqNmPsbEuvL/mT7jp5undFC0REfVVAZVQN5FEEelxwShxeNDolTEkWkRyvK7Fzt+qqmFXkYKqKg2hJh0S4sz4V0NATcgTERH1WZqnGqIoYNMRA4Jmj2tTG/ON47BpfTHuSfZC81R3cYREREQBtuRbURQsmj8XNwRX4GCNC8ExXiy804AfjZR+UEZLFAX8aLSEhXfqERzjRdFpF24IrsCi+XOhKEoP9YCIiIjaQlU8AACHW4TUz9SmNpLFBIfbdz+gKW17LIyIiKgjAiqhXr7sOcQ2HkaJw4MIm4K0lLZNsKelSAgfrKDE4UFs42GsWMZKzkRERP5M1BkAABajCvmMq01tZIcLFqNvMzJBp++y2IiIiJoETEItyzJ2F+Qhyqyh3OtpczLdZHqKhHLZgyizhsJPP4QsX9ku4URERNR9BEMEVFXDtDg3GrfsbVMb55a9uCXODUXVIBgiujhCIiKiAEqoN+TmILLhOxyt9SJxTPvqME8YKaCk1otI53fYkJvTyRESERFRZ5k55yHsKzUiOkyEtawUivvSH4QrbhkWeymiwkTsKzXhtrkPd1OkRETUlwVMQr3tk48wxCLimNOD5Pj27dKdPFKHUqcHg/uJ2MZyGkRERH7rppun40jNMADAggQH6lfnXTSpVtwy6lfn4YHxDgDAt7XDkDo1rdtiJSKivitgEuqjhw5AJwoQjeoPNiBrK50oQDSokEQBJUVfdXKERERE1FkEQUDmvEex7XAoIq0iHh9XCV3WOjhydsBb54SmafDWOeHI2QFd1jo8kVCJCIuIrYdCkTH3UQhC++4ViIiIrkTAlM2q+/4UMBBQoHXoOIrga197uqozwiIiIqIuknHbPFSdOoltn/8Bk+NrsfQn9aio2Y9N64vhcAuwGH3PWEdfLQLwJdPDJy5Cxm1zezp0IiLqIwImofZ4feUvtA4m1Jrma+/xsJwGERGRv7vvgcXI7T8A72WvwDVh32FsrAv3JJ//f7iiCvjiqBHf1g1D5txFyLhtXg9GS0REfU3AJNSqKEFRvTjTAKiq1q5l34qq4UwjIKsaNDFguk5ERNSnZdw2D7fOnIuCzfl4f82fUHxgB3SihuHXXAudMRKZcx7Cr6emcZk3ERF1u4DJKsPCI3GsrgQGQcCX3yhIvPbKQ//yGwUGQUBZnYzQq1hOg4iIKFAIgoCbbp6Om26ejilTpkAB8Oq7W3s6LCIi6uMCZlOy+NH/gUPVHphEEXuPKu06xldHFZhEEYeqPRgxZmwnR0hERERERER9ScAk1FOm/T+Igg5WQUKIEdi858qegf7kSy+CDIBVkCCKOkyeOr2LIiUiIiIiIqK+IGAS6hkZMxE++Bocr1NQVS1AENqeVH/ypReiCFR/L+J4nYJw2zWYkTGziyMmIiIiIiKi3ixgEmpJkpB4060YM8CMiirA6wKswQJe2+hGYbEMRW25+7eiath1WMZrG90IDRHgcQEVVRrGDDAj6aYMSFLAPD5OREREREREfiigssrFS57GnO1bcLP+a3y8px6TEkTcl2bA/hIVb33ihb5Zb7wKMP5qHe5LM+Cjz2Vs36viltgQHA0Zjf9b8lTPdYKIiIiIiIh6hYBKqHU6HVa8no1H5qVjVlwZNh9sxJ5vPLgpQYd7btZD16yUlqJq2FWk4LdveyB5dJgV1w+7vYOx8vVs6HS6HuwFERERERER9QYBlVADgM1mw5KXs3D/rFuQGmNCZJCADf9qQO5OL66yCNCJgKICpx0azLIOM4aH4FSjhnXfali9Pgs2m62nu0BERERERES9QMAl1Ha7Hct+tQCzrxaw+ZgTilHB1Ek6JMfrITaboVbPzlB/tKcekkeH2VcHYdmvFmBldh6TaiIiIiIiIuqwgEqoFUXBovlzkWyw42CNG2NHA2kpxlZfK4oCfjRawo9GS8jfKeNwmRvJ4XYsmj8Xa/O3cdk3ERERERERdUjA7PINAMuXPYehzmKUODyIsClIS2nb5wFpKRLCBysocXgw1FmMFcue7+JIiYiIiIiIqLcLmIRalmV8UZCH/iYV5V5Pm5PpJtNTJJTLHvQ3qSgs+BCyLHdRpERERERERNQXBExCvSE3B1GuMhyt9SJ5jHD5Bq1IGiWgpNaLaLcdG3JzOjlCIiIiIiIi6ksC5hnqzzbnY1Cwhq0VHmTEt+/558QROqzc58Fkqx7bCz5G5u2zOjlKou4jyzI25Obgs835cFRXQFO9EEQ9LBHRmDQ1DTMyZkKSAuZPnDoZr4/zmo9F7alynDhZjrraWuhFAeHhYYiIGgBrxIA+Ny5ERETUcQFz1+CorkCMKMBs1lrs5n0ldGfbS6KAuqqTnRwhUfdQFAXLlz2HLwryEOUqw6BgDTHNa7DXaijYn4fsPy3DhNR0LF7yNDfh60N4fZzXfCwincdwotYFh1tFfIQBQwZK0IkCgAbAcbxPjQsRERF1noBJqDXVCwAQO7hIvam9Jns7GBFR97Pb7Xj0vnmIbTyMRJOKo7IXWys8Zz9oAlQVcDoFDDEbkBh8DKc2rcKc7Vuw4vVslovrA3h9nNd8LK6BFx8da0R4qADrVRoONTZi7xkNIWYBJp0AvSBcdFyIiIiILiVgEmpB1APw3RB2RFN7QdJ3MCKi7mW32/HIvHQkG+wocXlQVO9B8mgBGfG6H9RgLzzkwdav3YjRG5BgKMIj89JZg72X4/VxXvOx+PqMC8fcHtx2kw4QgP2lGlJH6zD+mraNi1s2wWg09WBviIiIyJ8FTEJtiYiGUqvB6RSgqu1b9q2ovvayVYM1ckAXREnUNVrWYHchwqZgYYrvQ6GKGhWbjhhQ5xJhNamYFudGyigJKaOA/J1eFJWprMHey/H6OK/5WHx92gXLQBlP3WDEp3u8qG3QYAgPxucVIgrLvRBEETJ0lxyXt7/TEDl8TE93i4iIiPxUwCTUk6amoWB/HoaYDdh92IPka5/ouQAAIABJREFUkVce+u5DCmLNBpxoFJGaeksXREnUNc7VYHedr8FeVacia48FdYNjETR7HKR+Jnx/xoXlW/bCuq8UCxIcSEuRsBEySso9GGry1WB/bOmzPd0d6mS8Ps5rPhahA2Xcer0em/d4sfF4KKRRQyGNvQaVWw7BFNkPkZPjLzsuNw+SUHCyrKe7RURERH4qYMpmzciYiUqjDcND9dh1QGvXMQoPahgWqkel0YYZGTM7OUKirtFaDfaqOhUv7Y2CsmA2rJkTobeYIQgC9BYzrJkToSyYjZf2RqGqTmUN9l6O18d5zcfihNeNW6/X41StgnUnBiD0V3fC9OPrUPHJ1xhy10TEpI9r07gM7CfC6K4N6HEhIiKirhMwCbUkSZiQmo5TLhExegPyd17Zzc3GnTJiJANOuUQkpt7KsigUMFqrwZ61x4KQ+9OhM7Z+HeuMEkLuT0fWHgsA1mDvzXh9nNd8LJJG+/73tvzfVgxafCt0RgnluXsQe8+Pr3hcJkRqAT0uRERE1HUCJqEGgMVLnkZpUDyGWQz4vkzX5qR6404Zp8t0GGYxoDQoHo8ueaqLIyXqPE012I85PUiM16GiRkXd4NiLJgVNdEYJDlssKmpUJI7QodTpwcAgFdsLPu6myKk78Po4r/lYJI/wjUXjUN9YuCrrYIyytGtcYkN1AT0uRERE1HUCappWp9NhxevZvt1bw+0oKffglbUeJI0WkDhCd7amqI+iaig8pGD31xpi9AaMDDdg7REF5kFepKam9mAv2mbfvn0AgClTpvRsIJ2gt/Slp/pRW1qEu+PO12DfdMSAoNnj2tTWfOM4bFpfjHuSvedqsBdszENprQdA4P9OgN5zfQHt60tXXB8dHUt/+lsJPzsW339+FP1vHNGm43TVuPS03va3Mnbs2J4Og4iIKLASagCw2WxYmZ2HRfPnYqipGHGhBpQUe7FyX8taqy6XgCEmA6ZE6nH8jIq3izVYbfEsf0IBRxR8ewY01VB3uEVI/dp2HUsWExxuoUX7puNR78Dr47xLjYXc6O6z40JERERdJ+ASasCXVK/N34YVy55HYcGHiNbbMdmqh9RshlpWNZxoFFEo25A041YcWPJUQJWDaZpB2Lp1a4/G0Rl6S196qh/33TEdcBSeq6FuMaqoPuOC3mK+bFvZ4YLF6EsEmtonTEiEpaoRQOD/ToDec30B7etLV1wfr6/feCVh/4A//q1IQUbIPTwuPa03/q0QERH1tIB6hro5nU6Hx5Y+izWbC5G6eBWq4jLxzhER2d8IOGxNQlVcJlIXr8KazYV4bOmzAZVMEzVniYg+V0NdVTVMi3OjccveNrV1btmLW+Lc52uwq6zB3tvw+jivtbE4ne8bi6t+NBxV24vbdJzeNi5ERETUdQI2oW4iSRIyb5+F5av+gtDYkbAMGYXX12/E8lV/Qebts7ibNwW8SVPTcLxRPFuDXUF0mAhrWSkU96U35VPcMiz2UkSFiS1qsP+YNdh7FV4f5zUfi12HfGMR9J1vLExRVrgrHe0al9JaJaDHhYiIiLpOwCfURL1dazXYFyQ4UL8676LJgeKWUb86Dw+MdwBgDXZ/JssyPvjHejz6wL2oLS2C49hB3HfHdDz6wL344B/rL1v/mNfHec3HovBr31rtxdfX4fjyD6G4ZcRkJKD0re1XPC5fVAsBPS5ERETUdZhQE/m51mqwR1pFPD6uErqsdXDk7IC3zglN0+Ctc8KRswO6rHV4IqESERaRNdj9lKIoeOm3z2De1CQUvPwgor7Nxd1xKuZdoyHeUYiob3NRsPwXmDc1CS/99hkoitLqcXh9nNd8LAbqjfjw3170D9Vh9sCTqP39Wrg/24/oqaNx7N0dKP9wb5vG5cQZFW5DaECPCxEREXWdgL9DkGUZG3Jz8NnmfNSWFkEUNNx3x3RYIqIxaWoaZmTM5I0QBbzFS57GnO1bkGAoQlGZinzISEuRsPQn9aio2Y9N64vhcAuwGH3PjUZfLQIQz9VgHxluwB4pHi+wBrtfsNvtePS+eYhtPIxEk4qjshdbK1pWKnA6BQwxG5AYfAynNq3CnO1bsOL1bNhsth8cj9fHec3H4usTKj74lxeZN+ghCLWoPbkHDd8XI8YtQCyVIZTthSKIlxyXd4o1RAwf3NPdIiIiIj8VsJmmoihYvuw5fFGQhyhXGQYFa7g77uwu345CKLUaCvbnIftPyzAhNR2LlzzNjckoYF2uBvs9yd5zr1VUAZ8flFvUYN/lsWHlm9n8G/ADdrvd93s02FHi8qCo3oPk0QIy4nUQm1UqUFUNhYc82Pq1GzF6AxIMRXhkXjpWZuf9IKnm9XHehWPx9QkXnnvLjakTdAiJEHDgu3okD9dh/DU66ET1XLuLjYvFZoIgCJc4IxEREfVlAZlQd/bsDlEgaE8N9kqXiC9112Jl9hpe+35AURQsmj8XyQY7Dta4EGFTsDBFDwCoqFGx6YgBdS4RVpOKaXFupIySkDIKyN/pRVGZiuRwOxbNn4u1+dt+kPzy+jivxVj0K0ZsPz1yChpxVagAa7CALbsVbNwpI8QswKQToBeEi47LT3/6057uDhEREfmxgEuou2J2hyhQXHEN9mm34sUAq8Hemy1f9hyGOotR4vIgwqYgLUVCVZ2KrD0W1A2ORdDscZD6mfD9GReWb9kL675SLEhwIC1FwkbIKCn3YKipGCuWPY/Hlj77g+Pz+jjvwrG4IbYMJ2qcqPtexYgIAwZbpT45LkRERNS5AiqhvtTszoVEUbii2R2iQNFUg11+cik25OZge8HHqKs6CU32QpD0sEYOQGrqLdw/wM/IsowvCvKQaFJRdMaDhSl6VNWpeGlvFEIWpMNqPP+70lvMsGZOhOJOwkur8/D4uEpMT5HwyjoP4kwGFBZ8CPnJpa3+fnl9nNfaWNRUnsDRE+XYc6IWBp2A0NAwREYPQGj/mD4zLkRERNR5AuquobXZnbZo6+wOUSBpqsGeefusng6F2mBDbg6iXGU4KnuRPMY3M5q1x4KQBenQGVt/L9MZJYTcn46srHVY+pN6JI0SUFLsRbTejg25OZf83fP6OI9jQURERF0lYMpmNc3u9DepKPd62pxMN5meIqFc9qC/SfXN7lymtisRUWf6bHM+BgVrOOb0IDFeh4oaFXWDYy+aTDfRGSU4bLGoqFGROEKHUqcHA4NUbC/4uJsiJyIiIqKLCZiE+tzsTu352Z0rlTRKQEmtF9Fu3+wOEVF3cVRXQCcKZzcIE7DpiBFBN45rU1vzjeOw6YjxXHtJFFBXdbKLIyYiIiKiywmYhPrC2Z324OwOEfUUTfWVrhLPvus63CKkfqY2tZUsJjjcQov2muy9RAsiIiIi6g4Bk1BfOLvTHpzdIaKeIoi+DRTVs6WPLUYV8hlXm9rKDhcsRq1Fe0FqfUNGIiIiIuo+AZNQXzi7016c3SGinmCJiIaianA6BaiqhmlxbjRu2dumts4te3FLnPtce1nVYI0c0MURExEREdHlBExCfeHsTntxdoeIesKkqWk43ihiiNmA3YcVRIeJsJaVQnFfeoNExS3DYi9FVJiI3YcUxJoNONEo4sept3RT5ERERER0MQGTUF84u9MenN0h6h1kWcYH/1iPRx+4F7WlRXAcO4j77piORx+4Fx/8Y71f7uI/I2MmKo02DA/VY9cB33vYggQH6lfnXTSpVtwy6lfn4YHxDgBA4UENw0L1qDTaMCNjZrfFTkREREStC5iE+sLZnfbg7A5RYFMUBS/99hnMm5qEgpcfRNS3ubg7TsW8azTEOwoR9W0uCpb/AvOmJuGl3z4DRWnfe0VXkCQJE1LTccolIkZvQP5OGZFWEY+Pq4Quax0cOTvgrXNC0zR465xw5OyALmsdnkioRIRFxMadMmIkA065RCSm3gpJurLSgURERETU+QLmjmxGxkxk/2kZEoOPYesBN5JHXvkxCg9qmBKhx26ZsztEgcZut+PR++YhtvEwEk0qjspebK3wnN2o0Pc4h9MpYIjZgMTgYzi1aRXmbN+CFa9nw2az9XT4AIDFS57GnO1bkGAoQlGZinzISEuRsPQn9aio2Y9N64vhcAuwGH3PWEdfLQLwJdOny3QYGW7AHikeLyx5qqe7QkREREQIoIT63OzOplVnZ3e8SEtpe/gtZnemcXaHKJDY7XY8Mi8dyQY7SlweFNV7kDxaQEa8rsWu/6qqofCQB1u/diNGb0CCoQiPzEvHyuw8v0iqdTodVrye7etLuB0l5R68staDpNECEkfocE/y+c0SFVXA5wdl7P5aQ4zegJHhBuzy2LDyzWzodO0rHUhEREREnSugssqLze5cDmd3iAKXoihYNH8ukg12HKxxIcKmYGGKb1PBihoVm44YUOcSYTWpmBbnRsooCSmjgPydXhSVqUgOt2PR/LlYm7/NLxJRm82Gldl5WDR/LoaaihEXakBJsRcr97WcbXe5BAwxGTAlUo9Kl4gvdddiZfYav/hggIiIiIh8AuYZauD87M4ujw0jw01oKNfjlbVe7DwoQ7lgozJF1fD5QRmvrPWisVyPkeEm7PLYsOJ1zu4QBZLly57DUGcxShweRNgUpKVIqKpT8dt/hmD56etQMnsO6h76GUpmz8Hy09fht/8MQVWdirQUCeGDFZQ4PBjqLMaKZc/3dFfOsdlsWJu/Df2nPYRCeQgkvRGTo4MxMawfUqz9MDGsHyZFBUPSG1EoD0HUtIewNn8bk2kiIiIiPxNQM9QAZ3eI+hJZlvFFQR4STSqKzniwMEWPqjoVL+2NQsiCdFiN59/C9BYzrJkTobiT8NLqPDw+rhLTUyS8ss6DOJMBhQUfQn5yqd887qHT6fDY0mchP7kUG3JzsL3gYxRszIMoaEiYkAhr5ACkpt6CGRkz/SZmIiIiImopoGaomzSf3dnpGYzj9YDcKOLM9zo4qnU4870O3gYRx+uBnZ7BnN0hClAbcnMQ5SrD0Vovksf4npXO2mNByP3p0BlbTzJ1Rgkh96cja48FAJA0SkBJrRfRbjs25OZ0W+xtJUkSMm+fheWr/oLQ2JGwDBmF19dvxPJVf0Hm7bOYTBMRERH5sYBMqJto0CAKwGCLhJuGmTHt6iDcPDwI064Owk3DzBhs0UMUfK8josDz2eZ8DArWcMzpQWK8DhU1KuoGx140mW6iM0pw2GJRUaMicYQOpU4PBgap2F7wcTdFTkRERER9QUAm1Ha7HXOmT0HVplVI0pdBUWVsrWjAjpoz2Fl3BjtqzmBrRQMU1YskfRmqNq3CnOlTYLfbezp0IroCjuoK6ETh7OMcAjYdMSLoxnFtamu+cRw2HTGeay+JAuqqTnZxxERERETUlwTcWsLeUj6HiC5PU31lpMSzH/053CKkfqY2tZUsJjjcQov2muy9RAsiIiIioisTUAn1pcrnXEgUBb8vn9ObybKMDbk5+GxzPmpLiyAKGu67YzosEdGYNDUtYDZa6i39CFSC6Pv7VlXf1xajiuozLugt5su2lR0uWIxai/aC1Pr7BRERERFRewRUJnCufI7rfPmctkhLkbARMkrKPRhq8pXPeWzps10bbB+lKAqWL3sOXxTkIcpVhkHBGu6OO7tywFEIpVZDwf48ZP9pGSakpmPxkqf98sON3tKPQGeJiIZSq8HpFKCqGqbFubF8y15YMydetq1zy17cEueGogpwOgXIVg3WyAHdEDURERER9RUB8wx1U/mc/iYV5V5Pm5PpJtNTJJTLHvQ3qb7yObLcRZH2Xc2fbU+UjsEre1p9tt3rdSNROua3z7b3ln70BpOmpuF4o4ghZgN2H1YQHSbCWlYKxX3pv1/FLcNiL0VUmIjdhxTEmg040Sjix6n/n737j4uyzhf+/7rmmhkGUUAXRcnxB5ah1a6RCOueVTYykyOBVgZsu3vf6aZ73DxHvWvXbmu7q/N1j3dat5q7lrvnx26oWRLhkcxwsc4xwR+xliiuEjKlKJaAKMPMdc31/QPxtwkzAzMM7+fj0eOxD+Tz8f2++ODO+/r8eqCLIhdCCCGEED1Btymor3d9TkcF+/U53Vnb3vZErYJ6p5OS003EJbiYl6Mye7qFn2dZmD3dwrwclUG3uyipa6Le6SRRa93bHizFaKjkESqmZk7jZJidEdEWSj9rXb49O7GRptcLb1hU6y0aTa8XMueeRgDKDhjER1s4GWZnaua0LotdCCGEEEKEvm5TUF99fY435PqcznH13vaIODfzZlhIHm2+4qA4uLS3fd6jFiLi3FR84yTZ2rq3Xdf1AGXQKlTyCCVms5mxaRmccpqIs1gp2qXRP8rE03efRF3zFo35O3E3NGMYBu6GZhrzd6KueYtfJZ4kJtLEll0acWYrp5wmktIelP3uQgghhBDCr7pNQX319TnekOtzOsfFve2NHd/b3m+ITlWji+HNrXvbAylU8gg1Cxc9R3WvBOIjrXxdo14sqhf/qIkF39lP/Mb1RK/+d+I3rmfBd/az+EdNF4vpb2pU4iOtVPdKYMGiZwOdihBCCCGECDHdpqC++vocb8n1Of4VKnvbQyWPUKSqKsvX5lHqsjO6n41zxy2s2OBm1wGN/lEKP0t28+QEFz9LdtM/SuGTAxorNrg5f9zC6H42Sl12lq/N+9ZD44q2bO7CjIQQQgghRKjoNgX11dfneEuuz/GvUNnbHip5hCq73c7KvEL2qqOIttlI7d+b2korK9fprNnk5o133azZ5GbVep2TlVZS+/cmymZjrzrqpnfPNzQ0MPvnP6WxsbELMxJCCCGEEKGg2xTUkTED0T2Xrs/xRlt7zSPX5/hLqOxtD5U8QpndbmdD0Q4GTJ5LmTYUsyWMiQMjGN+3DylRfRjftw8TYiMwW8Io04YSO3kuG4p2fGsxDZD/9p/58QQn+W+/2UWZCCGEEEKIUNFtCuqrr8/xhlyf43+hsrc9VPIIdaqq8tTi51m3rYy0haupG5nFnw+byPubwqGocdSNzCJt4WrWbSvjqcXPt+tu8D3/vZmJdyns/q/CLshACCGEEEKEkm5z5O3UzGnkrVpCUsQxSj5rIXl0x/soO2CQGmNhtybX5/hLqOxtD5U8egqz2UzWQ4+Q9dAjpKamArB245YO93Pu3Dm0s1UoioLWdJRz584RERHh52iFEEIIIUSo6jYz1Ne7Pqcj5PqczhEqe9tDJQ/RMYXvbuCugV8BcGfsV2wu2BjgiIQQQgghRHfSrarKhYueI/vj7SRaK6io8VCE1q7TmNuuzxndz8o+cwK/7UHX52iaxuaCfD7aVkTj6VoMjxvFZCEyZiATJk1hauY0n14uRMYMRK+/tLfdm+XSF/e2RwVub3uo5BGMOnsM+uK/tm9i6ggDULh1kMHm4nd4NPd/eN1fMOcqhBBCCCH8r1t9smu7PufJ3AyS+zmoOu5ixQYX4+5USBqlol5WBOkeg7KDOrs/N4izWBndz0qpy87Kf/v263NCha7rLFvyAnuKC4l11jA4wiDu8udTb1C8v5C8VUsYm5bBwkXPefVcJkyaQvH+wgt7210kj+74kLp8b3tagPa2h0oewaSrxqC3nE4nroYjKEprTIqi4Go4gtPpxGazdaivYM9VCCGEEEJ0jm6z5LtNZ16fEyocDgfZ6anUbV1NkvkYbs1FSe05dp45y66Gs+w8c5aS2nO43S0kmY9Rt3U12empOByODv9dUzOncTLMzohoC6WfeXf6etkBg/hoCyfDAre3PVTyCBZdOQa9tWXzJkYP+OqKr40a8BVF//luh/rpDrkKIYQQQojO0a1mqNu0XZ+zfMmLlBW/x0CLg4lRFsyXzQhpHoOvzpso0+yMm/wg/7Lo2R4xI+RwOFpn8K0OqpwuKppcJN+pkJmgXrGM2eMxKDvoouTzFuIsVhKtFTyZm9Hhlw4X97ZvXX1hb7u7Xcvw21yxt31y4Pa2h0oewaCrx6C3Sra+xZRhHuBSTAm36BRt3cC0h7Lb1Ud3yVUIIYQQQnSObvupv+36HO3Xi9lckM/Hxe9TvKUQk2KQODaJqP6DSEt7oEftWdR1nfkzc0i2OjhwxkmMXWdeyvUPxzKZFFLuMJNyBxTtclNR4yG5n4P5M3PYULSjQy8fQmVve6jkEUjfNgZrz3jYethKg9NElM3D5JEtfhuDHeVyuXDWH7lmr7zJpOA8cxi3243F8u0Hy3WXXIUIFYZh8OEHW8hf/xpqUzmqyeAXPx6HYo1hWvZc7rs//eIWDiGEEKKrKIbh3fJWb4wdO9bYs2dPp/Xfdn1OSUlJp/0dXcWbXJa+9Bvqtq6m3ukkIq7jM6znj1uIttkYMHkuTy1+vkPxXjFT1+jiuLt9e9vjIy/sbQ+SmbpQyeNmOut35XpjsK7Bw5p9kTQMGUave+/G3MeGdtbJ+e2fElVTzezERvpHmbweg225ZE6dxKHP/ouI8LCbtmk8e567+paScMu1d9of+krlszPJRPbp9a19HDlcydnjX+BxG9x9p+KXXEPl37BQyQMkl2BRsCmPgnXLuS26ijHDWq5ZAfJptY2/nRlOVu4CMqfn+u3vVRRlr2EYY/3WoRBCiJDj89StoigqsAf4yjCMqb6HJLyhaRp7igtJsnmoOOu64cz0jaSnmFnxlouRNitlxe+h/Xpxh2b22/a2z5+Zw3BbJSOjrVRVullZ7iI83MBkar1SyulUGGqzktrfwkmnib3q7azMWxc0RWio5BEI1xuDdQ0eln4aS+/ZGUSFXRpPlshworLGo7eMY+nrhTx990mfx+DPHv8Fv/6n/2aI+SNG3eLyOo+EW3QSbtl50++L1Tx8eMJACTeY0sW5CtGTvLH6Zb4ofZVHE+svfOXalSX3xLdwD4fYUfA0dadOMGvOwq4PVAghRI/kj0PJ/hE46Id+hA82F+QT66zhaL2b5Lu8W/I27g6Fqno3A1scbC7I73D7tr3tAybPpUwbitkSxsSBEYzv24eUqD6M79uHCbERmC1hlGlDiZ08lw1FO4KuCA2VPLra9cbgmn2R9H4iAzXs+sWiGmam9xMZrNkXCfg2Bvv168eaf/9PLLf9LzaX90f3dM7qG91jsHFnb0p2KsRHWPm7u1v/Ge3KXIXoKQo25fFF6atMTKi/+TcDExPqObrzFQo25XVyZEIIIUQrnwpqRVEGA38PrPVPOMJbH20rYnCEwbFmF0kJ3u3HTBqlUt3s4pZeHj4uft+rPtr2tq/bVkbawtXUjcziz4dN5P1N4VDUOOpGZpG2cDXrtpXx1OLng3bvaKjk0ZWuHoO1Zzw0DBl2wwKzjRpmptE+jNozHp/HoKIozP3HZ3jif+eTt3sUdQ3+Larr6g3y9ozCHZ5MapyNGqc7YLkKEeoMw+DdvOXtLqbbpI6qp2DdK3TlljYhhBA9l69rDF8Fngb6+CEWvygvL7+4T6w7Ky8vB2h3LvXVFTw2UrmwLNm7GWrV1NrebFIo3lLot+dYXd+6/Day7jzUHWVvxWu8uvI1v/TdlUIlD+j4+GqPq8fg1sNWes24u11tw++9m60bK/lZsrvDY/BGueh6OC8X9GHy985y7/d8P6ho+18N3i/vQ2T/cM46PuGuTsi1M34ugRAqeYDkEkhnG77m7+88ijfv/m+NrqJ4WxH33Z/u/8CEEEKIy3g9Q60oylTglGEYe2/yfU8oirJHUZQ9dXV13v51PYJhGNR/XUfdscN8x+xkgMVJfXUFdccOU/913be+bTcprX9m8nERf1v7tv6EaK+rx2BjiwlzH1u72pojbTS2KFe093UMqqpKdGwCHx6y8/8KFFrc3vXX4jZ4tUDhw0ND6DswAVVVgy5XIUKR4jrB9xO8exk2ZpiTTetW+TkiIYQQ4lq+zFD/AHhQUZR0wAZEKoryZ8MwHrv8mwzDeB14HVpP+fbh72uXMWPGdLsTTHVdZ9mSF9hTXMh3e59kcKyBaup94U896J4Wvjx/ipOmMMamZbBw0XPXLDGe9XA6NJbh8fgWS1v7xLFJrN24xbfOLujOJ8teLlTygM7J5eoxGBnm4fRZJ5bI8Ju21RqdRIa1/vPQ0THYnlxqamp4duFj/MBeztD+7f8lOVan8t+O7/H6xjev2CPfWbmGyhgLlTxAcgmkX/x4HCZThVdtVZOC4Trt54iEEEKIa3k9n2kYxiLDMAYbhjEMyAa2X11Mi5tzOBxkp6dSt3U1SeZjuDUXJbXn2HnmLLsazrLzzFlKas/hdreQZD5G3dbVZKen4nA4rugnMmYguseguVnB4+VhTG3tNY9BVP9B/khP9CBXj8HJI1s4v/3TdrVt3v4pD4xs6bQxOGTIEP64/i8UH/1uh9oVH72LP67/yzUHzgVzrkKECo/u/Wn9AIbu9lMkQgghxI3545Rv4aW2O48TtQrqnU5KTjcRl+BiXo7K7OkWfp5lYfZ0C/NyVAbd7qKkrol6p5NErYInczOuKKonTJrCl+dNDA23svvQtXfrtsfugzrDwq18dd7ED9Me8Feaooe4egwO7GsiqqYavUX71nZ6i0ako5rYvqZOHYMmk4lIW3OH2kTamjFdZx9FsOcqRCgwqVaf2itqx66PFEIIIbzhl4LaMIwSuYO6Y3RdZ/7MHJKtDg6ccRIR52beDAvJo83XHCpmMimk3GFm3qMWIuLcVHzjJNnqYP7MHHS9tXiemjmNk2F2RkRbKP3MuxnqsgMG8dEWTobZmZo5zeccRc9yvTE4O7GRptcLb1ho6i0aTa8XMueeRqBzx+Du3aXc0utYh9rEhdewd8/ua74e7LkKEQoUa4xPK64Ua4yfIxJCCCGuJTPUAbJsyQsMb66kqtFFjF1nSkr7trNPSTHTb4hOVaOL4c2VLF/yIgBms5mxaRmccpqIs1gp2vXtM2VX27JLI85s5ZTTRFLag5jNvh4AL3qa643B/lEmnr77JOqat2jM34m7oRnDMHA3NNOYvxN1zVv8KvEkMZFwxWicAAAgAElEQVSmTh+D+etf5+5hHZuhThx+nnfW/f6arwd7rkKEgmnZcymvDvOqbXm1jek5v/RzREIIIcS1pKAOAE3T2FNcyACbh+NuV7uL6TbpKWaOay4G2DyUFb+HprUWzwsXPUd1rwTiI618XaO2u6jeskvjmxqV+Egr1b0SWLDo2Q7nJARcfwz2jzKx+EdNLPjOfuI3rid69b8Tv3E9C76zn8U/arpYYHbmGDQMg7ov92OzXnti8Kl6gz/vHMSp+mtnwmxWhbqvPrvuCfvBmqsQoeK++9M5fCbeq7ZH6uNJmzTFzxEJIYQQ15KCOgA2F+QT66zhaL2b5Lu8uxJk3B0KVfVuBrY42FyQD7ReE7R8bR6lLjuj+9k4d9zCig1udh3Q0K9aNqd7DD45oLFig5vzxy2M7mej1GVn+dq8a04QF6K9vm0M9o9S+FmymycnuPhZspv+UUqXjcH9+//KQJvjmq/vOtKb/c0PsfJPu/lr83R2Hel9zffEhtXw2WefdZtchQgViqKQlbuAHYeiO9Su5GA0mTkLUBTf758XQgghbkbWGQbAR9uKGBxhUFLrIjPBuw/TSaNUVpa7mBhl4ePi98l66BEA7HY7K/MKmT8zh+G2SkZGW6mqdLOy3EV4uIHJ1HpVj9OpMNRmJbW/hZNOE3vV21mZt+6a04yF6KhgHINv5/2OxOFNQOsHbKfLoKB8MFN//CzTH269nODlFX/inbf+gw3r/pnMMV9enM2+Z3gTb+f9ju9+93fdIlchQknm9FzqTp1gxyevMDGh/qbfX3IwmhHj55M5PacLohNCCCFkhjogGk/XopqUCx+4vXuD3tbebFJoqDtxxZ/Z7XY2FO1gwOS5lGlDMVvCmDgwgvF9+5AS1YfxffswITYCsyWMMm0osZPnsqFoh3y4F34TbGOw9thfibC1/q5Vn1LZdGAsL6wsvlhMt3loxk95YWUxmw6M5Vhd68uuCJtC7bEbX4kVbLkKEWpmzVlIcuZS1u9NYG9V2HVXXO05Gsb6faNIyVrKrDkLAxSpEEKInkhmqAPA8LTejXmd23g6pK29oV1716aqqjy1+Hm0Xy9mc0E+Hxe/T0PdCQzNjWK2ENV/EGlpDzA1c5ociCQ6RbCMwUOHDvEd8zEMw6C4oh99b32UP778Lzdcaj148GD+uG47//Li0xw58Bb3jv6GvuoxDh8+zMiRI4M6VyFCVeb0XB6clkPxtiI2rVtF5Wc7UU0GI267HTWsP1nZc3lm0hRZ5i2EEKLLySe7AFBMrXdjejy+9dPWXjHf+K5Ns9lM1kOPXFwSLkRXC/QYfOvN3zEytoE3S2/liYWv8sMJ9960jaqqPPP8Mj7+KJ03ls8ndcQRNvzpNZ598f99a7tA5ypEKFMUhfvuT+e++9NJTU1FB373ZkmgwxJCCNHDSUEdAJExA9HrDZqbFTyeS8u+DcPgr1Ue9v1Nx3LZT8atQeJtKt+LN118+657WttrUQZR/QcFIg0huoWS7R9w+8j7WPUffyIqKqpDbX84IY27vvsRv/6nn3B41wc8+2InBSmEEEIIIbolKagDYMKkKRTvLyTGbOaTCo0f3GmmrFLjr1UexsSb+B/3W67YW+3xGOz5m87aIhffG6Ey7nYzn1To9Deb+eq8ibS0BwKYjRDByzAMnvjlMzya/ZjXS0Gjo6P53b++x4b1f8YwDFlSKoQQQgghLpJDyQJgauY0aq2DOfq1mz0HPHy4z03DOYOfT7GSdLv5moPKTCaFcbeb+Xl6GA3nDD781M3eAwZHvnZTax3M1MxpAcpEiOCmKArZOT/xuQj2Vz9CCCGEECK0SEEdAGazGS0sipRbwjG5TLS4YVLijfdBX25SooXmFjC5FFJuCUcPi5ZDjoQQQgghhBAiAKSgDgBN0zC7GhnUR8WwGvx9cvuK6TYZKRaMMINBfVTUlgY0TeukSIUQQgghhBBC3IgU1AGwuSCfgc4ajta7Sb7LuyWk4+5QqKp3M9DlYHNBvp8jFEIIIYQQQghxM1JQB8BH24oYHGFwrNlFUsL178K9maRRKtXNLm7p5eHj4vf9HKFoo2ka776zkQVzHqe+uoLGYweY9XA6C+Y8zrvvbJTVAUIIIYQQQvRgsvk2ABpP1xJnUggPN645gKy91AvtzSaFhroTfo5Q6LrOsiUvsKe4kFhnDYMjDB4beeFn1ViGXm9QvL+QvFVLGJuWwcJFz6Gq3r0cET2bpmlsLsjno21F1FdXYFIMZj2cTmTMQCZMmsLUzGlyTkIXMwyDDz/YQv7611CbylFNBr/48TgUawzTsudy3/3pckCdEEIIIQApqAPC8LgBMPm4PqCtvaG5fYxIXM7hcLBgVi7Dzh8iyebhqOampNZ14QUIeDzQ3KwwNNxKUsQxTm1dTfbH21m+Ng+73R7o8EU3IS9tglPBpjwK1i3ntugqMm5tIbPtZ0IFHo/B7rdLyXtjOFm5C8icnhvQWIUQQggReFJQB4Biaj2EzOPxrZ+29oq5Y4eaiRtzOBw8mZtBstVBldNFRZOL5DsVMhPUa+4GLzvoouTzFuIsVhKtFTyZm8HKvEIpqsVNyUub4PTG6pf5ovRVHk2sv/CVa68wvCe+hXs4xI6Cp6k7dYJZcxZ2faBCCCGECBpSUAdAZMxA9HqD5mYFj8e7Zd+6p7W9FmUQ1X9QJ0TZ8+i6zvyZOSRbHRw44yTGrjMv5fovK0wmhZQ7zKTcAUW73FTUeEju52D+zBw2FO2QmURxQ/LSJjgVbMrji9JXmZhQf/NvBiYm1FOy8xUKBgySmWohhBCiB5NDyQJgwqQpfHnexNBwK7sP6V71sfugzrBwK1+dN/HDtAf8HGHPtGzJCwxvrqSq0UWMXWdKSvveN01JMdNviE5Vo4vhzZUsX/JiJ0cququrX9pExLmZN8NC8mgzpxoM/r3UwoodYfx7qYVTDQYpd5iZ96iFiDg3Fd84Sba2vrTRde/+3RDXZxgG7+Ytb3cx3SZ1VD0F617BMIxOikwIIYQQwU4K6gCYmjmNk2F2RkRbKP3Muw9iZQcM4qMtnAyzMzVzmp8j7Hk0TWNPcSEDbB6Ou13tLqbbpKeYOa65GGDzUFb8npz+La7rei9t6ho8vPSX3iz75rtUzcimYe5PqZqRzbJvvstLf+lNXYNHXtp0sg8/2MLIvlVetb01uoribUV+jkgIIYQQ3YUU1AFgNpsZm5bBKaeJOIuVol0dK7627NKIM1s55TSRlPagnADsB5sL8on1193gLXI3uLjW9V7a1DV4WPppLPrsGURljccSGY6iKFgiw4nKGo8+ewZLP42lrsEjL206Uf761xgzrMWrtmOGOdm0bpWfIxJCCCFEdyEFdYAsXPQc1b0SiI+08nWN2u6iessujW9qVOIjrVT3SmDBomc7OdKeQe4GF53tei9t1uyLpPcTGahh138ppoaZ6f1EBmv2RQLy0qazGK7TPl1haLhO+zkiIYQQQnQXUlAHiKqqLF+bR6nLzuh+Ns4dt7Big5tdBzR0z5XLwHWPwScHNFZscHP+uIXR/WyUuuwsX5snh1/5SePp2ot3e8vd4KIzXP3SpvaMh4Yhw25YTLdRw8w02odRe8YjL206iUd3+dTe0OXqQiGEEKKnkrXCAWS321mZV8j8mTkMt1UyMtpKVaWbleVXXp/jdCoMtVlJ7W/hpNPEXvV2VuatC+qTfjVNY3NBPh9tK6K+ugKTYjDr4XQiYwYyYdIUpmZOC6ql6nI3uOhsjadribvspc3Ww1Z6zbi7XW3D772brRsr+VmyW17adAKTavWpvaLK1YVCCCFETxU8FU0PZbfb2VC0g+VLXqSs+D0GWhxMjLJgvmyWVPMYfHXeRJlmZ9zkB/mXRc8G7cy0russW/ICe4oLiXXWMDjC4LGRF3JpLEOvNyjeX0jeqiWMTctg4aLngiIXuRtcdLarX9o0tpgw97G1q6050kZji3JFe3lp4z+KNcanKwwVa0wnRCWEEEKI7kAK6iCgqipPLX4e7deL2VyQz8fF71O8pRCTYpA4Nomo/oNIS3sg6GZ1r+ZwOFgwK5dh5w+RZPNwVHNTUnvlbHtzs8LQcCtJEcc4tXU12R9vZ/navIDPtsvd4KKzXf3SJjLMw+mzTiyR4TdtqzU6iQwzrmgvL238Z1r2XPa8vYvE+I4v/S6vtjE955edEJUQQgghuoPgrc56ILPZTNZDj5D10COkpqYCsHbjlsAG1U4Oh4MnczNItjqocrqoaHKRfKdCZoJ6RXHq8RiUHXRR8nkLcRYridYKnszNYGVeYUCL6gmTplC8v/DC3eAukkd3/Ffj8rvB0+RucHGVq1/aTB7ZwrLtnxKVNf6mbZu3f8oDI1vQPYq8tOkE992fTt4b8SRyqMNtj9THs2jSlE6ISgghhBDdgRxKJnym6zrzZ+aQbHVw4IyTiDg382ZYSB5tvmam12RSSLnDzLxHLUTEuan4xkmy1cH8mTnouh6gDORucNH5JkyawpfnTRde2ugM7GsiqqYaveXbT/jXWzQiHdXE9jVd8dLmh/LSxm8URSErdwE7DkV3qF3JwWgycxagKN4dZNjlDAN7SwuG4d2/cUIIIYS4lhTUwmfLlrzA8OZKqhpdxNh1pqS0b3Z3SoqZfkN0qhpdDG+uZPmSFzs50huTu8FFZ7veS5vZiY00vV54w6Jab9Foer2QOfc0AvLSpjNlTs8l/vvz211UlxyMZsT4+WROz+nkyPynn64zpbGR+sOHAx2KEEIIETKkoBY+0TSNPcWFDLB5OO52tbuYbpOeYua45mKAzUNZ8XtoWscKWX+Su8FFZ7reS5v+USaevvsk6pq3aMzfibuhGcMwcDc005i/E3XNW/wq8SQxkSZ5adMFZs1ZSHLmUtbvTWBvVdh1rzDcczSM9ftGkZK1lFlzFgYoUu+McDoxgJr35co1IYQQwl/kE5nwyeaCfGKdNRzV3CTf5d2yx3F3KFRVuhlocbC5IJ+shx7xc5Tt03Y3+JO5GST3c1B13MWKDS7G3amQNEpFvWz5uu4xKDuos/tzgziLldH9rJS67Kz8N7kbXNzYwkXPkf3xdhKtFVTUeChCY0qKmcU/aqL2zH62bqyksUUhMqx1j/XAW02A6eJLm9H9rOwzJ/BbeWnTaTKn5/LgtByKtxWxad0qKj/biWoyGHHb7ahh/cnKnsszk6Z0i2XeeksLNVu34rnwovJ2pxMFOJqfT+8LZ1aYzGaGTJ6MGhYWwEiFEEKI7ksKauGTj7YVMTjCoKTWRWaCd4Vk0iiVleUuJkZZ+Lj4/YAV1BDad4OLwLvZS5ufJV+6Ckv3KHxyQJOXNgGgKAr33Z/Offenk5qaig787s2SQIfVYVpzM+WvvELzqVOoNhvWC3unXQ0N7Pnnf0Z3OgkfMIC4CROkoBZCCCG8JAW18Enj6VriTMqFYtO7GRv1QnuzSaGh7oSfI+y4ULsbXAQXeWkjukpYdDR//9577HrmGU588snF/8P3uFyo4eEMvvdevr9kCZbevQMapxBCCNGdSUEtfGJ4WmfUTD7uxm9rb2jub//GLhIqd4OL4CQvbURXsfbpww9XrODdtDSam5svfT0ykh+uWNEtlq4LIYQQwUwqAeETxWQBWmfUfNHWXjFbfIzIv7rz3eAiuMlLG9FVzn35Jc66Oty0nkRqtdlw1tVx7ssvL+6lFkIIIYR35FNaN6RpGgWb3ubPf1zDiWNHUbQWTAqYLDZih4wg538+Qeb0h7vkQ3hkzED0eoPmZgWPx7tl37qntb0WZRDVf1AnRCk6StM0Nhfk89G2IhpP12J43CgmC5ExA5kwaYoUedfh7TOTlzaisx3buhXD46HSZmN3RAT/36RJ/G39emo++IDRM2cGOjwhhBCiW5NPxN2Iruv8339+nvw//wFLyxm+299Cyi2Wy06fPofu/isfLp3Da//nfzH50f/J//rfz3fqMtEJk6ZQvL+QoeFWdh9ykTy640Nq90GdYeFWvjpvIi3tgU6IUrSXrussW/ICe4oLiXXWMDjCIO7y083rDYr3F5K3aglj0zJYuOi5Hr8MWZ6ZCHZ9R40idc0aXl+8GICkZ5/llh/9CGS5txBCCOEzKai7CYfDwZwfT6eu6nN+MNjKec3Mp2ecfNp0nsgIMCkKmg7uZoWE3mFMiWvmeNEqpv9lK6v+451OO8hoauY08lYtISniGCWftZA8uuN9lB0wSI2xsFuzMzVzmv+DFO3icDhYMCuXYecPkWTzcFRzU1J75UFZzc0KQ8OtJEUc49TW1WR/vJ3la/N67EFZnfHMDMNg29b/JH/9axiu03h0FybVimKNYVr2XO67P132vYoOifvBD6792t/9XQAiEUIIIUKPFNTdgMPhYNZD93PuxBfcGWuhrP48kX0g/e9Uxo60XLHM2uMx+KTCzfv7ncTbbKSYjjLnkQf4/cb3O6XoMZvNjE3L4NTW1cRZrBTtcjMlpf3DassujTizlVNOE0mTH5RlxAHicDhar3KyOqhyuqhocpF8p0JmgnrN+Co76KLk8xbiLFYSrRU8mZvByrzCHldUd8Yza2o4RbjnOHve/gkZt7Zc08/ut0vJe2M4WbkLyJye22W5CiGEEEKI65PqJcjpus4/PZ7N2RNfMOw7KnWqk+/fZWJS4vUP7zKZFH5wp5kf3GmmcKeLii89/F2/WubPzGZD0UedstR04aLnyP54O4nWCipqPBShtauo3rJL45saldH9rOwzJ/DbRc/6PTZxc7quM39mDslWBwfOOImx68xLufH4SrnDTModULTLTUWNh+R+DubPzGFD0Y4es5T5255Z7RkPWw9baXCaiLJ5mDyypV3P7I3VL5NkryHr+1zox7imn3viW7iHQ+woeJq6UyeYNWdhoB6BEEIIIYSg9cBPEcSWLXmBs1/8lVuiTbgiXNw+9MbF9NUyxluIGqxR1ehiSNNBli95sVNiVFWV5WvzKHXZGd3PxrnjFlZscLPrgIbuMa74Xt1j8MkBjRUb3Jw/bmF0PxulLjvL1+b1mGIs2Cxb8gLDmyupanQRY9fbvcJgSoqZfkN0qhpdDG+u7LTxFYyu98zqGjy89JfeLPvmu1TNyKZh7k+pmpHNsm++y0t/6U1dg+eGz6xgUx5flL5K1vdpVz8TE+o5uvMVCjblBfhJCCGEEEL0bFJQBzHDMCjb9h5uTeOcSQMT7S6m22SMt3Dc7WJQhELZhwVomtYpsdrtdlbmFbJXHUW0zUZq/97UVlpZuU5nzSY3b7zrZs0mN6vW65ystJLavzdRNht71VE9crlwIGiaxrvvbGTBnMepr66g8dgBHp/+AIV/+j0DbB6Ou10dWq4PkJ5i5rjmYoDNQ1nxe502voKJpmnsKS684pnVNXhY+mks+uwZRGWNxxIZjqIoWCLDicoajz57Bks/jaWuwXPNM3O73bybt5yJCfUd6id1VD0F617BMIybBy2EEEIIITqFFNRBrOGb07ScPEp0uImBA2DMCO9mcJPuUKiqdzOguYbNBfl+jvISu93OhqIdDJg8lzJtKGZLGBMHRjC+bx9Sovowvm8fJsRGYLaEUaYNJXbyXDYU7ZBiupPpus7Sl35D7qRxFL/8C2KPFPDYSA+5txkoX+zkrj7NHK13k3yXdwddjbswvga2ODp1fAWLzQX5xDprrnhma/ZF0vuJDNSw67+QUMPM9H4igzX7IoErn9mSl55jZN8qr/q5NbqK4m1F/k5RCCGEEEK0kxTUQczddAanS8OpemhqMbjnNu8K6nGjVaqbXdj7wMfF7/s5yiupqspTi59n3bYy0haupm5kFn8+bCLvbwqHosZRNzKLtIWrWbetjKcWd+6VXqL14Kzs9FTqtq4myXwMt+aipPYcO8+cZVfDWWo8zXzhdHHorJOkBC9f2IxqHV+39PJ0+vgKBh9tK2JwhMGxZhdJCSq1Zzw0DBl2wyK4jRpmptE+jNozniueWcn7bzJmWItX/YwZ5mTTulX+TE8IIYQQQnRAyB1KVl5eTmpqaqDD8Fl5eTnfMTsh0kR4uIHVolxx4m9HqCaF8HADs0mheEthlz+f6noXAJF156HuKHsrXuPVla91aQz+UF5eDtBtxldLi5PmLw/x6Ej1pqdQr/lPvduOr67+udRXV/DYSOXC1VgKWw9b6TXj7na1Db/3brZurORnye6Lz8zTfAqTyex1P5Wf7Qy6Mdndfle+jeQSnMrLyxkzZkygwxBCCCFCr6AOJaoCigImP6wjaOvDpMh+y57AMAwaHIf5ye1qu07u7h3u273GPWl8teXYlnNjiwlzH1u72pojbTS2KFe0N6uGT/2oJgO9vcELIYQQQgi/CrmCesyYMZSUlAQ6DJ+lpqZSX12BYTTh8fjeX1sfiWOTWLtxi+8ddkDbbEh3/7l0pzyWvvQb6jwVVDU6O3Ryt7d60via9XA6NJZdzDkyzMPps04skeE3bas1OokMay2g29pbwyIAl9f9jLjtdn73Zok3qXSa7vS7cjOSS3AKhVl2IYQQoUH2UAcxt9JaBDU3K7jcBh6Pd7N/useguVlB8xhE9R/kzxBFELreKdQ349aQ8dVOkTEDL+bs8RhMHtnC+e2ftqtt8/ZPeWBkyxXPzGn09qkfxRrjSzpCCCGEEMIHUlAHMUvvvtjCzNh0E73DFPb+zbuFnWUVOsPCrTjOwg/THvBzlCLYXO8U6ptJvE31enztPtg6vr46b+oR42vCpCl8ed7E0HAruw/pDOxrIqqmGr3l268M01s0Ih3VxPY1XfHMUh/4MeXVYV71U15tY3rOL/2ZnhBCCCGE6AApqINYVL8YwgaMoL7ZQ+0pKD/qZcFzwCA+2sKpXkOZmjnNz1GKYHP1KdTt8b14k9fjq+zC+DoZZu8R42tq5jROhtkZEW2h9LPWWf3ZiY00vV54w2JYb9Foer2QOfc0Alc+s0WLX+DwmXiv+jlSH0/apCn+TlEIIYQQQrSTFNRBTFEUxk16EIvZTITHDB7Yts/doT4Kd7qJs1g5cc5gXNqDmM0ht21eXKXxdO3Fk7fbe3K3oih8b4Ta4fG1ZZdGnNnKKaeJpB4yvsxmM2PTMjjlNBFnsVK0S6N/lImn7z6JuuYtGvN34m5oxjAM3A3NNObvRF3zFr9KPElMpOmaZ2axWMjKXcCOQ9Ed6qfkYDSZOQtQFN8OlBNCCCGEEN4L/U+/3dzCRc9R9lExXx3cwzDVSmWNC3AzKfH6JzZf7r2dbhq/NDO6n5V96ij+76JnOz9gEXCGp7Uo7ujp8ONuN/Php2627Wvf+NqyS+ObGrV1fJkT+G0PGl8LFz1H9sfbSbRWUFHjoQiNKSlmFv+oidoz+9m6sZLGFoXIsNa90QNvNQGmGz6zzOm51J06wbtbfkPW90037afkYDQjxs8nc3pOQJ+DEEIIIURPJwV1kFNVlVf+sI5ZD91PzYkvGDnAxif7nXz+RQvj71AZO1JFvWwWUvcY7KrQ+e/9OvE2G6P7WfmvcwP5/cZ1qGr7lv+K7k0xtRbD3pwOf9/dFsoqNd7Y0sLoISopo68dX2UHdXZ/bhBnsTK6n5VSl52V/5bXo8aXqqosX5vHk7kZJPdzUHXcxYoNLsbdqZA0SuVnyZdm+nWPwicHtJs+s1lzFvL7NX/gs2NfkT7OzJhhzmv62XM0jCMN8WTlzCdzem6X5iyEEEIIIa4lBXU3YLfbWfvOB8z+8TQ+P/o5P7D3olnzUPRfLRSVakRGgElR0HRwNysk9AnjgYERfNXk4RN9BL/f+A52uz3QaYguEhkzEL3+0inU7V323Wbc7WYSbzXx0r9q7P4rF5aOtxboTqfCUJuV1P4WTjpN7FVvZ2Xeuh45vux2OyvzCpk/M4fhtkpGRlupqnSzstzl9TPrHTUAw+jPuEd+xaZ1qzBcpzF0N4pqQQ3rT1b2XJ6ZNEWWeQshhBBCBAkpqLsJu91O4V9Kefmf/w+b/rwWi/MMdw+wMSTagvmygknzGByr19lyPJwp2Y+z7Jnf9KiZQ9F6CnXx/sILp1C7SB7d8V/zXQc9DLSaSR4Yfs34+uq8iTLNzrjJD/Ivi57t0ePLbrezoWgHy5e8SFnxewy0OJgYde3vZEeemaIo3Hd/Ovfdn94VKQghhBBCCB9IQd2NqKrKr557gYXPPEfBprd5819fZ1/1ERStBZMCqtVG7JBbyX7656yc/nCPOCBKXGtq5jTyVi0hKeIYJZ+1kDy6433sO2AQG6ayscrEmMSxoGsoZgtR/QeRlvYAUzOnyfi6QFVVnlr8PNqvF7O5IJ+Pi9+noe4EhuaWZyYCzjAMPvxgC/nrX0NtKkc1Gfzix+NQrDFMy57Lffeny4oHIYQQwgfy6a4bMpvNPDQjm4dmZAc6FBGELp5CvXX1hVOo3UxJaf+v+pZdGnEWK9E2G9kPz+Wpxc93XrAhxGw2k/XQI2Q99EigQxECgIJNeRSsW85t0VVk3NpC5si2wrkCj8dg99ul5L0xnKzcBbInXwghhPCSXJslRAhauOg5qnslEB9p5esalaJd17/X+Gptp1DHR1qp7pXAgh50crcQoeSN1S9TWvA0jyYeIjHedc1ZCiaTwj3xLWTfc4jSgqdZ+/tlAYpUCCGE6N6koBYiBLWdQl3qsjO6n41zxy2s2OBm1wEN3WNc8b26x+CTAxorNrg5f9zC6H42Sl12lq/tWSd3CxEqCjbl8UXpq0xMqG/X909MqOfozlco2JTXyZEJIYQQoUeWfAsRojrjFGrhf7LHVfiTYRi8m7ec7HvaV0y3SR1Vz4Z1r/DgtBwZb0IIIUQHSEEtRAjrjFOohf/IHlfhbx9+sIWRfau8antrdBXF24rkhHkhhBCiA6SgFiLEXe8U6uIthZgUg8SxSXIKdYC8sfplvih9lUcTW2cSa88YbD1spcFpIsrmYfLIFu6Jb+EeDrGj4GnqTp1g1l5RMFQAACAASURBVJyFAY5aBLv89a+RcWsL0PFZ5jHDnGxat0oKaiGEEKID5NOzED3E5adQp6amArB245bABtVDXb7Hta7Bw5p9kTQMGUavGXdj7mPj67NOlm3/lKjyamYnNjIxoZ6Sna9QMGCQzFSLb2W4Tl9zAFl7qSYFw3XazxEJIYQQoU0OJRNCiC7Utse1rZhe+mks+uwZRGWNxxIZjqIoWCLDicoajz57Bks/jaWuwUPqqHoK1r2CYRg3/0tEj+XRXT61N3S3nyIRQgghegYpqIUQogtdvsd1zb5Iej+RgRp2/cVCapiZ3k9ksGZfJHBpj6sQN2JSrT61V1SLnyIRQgghegYpqIOIpmm8+85GFsx5nPrqChqPHWDWw+ksmPM4776zEU1r313CQojglb/+NcYMa6H2jIeGIcNuWEy3UcPMNNqHUXvGc3GPqxA3olhj8Hi8W8WgewwUa4yfIxJCCCFCmxTUQUDXdZa+9BtyJ42j+OVfEHukgMdGesi9zSChsYzYIwUUL/sHcieNY+lLv0HX9UCHLITwUtse162Hw+h1793tahN+791sPRwme1zFTU3Lnkt5dZhXbcurbUzP+aWfIxJCCCFCmxTUAeZwOMhOT6Vu62qSzMdway5Kas+x88xZdjWcZeeZs5TUnsPtbiHJfIy6ravJTk/F4XAEOnQhhBfa9rg2tpgw97G1q4050kZjS+tBU7LHVXyb++5P5/CZeK/aHqmPJ23SFD9HJIQQQoQ2OeU7gBwOB0/mZpBsdVDldFHR5CL5ToXMBPWKU1o9HoOygy5KPm8hzmIl0VrBk7kZrMwrxG63BzADIURHte1xjQzzcPqsE0tk+E3baI1OIsNal/HKHlfxbRRFISt3ATsKnmZiQn2725UcjCYzZwGK4t0J4UIIIURPJTPUAaLrOvNn5pBsdXDgjJOIODfzZlhIHm2+5soTk0kh5Q4z8x61EBHnpuIbJ8lWB/Nn5sjybyG6mbY9rpNHtnB++6ftatO8/VMeGNkie1xFu2ROzyX++/PZcSi6Xd9fcjCaEePnkzk9p5MjE0IIIUKPFNQBsmzJCwxvrqSq0UWMXWdKSvsWC0xJMdNviE5Vo4vhzZUsX/JiJ0cqhPCntj2uA/uaiKqpRm/59sMG9RaNSEc1sX1NssdVtNusOQtJzlzK+r0J7K0KQ7/qoDLdY7DnaBjr940iJWsps+YsDFCkQgghRPcmBXUAaJrGnuJCBtg8HHe72l1Mt0lPMXNcczHA5qGs+D05/VuIbuTyPa6zExtper3whkW13qLR9Hohc+5pBGSPq+iYzOm5/HHjbsY98ic2H5nI0nfMLMtXeffz0Ww5mkryjD/xx7fKyJyeG+hQhRBCiG5L9lAHwOaCfGKdNRzV3CTf5d1+tXF3KFRVuhlocbC5IJ+shx7xc5RCiM5w9R7Xp+8+yZo1b9FoH0b4vXdjjrShNTpp3v4pkY5qfnVPIzGRJtnjKryiKAr33Z/Offenk5qaig787s2SQIclhBBChAwpqAPgo21FDI4wKKl1kZmgetVH0iiVleUuJkZZ+Lj4fSmohehGMqfnUnfqBDs+eYWJCfUs/lETtWf2s3VjJY0tCpFhrXusB95qAkyyx1UIIYQQIkhJQR0AjadriTMphIcb1xxA1l7qhfZmk0JD3Qk/RyiE6Gyz5iykYMAg1uct57a+XzBmmJOfJV+6Ekv3KOw5GsaRhniycubLslwhhBBCiCAkBXUAGJ7WD80mH3ewt7U3NLmXVojuKHN6Lg9Oy6F4WxGb1q2i8rOdqCaDEbfdjhrWn6zsuTwzaYos8xZCCCGECFJSUAeAYmq9R9bj8a2ftvaKWe6lFaK7kj2uQgghhBDdl5zyHQCRMQPRPQbNzQqeq64yaa+29prHIKr/ID9HKIQQQgghhBDiZqSgDoAJk6bw5XkTQ8Ot7D6ke9XH7oM6w8KtfHXexA/THvBzhEIIIYQQQgghbkYK6gCYmjmNk2F2RkRbKP3MuxnqsgMG8dEWTobZmZo5zc8RCiGEEEIIIYS4GSmoA8BsNjM2LYNTThNxFitFu7QOtd+ySyPObOWU00RS2oOYzbIVXgghhBBCCCG6mhTUAbJw0XNU90ogPtLK1zVqu4vqLbs0vqlRiY+0Ut0rgQWLnu3kSIUQQgghhBBCXI8U1AGiqirL1+ZR6rIzup+Nc8ctrNjgZtcBDf2qg8p0j8EnBzRWbHBz/riF0f1slLrsLF+bh6qqAcpACCGEEEIIIXo2WSscQHa7nZV5hcyfmcNwWyUjo61UVbpZWe4iPNzAZGq9GsvpVBhqs5La38JJp4m96u2szFuH3W4PdApCCCGEEEII0WPJDHWA2e12NhTtYMDkuZRpQzFbwpg4MILxffuQEtWH8X37MCE2ArMljDJtKLGT57KhaIcU00IIIYQQQggRYDJDHQRUVeWpxc+j/Xoxmwvy+bj4fYq3FGJSDBLHJhHVfxBpaQ8wNXOaHEAmhBBCCCGEEEFCqrMgYjabyXroEbIeeoTU1FQA1m7ccsPv1zSNzQX5fLStiMbTtRgeN4rJQmTMQCZMmtKuAtwfffhbMMYUDOS5CCGEEEIIEVzk03c3pOs6y5a8wJ7iQmKdNQyOMIgzKZf+vN6geH8heauWMDYtg4WLnrvm8DJ/9BGMeYUieS5CCCGEEEIEJymouxmHw8GCWbkMO3+IJJuHo5qbktorDzFrblYYGm4lKeIYp7auJvvj7Sxfm3dx37U/+gjGvEKRPJcrGYbBhx9sIX/9axiu03h0F2pTNQ3NZrZt/U/uuz8dRVFu3pEQQgghhBB+IAV1N+JwOHgyN4Nkq4Mqp4uKJhfJdypkJqiYLpux9HgMyg66KPm8hTiLlURrBU/mZrAyrxDA5z78Xaj5I69QLB7luVypYFMeBeuWc1t0FRm3tlx6Bt8Dj8fN7rd/St4bw8nKXUDm9NzABiuEEEIIIXqEbl9QX76vtL66ApNiMOvh9JDbV6rrOvNn5pBsdXDgjJMYu868FMt1v9dkUki5w0zKHVC0y01FjYfkfg7mz8zGMPCxjxw2FO3w25Ji/+Tl35iCgTyXK72x+mW+KH2VRxPrL3zlyllok0nhnvgW7uEQOwqepu7UCWbNWdj1gQohhBBCiB6l216bpes6S1/6DbmTxlH88i+IPVLAYyM95N5mkNBYRuyRAoqX/QO5k8ax9KXfoOt6oEP2ybIlLzC8uZKqRhcxdp0pKe17STAlxUy/ITpVjS6GNB2k6Yu/+tTH8OZKli950ZdUruCPvPwdUzCQ53JJwaY8vih9lYkJ9Tf/ZmBiQj1Hd75Cwaa8To5MCCGEEEL0dF4X1Iqi2BVF+YuiKAcVRTmgKMo/+jOwb+NwOMhOT6Vu62qSzMdway5Kas+x88xZdjWcZeeZs5TUnsPtbiHJfIy6ravJTk/F4XB0VYh+pWkae4oLGWDzcNztandx1SY9xcxxzcWgCAWXpvGVu8XrPgbYPJQVv4emaR1qfz3+ysufMQUDeS6XGIbBu3nL211Mt0kdVU/BulcwDKOTIhNCCCGEEMK3GWoNWGgYxiggBZirKMpo/4R1Y237ShO1CuqdTkpONxGX4GJejsrs6RZ+nmVh9nQL83JUBt3uoqSuiXqnk0StdV9pdyyqNxfkE+us4Wi9m+S7vDtwadwdClX1bqLDTYy707sfe1sfA1scbC7I96qPy/kzL3/FFAzkuVzy4QdbGNm3yqu2t0ZXUbytyM8RCSGEEEIIcYnXBbVhGCcMw9h34X+fBQ4Ct/grsOu5el9pRJybeTMsJI82X3FIE1zaVzrvUQsRcW4qvnGSbG3dV9rdln9/tK2IwREGx5pdJCV4tx82aZRKdbMLp+oheZRvfdzSy8PHxe971cfl/JmXv2IKBvJcLslf/xpjhrV41XbMMCeb1q3yc0RCCCGEEEJc4pfTuhRFGQbcDZT6o78bubiv1NnxfaVb0Kg67mKweoAxo27lO3FDOzNUn5WXlwOQmppKfXUFj41ULlyV5N2MpWpqbQ/43IfZpFC8pZDU1NR2tbs8l8v5M6+OxuSNG+Xhb13xXLoqF1+pTeVkjvT+GVR+tjPoc7xcd/m53Eyo5AGSS7AqLy9nzJgxgQ5DCCGE8P1QMkVRegPvAP9kGEbjdf78CUVR9iiKsqeurs7rv8df+0pv6WMirKW+W+2tNClthbCP/Zj808flMfnUlx/zury/7k6eyyWqybfYfW0vhBBCCCHEt/FphlpRFAutxfSbhmFsut73GIbxOvA6wNixY73+dHtxX6nm477SSjffvyWMtHm/JOuhR7wNp9O1zSCUlJQw6+F0aCzD4/GtT1/bX95H4tgk1m7c0q42l+dyOX/n1ZGYvHGjPPytK55LV+Xiq1/8eBxQ4XX7Ebfdzu/eLPFbPJ2tu/xcbiZU8gDJJViFwiy7EEKI0ODLKd8K8AfgoGEYy/0X0vX15H2lkTED0T0Gzc0KHo937yTa2vujD81jENV/kFd9XM6fefkrpmAgz+USxRrj0zNQrDF+jkgIIYQQQohLfFlU+gPgJ8C9iqKUX/gv3U9xXaPxdO3FfaH+2FfaUHfCzxF2ngmTpvDleRNDw63sPuTdgWq7D+oMC7di002UHvStj6/Om/hh2gNe9XE5f+blr5iupmka776zkQVzHqe+uoLGYweY9XA6C+Y8zrvvbOyUK6m6w3PpKtOy51JeHeZV2/JqG9NzfunniIQQQgghhLjEl1O+/8swDMUwjO8ahjHmwn+dtt7W8LgB/+0rNTS3jxF1namZ0zgZZmdEtIXSz7ybrSs7YBAfbaG+2UPZ596tJW7r42SYnamZ07zq43L+zMtfMbXRdZ2lL/2G3EnjKH75F8QeKeCxkR5ybzNIaCwj9kgBxcv+gdxJ41j60m/8enJ8MD+Xrnbf/ekcPhPvVdsj9fGkTZri54iEEEIIIYS4xOdDybqKYrIAvu8DbmuvmC0+RtR1zGYzY9MyOOU0EWexUrSrY7OiW3ZpxJmtnDhnYDWbucUS5nUfp5wmktIexGz2/YB4f+Xlz5ig9a7z7PRU6rauJsl8DLfmoqT2HDvPnGVXw1l2njlLSe053O4WkszHqNu6muz0VL/dcR6szyUQFEUhK3cBOw5Fd6hdycFoMnMW0LozRQghhBBCiM7RbQrqnr6vdOGi56julUB8pJWva9R2F1lbdml8U6MSH2nF0Xs0feLH+NRHda8EFix61pdUruCPvPwZk8Ph4MncDBK1CuqdTkpONxGX4GJejsrs6RZ+nmVh9nQL83JUBt3uoqSuiXqnk0StgidzM/xWVAfbcwmkzOm5xH9/fruL6pKD0YwYP5/M6TmdHJkQQgghhOjpuk1B3dP3laqqyvK1eZS67IzuZ+PccQsrNrjZdUBDv+oFg+4x+OSAxooNbs4ftzC6n41Sl53lf1jHK39Y51sfa/NQVe8Oheu0vPwUk67rzJ+ZQ7LVwYEzTiLi3MybYSF5tPmaffsmk0LKHWbmPWohIs5NxTdOkq0O5s/M8cvy72B6LsFg1pyFJGcuZf3eBPZWhV33Gew5Gsb6faNIyVrKrDkLAxSpEEIIIYToSbrNWtCpmdPIW7WEpIhjlHzWQvLojvdRdsAgNcbCbq177iu12+2szCtk/swchtsqGRltparSzcpy14XD2lqXtDudCkNtVlL7WzjpNLFXvZ2Veeuw2+0AfukjGPPy1bIlLzC8uZIqp4sYu97uu86npJjZgkbVcRfDbZUsX/IiTy1+3ud4guW5BIvM6bk8OC2H4m1FbFq3CsN1GkN387cjX9DQbOa3r/wHz0yaIsu8hc8Mw+DDD7aQv/411KZyVJPBL348DsUaw7Tsudx3f7qMMyGEEEIA3WiGWvaVtrLb7Wwo2sGAyXMp04ZitoQxcWAE4/v2ISWqD+P79mFCbARmSxhl2lBiJ89lQ9GOK4orf/QRjHn5QtM09hQXMsDm4bjb1e5iuk16ipnjmosBNg9lxe/57fTvQD+XYKMoCvfdn87qf93C794s4/frP0XvPYbe/e+UIkf4RcGmPGbOSGLP2z8h49YdPP2QxsJpOll3VpBx6w52v/1THn8kiYJNeYEOVQghhBBBoFtVlQsXPUf2x9tJtFZQUeOhCK1dhU/bvtLR/azsMyfw226+r1RVVZ5a/DzarxezuSCfj4vfp6HuBIbmRjFbiOo/iLS0B5iaOe2GLw780Ucw5uWtzQX5xDprOKq5Sb7Lu6Js3B0KVZVuBlocbC7IJ+uhR/wSWzD+rIQIRW+sfpkvSl9lxt1n+GuVh3/7QMdy2a+UW4PE2zw8mniQjwqepu7UCdleIIQQQvRw3erTd9u+0idzM0ju56DquIsVG1yMu1MhaZSKetk+V91jUHZQZ/fnBnEWK6P7WSl12Vn5b6Gzr9RsNpP10CM+FW7+6MPfAhHTR9uKGBxhUFLrIjPBu/GRNEplZbmLiVEWPi5+3+/xB+PP6v9v716jozjvPI//nq5WI0ECwsvF2G4D4mLheGNGiIs9J7Z2BMRowZLweI2Uyc4m9sxxBntmgTMck5N45yRnj+fMicE7vs2Jmdmdc9YCxkRYxhG2sWZFvOsgLrZih1uCBUbYmMvYgiFGSN397AtJCRgGtaqru7q6v583SK16qn6Pqkr0v6uep4Bc0dTYoCNtT6nInNH61xKaWRLSf1lYcNn8CYmE1Z5fx7V+W49un3JGH7y9Tk3jJqh6ab2PyQEAgJ8CVVBLjCtFepw784luCJn+Y8jdFWqnv304ZHT29AmPEwJIF2utXm5YqzHmtHok/cmiyFWXC4WM5twS1pxbwtr+Tq+MOa2mDet0b20dww0AAMhTgRlDfSnGlcJrNtErSQqleEYMtLex3hQTAciUN99olvnNQVlJC8oKkmqzoKxAiYSk8wfVsn1bWvMBAIDsFbgr1AOuNq60pXmrQsaqrHw240oxJCbU9yY6kUhtPQPtTTi5N+UA/Ne44RmdPX9RD9w1bEjtFs4q0AvN3fpJw9Oav7AqTekAAEA2C3yleem40oqKCknS+pea/Q2FwBk55nrFu6wuXDBKJNzd9h1P9LWPjbIaNXZCGlJiAI81gpdOHP9A5VPczZ1w+xRHe493eJwIAAAEReALasALdy1YpJb3tmpiUUS7D/Zo7q1DPzV2H4hrUlFEH30eUmXlPWlICalv8qimDWs1rbhDS6ZeVPX0gcJ5vxIJq92b29TwwmTV1K9ksigk5bNPT2rWf3BXUM+a5qjlvZMeJwIAAEERyDHUgNcWV9fq5LCophQXqO1962odu/ZZlRQX6OSwqBZX13qcEFLfY43amlbrgbKDKivpueJOglDIaFbJRS2bdVBtTau1/u+e9CkpguRLhalNRjiiMMWxIgAAILAoqAH1DR0or1yiU90h3VAQ0badsSG1b94Z0w3hiE51hzS78l7G7afBwGON7i7tSmr5u0u7+h5r1NiQ5mQIOifF2QhDqc5mCAAAAot3AUC/VWse19HhpSoZGdG/HHOSLqqbd8b06TFHJSMjOjq8VCvXfD/NSfPPwGONki2mB1TM6FLThnWy1t1dB8gPI0ePT6n9qNHXe5QEAAAEDQU10M9xHK1d36C2nqhuva5Qv/m4QH+7qVc798UUT1xekMUTVj/fF9PfburV5x8X6NbrCtXWE9Xa9Q1yHHdjMfFve/ONZk0f7W7ip6nFHTzWCNc0cswUJRLuPnSJJ6xGjinxOBEAAAgK7ksFLhGNRvV0w1ateLBOkwsPaXpxRB2HevV0e4+KiqxCob5HY3V3G00sjKhibIFOdoe017lFTzds4FnnabJl47NaMvWipKGPc505qVuNG57hsUb4N9UuW66dm/6v5kwb+ljoPYfDWlr3SBpSAQCAIOAKNfAF0WhUm7bt0LivL9eu2ESFC4bp7utH6M7RX9a8UV/WnaO/rLvGj1C4YJh2xSZq/NeXa9O2HRTTaWR7zqQ0aZTtOeNxIuSS+Qur1HFuuqu2R89PV+WCRR4nAgAAQcEVauAqHMfRX37vrxR77Ht6tWmL3mp5TS3NWxUyVmXlszVq7ARVVt6jxdW1TECWAYl4T0rtbbzXoyTIRcYY1dSv1I6m1UMap996oFjVdSt55jkAAHmMSgC4hnA4rJr77lfNfferoqJCkrT+pWZ/Q+WhkBNJqb1xCjxKglxVvbRep0+d0I6fr0uqqG49UKwpd65Q9dK6DKQDAADZioIaQNYzkTFKJNw9KziesDKRMWlIhVzz0MOr1DRugjY2rNW00Uc0c1K3nEuOuXjC6t0jhTp8tkQ1dStUvbTex7QAACAbUFADyHq1y5Zrz+adKisZ+q3f7UcLmTQKSateWq97a+vUsn2bGjc8o0Pvvy0nZDVl2i1yho1VzbLl+u6CRdzmDQAAJFFQAwiA+Qur1PBCicp0cMhtD3eVaA2TRmEIjDGav7BK8xdWqaKiQnFJz7/Y6ncsAACQhZjlG0DW++2kUQeLh9SOSaMAAACQThTUAAKhemm9Su5YkXRRzaRRAAAASDdu+QYQGEwaBQAAgGxCQQ0gUJg0CgAAANmCghpA4DBpFAAAALIBY6gBAAAAAHCBghoAAAAAABcoqAEAAAAAcIGCGgAAAAAAFyioAQAAAABwgYIaAAAAAAAXKKgBAAAAAHCBghoAAAAAABcoqAEAAAAAcIGCGgAAAAAAF8J+BwAQLNZavflGs7ZsfFa254wS8R6FnIhMZIxqly3X/IVVMsb4HRPIOUE794KWFwAANyioASStqbFBTRvWalpxh5ZMvahQ6HdvhhMJq92b29TwwmTV1K9U9dJ6H5MCuSVo517Q8gIA4BYFNYCkvPDcj3Sk7Sk9UNbV/8rlV5ZCIaNZJRc1Swe1o2m1Tp86oYceXpX5oECOCdq5F7S8AACkgjHUAAbV1NigI21P6e7SrsEXlnR3aZc+eHudmhob0pwMyG1BO/eClhcAgFRRUAO4JmutXm5Ym/Qb5AEVM7rUtGGdrLVpSgbktqCde+nOa63V9td/qj/7VpWc8+2KfP6uvvONOfqzb1Vp++s/5W8NAMAXFNQArunNN5o1fXSHq7ZTizvUsn2bx4mA/BC0cy+deZsaG/Tgf5qtPZu/qSVTd2j1fTGtqo2r5rb9WjJ1h3Zv/s/69v2zudINAMg4CmoA17Rl47OaOemiq7YzJ3WrccMzHicC8kPQzr105X3huR+prWm1Hig7qLKSnssmOJN+NyZ72ayDamtarfV/96SrDAAAuJFzk5K1t7eroqLC7xgpa29vlyT6kkVypR/S0PrinG9X9XR3j7ZxQkaH3n87rb+zfN0v2SxX+iH52xevz7109yUdfyvOnz2l2dFjqrkjufXcXdql1rfXqWncBGYPBwBkBFeoAVyTE0ptXGKq7YF8FbRzz+u81loVJj5KupgewPwNAIBMyrkr1DNnzlRra6vfMVI28Ck9fckeudIPaWh9+c435kja73pbU6bdoudfHHw7buXrfslmudIPyd++eH3upbsvXufd/vpPtWfzNyXFh7yugTHZ8xdWuc4DAEAyuEIN4JpMZIwSCXdXeuIJKxMZ43EiID8E7dzzOm/QxpADAPITBTWAa6pdtlztR4e5att+tFBL6x7xOBGQH4J27nmd1/acuWICsmQ5ISPbc8ZVWwAAhoKCGsA1zV9YpV99VuKq7eGuElUuWORxIiA/BO3c8zpvIt6TUh4b702pPQAAyQh8QR2LxfTyT17Syoe/ra6j+3Xuw3166A+rtPLhb+vln7ykWCzmd0Qg0IwxqqlfqR0Hi4fUrvVAsarrVsoYd1eYgHwXtHPP67whJ5JaHqcgpfYAACQjsJOSxeNxPfnED7SnZavGdx/TTSOs/mjgcR3ndineZdXy3lY1PPOEyiuXaNWax+U4jr+hgYCqXlqv06dOaMfP1+nu0q5Bl289UKwpd65Q9dK6DKQDclfQzj0v8w6MyXZz2zfzNwAAMiWQV6g7Ozu1rKpCp19/TnMKjmnil/vGS13KCRlN/JLVnIJjOv36c1pWVaHOzk6fEgPB99DDqzS3+m+0cW+p9nYMU/wLkw/FE1Z7Phimje/M0Lyav9FDD6/yKSmQW4J27nmVN2hjyAEA+SlwV6g7Ozv1aP0SzY10qqAouU+txxdZXRfbr0frl+jphq2KRqNpTgnkpuql9bq3tk4t27epccMzsj1nZOO9Mk6BnGFjVbNsub67YBG3eQMeC9q550Xe+Qur1PBCicp0cMjbP9xVojXM3wAAyIBAFdTxeFwrHqzrK6adob1pKHCM5kY6teLBOm3atoPbvwGXjDGav7CK57sCGRa0cy/VvL8dk920OqnbxwcwfwMAIJMCdcv3k0/8QJMvHBpyMT2gwDGafOGQ1j7xQ4+TAQAAr1UvrVfJHSuSnujM7zHkAID8E5iCOhaL9U1AVmQHX/gaxhdZ7Wp5hdm/AQAIgKCNIQcA5JfA3PL9atMWje8+JnnwFIzrL3bq1aYtqrnv/tRXBgAA0uqLY7IPvf+2nJDVlGm3ZOUYcgBA/ghMQf2z7dt00wgrKfX/LG8cntBbLa9RUAMAEBCXjsmuqKhQXNLzL7b6HQsAkOcCc8v3uTOfXPFoLLfCIaOzp094si4AAAAAQH4KTEFtE73eri/m7foAAAAAAPklMAW1CXkwePrS9YW9XR8AAAAAIL8EpqAeOeb6K2b2dCuWsBo1doIn6wIAAAAA5KfAFNR3LVik4597E/ejz0P6WuU9nqwLAAAAAJCfAlNQL66u1clhUU/WdXJYVIuraz1ZFwAAAAAgPwWmoA6HwyqvXKKTF1Kb6fvkBaPZlfcqHA7ME8MAAAAAAFkoMAW1JK1a87iODi9Vb9zdWOreuNXR4aVaueb7HicDAAAAAOSbQBXUjuNo7foGtfVEh1xU98at2nqiWru+QY7jpCkhAAAAACBfBKqglqRoNKqnG7ZqbNdkgwAADfBJREFUrzMj6du/P7lgtNeZoacbtioa9WYcNgAAAAAgvwWuoJb6iupN23Zo3NeXq633Zn143ij2hUdqxRJWH543auu9WeO/vlybtu2gmAYAAAAAeCawM3M5jqO//N5fKfbY9/Rq0xa91fKaWpq3KmSsyspna9TYCaqsvEeLq2uZgAwAAAAA4LnAV5rhcFg1992vmvvuV0VFhSRp/UvN/oYCAAAAAOS8QN7yDQAAAACA3yioAQAAAABwgYIaAAAAAAAXKKgBAAAAAHCBghoAAAAAABcoqAEAAAAAcIGCGgAAAAAAFyioAQAAAABwgYIaAAAAAAAXKKgBAAAAAHCBghoAAAAAABcoqAEAAAAAcIGCGgAAAAAAF8J+B0B+i8VierVpi362fZvOnflENtErEyrQyDHX664Fi7S4ulbhMIcpAAAAgOxDpQJfxONxPfnED7SnZavGdx/TTSOsbgiZ3/28y6rlva1qeOYJlVcu0ao1j8txHB8TAwAAAMDlKKiRcZ2dnVr5UL0mfX5QswsT+iDWq9ZPelRUZBUKSYmEdOGC0cSiiGaP+FCnXn9Oy976Z61d36BoNOp3fE9Ya/XmG83asvFZ2Z4zSsR7FHIiMpExqnlguSSrlzc999ufmVCBTn5qFSkwum6kuWz52mXLNX9hlYwxg27Xj/5kQz7ACxznAADgiyiokVGdnZ16tH6J5kY61dHdo/3nezT3NqPqUkehS65QJxJWuw70qPWXF3VDQURlkf16tH6Jnm7YGviiuqmxQU0b1mpacYeWTL14Rb//34ut2n0opnmlIc29Laxdh2L6RUdCZZNDKp9+5e9p9+Y2NbwwWTX1K1W9tD7r+uN3PsALHOcAAOBqKKiRMfF4XCserNPcSKf2fdatMdG4/nxewVWXDYWM5n0lrHlfkbbt7NX+YwnNva5TKx6s06ZtOwJ7+/cLz/1IR9qe0gNlXf2vXH41KxQyuvNWoztvjWj7O716fmu3pt7o6E8WRa66vlDIaFbJRc3SQe1oWq3Tp07ooYdXpbkXv5NMf/zMB3jhXz/rVFvTao5zAABwBWb5RsY8+cQPNPnCIXWc69GYaFyL5iX3ec6ieWFdd3NcHed6NPnCIa194odpTpoeTY0NOtL2lO4u7Rp8YUkLygoUHedo1IjkbiG9u7RLH7y9Tk2NDanETNpQ+5PpfIAXzp89pTkTT3KcAwCAq6KgRkZYa7WnZavGFSb0cW9P0sX0gKp5YX0c69G4woR2tbyiWCyWpqTpYa3Vyw1rk35TPmDx3AL9oiMha21Sy1fM6FLThnVJL++W2/5kKh/gBWutChMfqeaOobXjOAcAIH+kVFAbY+4xxhwyxhw2xjzmVSjknrOfntH47mP6oKtXc/+9u0l75nzFqKOrV9df7NSrTVs8Tpheb77RrOmjO1y1vb0kpPc6EkkvP7W4Qy3bt7naVrJS6U8m8gFeePONZv3BV3tdteU4BwAgP7guqI0xjqRnJS2SdKukOmPMrV4FQ27pPf+Zbhph9eGFHs0udTf+efYMR0cv9OjG4Qm91fKaxwnTa8vGZzVz0kVXbWdNc7T31/Gkl585qVuNG55xta1kpdKfTOQDvLBl47O6o9TdB4Ac5wAA5IdUJiWbI+mwtbZDkowxGyVVS9rvRTC32tvbVVFR4WcET7S3t0tSzvTl34W75YS+1P9oLHdvUJ2QUVGRVThk1NK8NeO/m1T2iXO+XdXT3fe7YAhnqhMyOvT+29fMmerxlWp/Bss3FLl2rkjB70uu9CObjnMv5Mp+kfr6MnPmTL9jAACQUkF9o6TOS74/LmnuFxcyxvyppD+VpJtvvjmFzQ2utbU1J94oSMqpNwozZ87UuQ/3Sep7znQqBtqHTObHJqayT5xQZvM6IatrXdNO9fhKtT+D5RuKXDtXckGu9CObjnMv5Mp+kfr60tra6ncMAABSKqiv9rH9Fe8+rLU/lvRjSSovL097VcF/sNnpoT+sks7tUiL5ocBXNdC+rHy21r/UnHqwDPnON+YokzdvTJl2i55/sTVt60+1P+nOB3iB4xwAAAwmleuFxyVFL/n+JkkfpxYHuWrkmOsVT1hduGCUSLj7XGWgfSxhNWrsBI8TppeJjEmp371DmNQ8nrAykTGutpWsVPuT7nyAFzjOAQDAYFIpqHdLmmaMmWyMiUhaJukVb2Ih19y1YJGOfx7SxKKIdh90dxPk7gNxTSqK6KPPQ/pa5T0eJ0yv2mXL1X50mKu2e38d16xpyU/k1n60UEvrHnG1rWSl0p9M5AO8wHEOAAAG47qgttbGJD0i6XVJByT9k7V2n1fBkFsWV9fq5LCophQXqO19d1d8du2zKiku0MlhUS2urvU4YXrNX1ilX31W4qrtLzoS+mpJ8qfq4a4SVS5Y5GpbyUqlP5nIB3iB4xwAAAwmpSmirLXN1trp1top1tr/7lUo5J5wOKzyyiU61R3SDQURbds5hHuYJTXvjOmGcESnukOaXXmvwuFUhv9nnjFGNfUrteNg8ZDavdrWq9tLQjImuZmGWw8Uq7puZdLLu+W2P5nKB3iB4xwAAAwmxTmXgeStWvO4jg4vVcnIiP7lmJN0Ud28M6ZPjzkqGRnR0eGlWrnm+2lOmh7VS+tVcseKpN+cv7G3V52n4jr7m+Su6LceKNaUO1eoemldKjGTNtT+ZDof4AWOcwAAcC3G2sw9zqe8vNzu2bMnY9tD9uns7NSj9Us0N9KpjnM9+ri3R3NuM5o9w5FzyfOp4wmrXQfi2v1LqxsKIioZGVFbT1RPN2xVNBq9xhayX1Njg15uWKtpo49o5qTuK/q984DV7l/FNa/UaN6MsHYdiukXH8T11RJH5dOv/D29e6RQh8+WqKZuhaqX1mddf/zOB3iB4zw/GWP2WmvL/c4BAMheFNTIuM7OTq14sE6TLxzSuMKEOrp6dfRCj4qK+p5TnUhI3d1GEwsjfWOmu0M6WnSL1v39hsAX0wOstWrZvk2NG56R7TkjG++VcQrkDBur6geWS7LasvHZ3/5MobBOdUkFjnTdSHPZ8jXLlqtywSJfby+9Vn+yIR/gBY7z/ENBDQAYDAU1fBGPx7X2iR9qV8sruv5ip24cnlD4kis+sYTVR5+H9MmwqOZU3quVa74vx0l+pmsAAFJFQQ0AGAwFNXwVi8X0atMWvdXyms6ePiEb65UJF2jU2An6WuU9WlxdG7gJyAAAuYGCGgAwGApqAACAq6CgBgAMhlm+AQAAAABwgYIaAAAAAAAXKKgBAAAAAHCBghoAAAAAABcoqAEAAAAAcIGCGgAAAAAAFyioAQAAAABwgYIaAAAAAAAXKKgBAAAAAHCBghoAAAAAABcoqAEAAAAAcIGCGgAAAAAAFyioAQAAAABwgYIaAAAAAAAXjLU2cxsz5rSkD9O8mTGSzqR5Gxg69kv2YZ9kJ/ZL9mGfZKdM7JeJ1tqxad4GACDAMlpQZ4IxZo+1ttzvHLgc+yX7sE+yE/sl+7BPshP7BQCQDbjlGwAAAAAAFyioAQAAAABwIRcL6h/7HQBXxX7JPuyT7MR+yT7sk+zEfgEA+C7nxlADAAAAAJAJuXiFGgAAAACAtMupgtoYc48x5pAx5rAx5jG/8+Q7Y0zUGPN/jDEHjDH7jDF/4Xcm9DHGOMaYd40xr/qdBX2MMcXGmM3GmIP958wdfmeCZIxZ0f/365fGmA3GmEK/M+UbY8w/GGNOGWN+eclr1xljthtjft3/72g/MwIA8lfOFNTGGEfSs5IWSbpVUp0x5lZ/U+W9mKRV1toZkuZJWs4+yRp/IemA3yFwmf8h6TVrbamk28X+8Z0x5kZJfy6p3Fp7myRH0jJ/U+Wl/yXpni+89pikFmvtNEkt/d8DAJBxOVNQS5oj6bC1tsNa2yNpo6RqnzPlNWvtCWvtO/1f/6v6CoQb/U0FY8xNkv6jpPV+Z0EfY8xISXdJ+ntJstb2WGu7/E2FfmFJRcaYsKThkj72OU/esdb+TNKnX3i5WtI/9n/9j5JqMhoKAIB+uVRQ3yip85Lvj4viLWsYYyZJ+j1Jbf4mgaSnJK2WlPA7CH6rRNJpSf+z/1b89caYEX6HynfW2o8k/UjSMUknJJ211r7hbyr0G2+tPSH1fXgraZzPeQAAeSqXCmpzldeYwjwLGGO+JOknkv6rtfac33nymTFmsaRT1tq9fmfBZcKSyiQ9b639PUm/Ebew+q5/XG61pMmSbpA0whjzR/6mAgAA2SSXCurjkqKXfH+TuDXPd8aYAvUV0y9aaxv9zgP9vqR7jTFH1Tcs4g+MMf/b30hQ39+v49bagTs4NquvwIa/5ks6Yq09ba3tldQo6U6fM6HPSWPMBEnq//eUz3kAAHkqlwrq3ZKmGWMmG2Mi6ps45hWfM+U1Y4xR35jQA9batX7ngWStXWOtvclaO0l958g/W2u54uYza+0nkjqNMbf0v1Qpab+PkdDnmKR5xpjh/X/PKsVkcdniFUl/3P/1H0tq8jELACCPhf0O4BVrbcwY84ik19U3E+s/WGv3+Rwr3/2+pG9Ket8Y097/2nettc0+ZgKy1aOSXuz/QLBD0rd8zpP3rLVtxpjNkt5R31ML3pX0Y39T5R9jzAZJFZLGGGOOS/pvkv5a0j8ZYx5U3wcf9/uXEACQz4y1DDMGAAAAAGCocumWbwAAAAAAMoaCGgAAAAAAFyioAQAAAABwgYIaAAAAAAAXKKgBAAAAAHCBghoAAAAAABcoqAEAAAAAcIGCGgAAAAAAF/4/DPSrb752H14AAAAASUVORK5CYII=",
+ "text/plain": [
+ "