-
-
Notifications
You must be signed in to change notification settings - Fork 30.4k
/
setobject.c
2583 lines (2263 loc) · 73.3 KB
/
setobject.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* set object implementation
Written and maintained by Raymond D. Hettinger <python@rcn.com>
Derived from Lib/sets.py and Objects/dictobject.c.
The basic lookup function used by all operations.
This is based on Algorithm D from Knuth Vol. 3, Sec. 6.4.
The initial probe index is computed as hash mod the table size.
Subsequent probe indices are computed as explained in Objects/dictobject.c.
To improve cache locality, each probe inspects a series of consecutive
nearby entries before moving on to probes elsewhere in memory. This leaves
us with a hybrid of linear probing and randomized probing. The linear probing
reduces the cost of hash collisions because consecutive memory accesses
tend to be much cheaper than scattered probes. After LINEAR_PROBES steps,
we then use more of the upper bits from the hash value and apply a simple
linear congruential random number genearator. This helps break-up long
chains of collisions.
All arithmetic on hash should ignore overflow.
Unlike the dictionary implementation, the lookkey function can return
NULL if the rich comparison returns an error.
Use cases for sets differ considerably from dictionaries where looked-up
keys are more likely to be present. In contrast, sets are primarily
about membership testing where the presence of an element is not known in
advance. Accordingly, the set implementation needs to optimize for both
the found and not-found case.
*/
#include "Python.h"
#include "internal/pystate.h"
#include "structmember.h"
/* Object used as dummy key to fill deleted entries */
static PyObject _dummy_struct;
#define dummy (&_dummy_struct)
/* ======================================================================== */
/* ======= Begin logic for probing the hash table ========================= */
/* Set this to zero to turn-off linear probing */
#ifndef LINEAR_PROBES
#define LINEAR_PROBES 9
#endif
/* This must be >= 1 */
#define PERTURB_SHIFT 5
static setentry *
set_lookkey(PySetObject *so, PyObject *key, Py_hash_t hash)
{
setentry *table;
setentry *entry;
size_t perturb;
size_t mask = so->mask;
size_t i = (size_t)hash & mask; /* Unsigned for defined overflow behavior */
size_t j;
int cmp;
entry = &so->table[i];
if (entry->key == NULL)
return entry;
perturb = hash;
while (1) {
if (entry->hash == hash) {
PyObject *startkey = entry->key;
/* startkey cannot be a dummy because the dummy hash field is -1 */
assert(startkey != dummy);
if (startkey == key)
return entry;
if (PyUnicode_CheckExact(startkey)
&& PyUnicode_CheckExact(key)
&& _PyUnicode_EQ(startkey, key))
return entry;
table = so->table;
Py_INCREF(startkey);
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
Py_DECREF(startkey);
if (cmp < 0) /* unlikely */
return NULL;
if (table != so->table || entry->key != startkey) /* unlikely */
return set_lookkey(so, key, hash);
if (cmp > 0) /* likely */
return entry;
mask = so->mask; /* help avoid a register spill */
}
if (i + LINEAR_PROBES <= mask) {
for (j = 0 ; j < LINEAR_PROBES ; j++) {
entry++;
if (entry->hash == 0 && entry->key == NULL)
return entry;
if (entry->hash == hash) {
PyObject *startkey = entry->key;
assert(startkey != dummy);
if (startkey == key)
return entry;
if (PyUnicode_CheckExact(startkey)
&& PyUnicode_CheckExact(key)
&& _PyUnicode_EQ(startkey, key))
return entry;
table = so->table;
Py_INCREF(startkey);
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
Py_DECREF(startkey);
if (cmp < 0)
return NULL;
if (table != so->table || entry->key != startkey)
return set_lookkey(so, key, hash);
if (cmp > 0)
return entry;
mask = so->mask;
}
}
}
perturb >>= PERTURB_SHIFT;
i = (i * 5 + 1 + perturb) & mask;
entry = &so->table[i];
if (entry->key == NULL)
return entry;
}
}
static int set_table_resize(PySetObject *, Py_ssize_t);
static int
set_add_entry(PySetObject *so, PyObject *key, Py_hash_t hash)
{
setentry *table;
setentry *freeslot;
setentry *entry;
size_t perturb;
size_t mask;
size_t i; /* Unsigned for defined overflow behavior */
size_t j;
int cmp;
/* Pre-increment is necessary to prevent arbitrary code in the rich
comparison from deallocating the key just before the insertion. */
Py_INCREF(key);
restart:
mask = so->mask;
i = (size_t)hash & mask;
entry = &so->table[i];
if (entry->key == NULL)
goto found_unused;
freeslot = NULL;
perturb = hash;
while (1) {
if (entry->hash == hash) {
PyObject *startkey = entry->key;
/* startkey cannot be a dummy because the dummy hash field is -1 */
assert(startkey != dummy);
if (startkey == key)
goto found_active;
if (PyUnicode_CheckExact(startkey)
&& PyUnicode_CheckExact(key)
&& _PyUnicode_EQ(startkey, key))
goto found_active;
table = so->table;
Py_INCREF(startkey);
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
Py_DECREF(startkey);
if (cmp > 0) /* likely */
goto found_active;
if (cmp < 0)
goto comparison_error;
/* Continuing the search from the current entry only makes
sense if the table and entry are unchanged; otherwise,
we have to restart from the beginning */
if (table != so->table || entry->key != startkey)
goto restart;
mask = so->mask; /* help avoid a register spill */
}
else if (entry->hash == -1)
freeslot = entry;
if (i + LINEAR_PROBES <= mask) {
for (j = 0 ; j < LINEAR_PROBES ; j++) {
entry++;
if (entry->hash == 0 && entry->key == NULL)
goto found_unused_or_dummy;
if (entry->hash == hash) {
PyObject *startkey = entry->key;
assert(startkey != dummy);
if (startkey == key)
goto found_active;
if (PyUnicode_CheckExact(startkey)
&& PyUnicode_CheckExact(key)
&& _PyUnicode_EQ(startkey, key))
goto found_active;
table = so->table;
Py_INCREF(startkey);
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
Py_DECREF(startkey);
if (cmp > 0)
goto found_active;
if (cmp < 0)
goto comparison_error;
if (table != so->table || entry->key != startkey)
goto restart;
mask = so->mask;
}
else if (entry->hash == -1)
freeslot = entry;
}
}
perturb >>= PERTURB_SHIFT;
i = (i * 5 + 1 + perturb) & mask;
entry = &so->table[i];
if (entry->key == NULL)
goto found_unused_or_dummy;
}
found_unused_or_dummy:
if (freeslot == NULL)
goto found_unused;
so->used++;
freeslot->key = key;
freeslot->hash = hash;
return 0;
found_unused:
so->fill++;
so->used++;
entry->key = key;
entry->hash = hash;
if ((size_t)so->fill*5 < mask*3)
return 0;
return set_table_resize(so, so->used>50000 ? so->used*2 : so->used*4);
found_active:
Py_DECREF(key);
return 0;
comparison_error:
Py_DECREF(key);
return -1;
}
/*
Internal routine used by set_table_resize() to insert an item which is
known to be absent from the set. This routine also assumes that
the set contains no deleted entries. Besides the performance benefit,
there is also safety benefit since using set_add_entry() risks making
a callback in the middle of a set_table_resize(), see issue 1456209.
The caller is responsible for updating the key's reference count and
the setobject's fill and used fields.
*/
static void
set_insert_clean(setentry *table, size_t mask, PyObject *key, Py_hash_t hash)
{
setentry *entry;
size_t perturb = hash;
size_t i = (size_t)hash & mask;
size_t j;
while (1) {
entry = &table[i];
if (entry->key == NULL)
goto found_null;
if (i + LINEAR_PROBES <= mask) {
for (j = 0; j < LINEAR_PROBES; j++) {
entry++;
if (entry->key == NULL)
goto found_null;
}
}
perturb >>= PERTURB_SHIFT;
i = (i * 5 + 1 + perturb) & mask;
}
found_null:
entry->key = key;
entry->hash = hash;
}
/* ======== End logic for probing the hash table ========================== */
/* ======================================================================== */
/*
Restructure the table by allocating a new table and reinserting all
keys again. When entries have been deleted, the new table may
actually be smaller than the old one.
*/
static int
set_table_resize(PySetObject *so, Py_ssize_t minused)
{
Py_ssize_t newsize;
setentry *oldtable, *newtable, *entry;
Py_ssize_t oldmask = so->mask;
size_t newmask;
int is_oldtable_malloced;
setentry small_copy[PySet_MINSIZE];
assert(minused >= 0);
/* Find the smallest table size > minused. */
/* XXX speed-up with intrinsics */
for (newsize = PySet_MINSIZE;
newsize <= minused && newsize > 0;
newsize <<= 1)
;
if (newsize <= 0) {
PyErr_NoMemory();
return -1;
}
/* Get space for a new table. */
oldtable = so->table;
assert(oldtable != NULL);
is_oldtable_malloced = oldtable != so->smalltable;
if (newsize == PySet_MINSIZE) {
/* A large table is shrinking, or we can't get any smaller. */
newtable = so->smalltable;
if (newtable == oldtable) {
if (so->fill == so->used) {
/* No dummies, so no point doing anything. */
return 0;
}
/* We're not going to resize it, but rebuild the
table anyway to purge old dummy entries.
Subtle: This is *necessary* if fill==size,
as set_lookkey needs at least one virgin slot to
terminate failing searches. If fill < size, it's
merely desirable, as dummies slow searches. */
assert(so->fill > so->used);
memcpy(small_copy, oldtable, sizeof(small_copy));
oldtable = small_copy;
}
}
else {
newtable = PyMem_NEW(setentry, newsize);
if (newtable == NULL) {
PyErr_NoMemory();
return -1;
}
}
/* Make the set empty, using the new table. */
assert(newtable != oldtable);
memset(newtable, 0, sizeof(setentry) * newsize);
so->mask = newsize - 1;
so->table = newtable;
/* Copy the data over; this is refcount-neutral for active entries;
dummy entries aren't copied over, of course */
newmask = (size_t)so->mask;
if (so->fill == so->used) {
for (entry = oldtable; entry <= oldtable + oldmask; entry++) {
if (entry->key != NULL) {
set_insert_clean(newtable, newmask, entry->key, entry->hash);
}
}
} else {
so->fill = so->used;
for (entry = oldtable; entry <= oldtable + oldmask; entry++) {
if (entry->key != NULL && entry->key != dummy) {
set_insert_clean(newtable, newmask, entry->key, entry->hash);
}
}
}
if (is_oldtable_malloced)
PyMem_DEL(oldtable);
return 0;
}
static int
set_contains_entry(PySetObject *so, PyObject *key, Py_hash_t hash)
{
setentry *entry;
entry = set_lookkey(so, key, hash);
if (entry != NULL)
return entry->key != NULL;
return -1;
}
#define DISCARD_NOTFOUND 0
#define DISCARD_FOUND 1
static int
set_discard_entry(PySetObject *so, PyObject *key, Py_hash_t hash)
{
setentry *entry;
PyObject *old_key;
entry = set_lookkey(so, key, hash);
if (entry == NULL)
return -1;
if (entry->key == NULL)
return DISCARD_NOTFOUND;
old_key = entry->key;
entry->key = dummy;
entry->hash = -1;
so->used--;
Py_DECREF(old_key);
return DISCARD_FOUND;
}
static int
set_add_key(PySetObject *so, PyObject *key)
{
Py_hash_t hash;
if (!PyUnicode_CheckExact(key) ||
(hash = ((PyASCIIObject *) key)->hash) == -1) {
hash = PyObject_Hash(key);
if (hash == -1)
return -1;
}
return set_add_entry(so, key, hash);
}
static int
set_contains_key(PySetObject *so, PyObject *key)
{
Py_hash_t hash;
if (!PyUnicode_CheckExact(key) ||
(hash = ((PyASCIIObject *) key)->hash) == -1) {
hash = PyObject_Hash(key);
if (hash == -1)
return -1;
}
return set_contains_entry(so, key, hash);
}
static int
set_discard_key(PySetObject *so, PyObject *key)
{
Py_hash_t hash;
if (!PyUnicode_CheckExact(key) ||
(hash = ((PyASCIIObject *) key)->hash) == -1) {
hash = PyObject_Hash(key);
if (hash == -1)
return -1;
}
return set_discard_entry(so, key, hash);
}
static void
set_empty_to_minsize(PySetObject *so)
{
memset(so->smalltable, 0, sizeof(so->smalltable));
so->fill = 0;
so->used = 0;
so->mask = PySet_MINSIZE - 1;
so->table = so->smalltable;
so->hash = -1;
}
static int
set_clear_internal(PySetObject *so)
{
setentry *entry;
setentry *table = so->table;
Py_ssize_t fill = so->fill;
Py_ssize_t used = so->used;
int table_is_malloced = table != so->smalltable;
setentry small_copy[PySet_MINSIZE];
assert (PyAnySet_Check(so));
assert(table != NULL);
/* This is delicate. During the process of clearing the set,
* decrefs can cause the set to mutate. To avoid fatal confusion
* (voice of experience), we have to make the set empty before
* clearing the slots, and never refer to anything via so->ref while
* clearing.
*/
if (table_is_malloced)
set_empty_to_minsize(so);
else if (fill > 0) {
/* It's a small table with something that needs to be cleared.
* Afraid the only safe way is to copy the set entries into
* another small table first.
*/
memcpy(small_copy, table, sizeof(small_copy));
table = small_copy;
set_empty_to_minsize(so);
}
/* else it's a small table that's already empty */
/* Now we can finally clear things. If C had refcounts, we could
* assert that the refcount on table is 1 now, i.e. that this function
* has unique access to it, so decref side-effects can't alter it.
*/
for (entry = table; used > 0; entry++) {
if (entry->key && entry->key != dummy) {
used--;
Py_DECREF(entry->key);
}
}
if (table_is_malloced)
PyMem_DEL(table);
return 0;
}
/*
* Iterate over a set table. Use like so:
*
* Py_ssize_t pos;
* setentry *entry;
* pos = 0; # important! pos should not otherwise be changed by you
* while (set_next(yourset, &pos, &entry)) {
* Refer to borrowed reference in entry->key.
* }
*
* CAUTION: In general, it isn't safe to use set_next in a loop that
* mutates the table.
*/
static int
set_next(PySetObject *so, Py_ssize_t *pos_ptr, setentry **entry_ptr)
{
Py_ssize_t i;
Py_ssize_t mask;
setentry *entry;
assert (PyAnySet_Check(so));
i = *pos_ptr;
assert(i >= 0);
mask = so->mask;
entry = &so->table[i];
while (i <= mask && (entry->key == NULL || entry->key == dummy)) {
i++;
entry++;
}
*pos_ptr = i+1;
if (i > mask)
return 0;
assert(entry != NULL);
*entry_ptr = entry;
return 1;
}
static void
set_dealloc(PySetObject *so)
{
setentry *entry;
Py_ssize_t used = so->used;
/* bpo-31095: UnTrack is needed before calling any callbacks */
PyObject_GC_UnTrack(so);
Py_TRASHCAN_SAFE_BEGIN(so)
if (so->weakreflist != NULL)
PyObject_ClearWeakRefs((PyObject *) so);
for (entry = so->table; used > 0; entry++) {
if (entry->key && entry->key != dummy) {
used--;
Py_DECREF(entry->key);
}
}
if (so->table != so->smalltable)
PyMem_DEL(so->table);
Py_TYPE(so)->tp_free(so);
Py_TRASHCAN_SAFE_END(so)
}
static PyObject *
set_repr(PySetObject *so)
{
PyObject *result=NULL, *keys, *listrepr, *tmp;
int status = Py_ReprEnter((PyObject*)so);
if (status != 0) {
if (status < 0)
return NULL;
return PyUnicode_FromFormat("%s(...)", Py_TYPE(so)->tp_name);
}
/* shortcut for the empty set */
if (!so->used) {
Py_ReprLeave((PyObject*)so);
return PyUnicode_FromFormat("%s()", Py_TYPE(so)->tp_name);
}
keys = PySequence_List((PyObject *)so);
if (keys == NULL)
goto done;
/* repr(keys)[1:-1] */
listrepr = PyObject_Repr(keys);
Py_DECREF(keys);
if (listrepr == NULL)
goto done;
tmp = PyUnicode_Substring(listrepr, 1, PyUnicode_GET_LENGTH(listrepr)-1);
Py_DECREF(listrepr);
if (tmp == NULL)
goto done;
listrepr = tmp;
if (Py_TYPE(so) != &PySet_Type)
result = PyUnicode_FromFormat("%s({%U})",
Py_TYPE(so)->tp_name,
listrepr);
else
result = PyUnicode_FromFormat("{%U}", listrepr);
Py_DECREF(listrepr);
done:
Py_ReprLeave((PyObject*)so);
return result;
}
static Py_ssize_t
set_len(PyObject *so)
{
return ((PySetObject *)so)->used;
}
static int
set_merge(PySetObject *so, PyObject *otherset)
{
PySetObject *other;
PyObject *key;
Py_ssize_t i;
setentry *so_entry;
setentry *other_entry;
assert (PyAnySet_Check(so));
assert (PyAnySet_Check(otherset));
other = (PySetObject*)otherset;
if (other == so || other->used == 0)
/* a.update(a) or a.update(set()); nothing to do */
return 0;
/* Do one big resize at the start, rather than
* incrementally resizing as we insert new keys. Expect
* that there will be no (or few) overlapping keys.
*/
if ((so->fill + other->used)*5 >= so->mask*3) {
if (set_table_resize(so, (so->used + other->used)*2) != 0)
return -1;
}
so_entry = so->table;
other_entry = other->table;
/* If our table is empty, and both tables have the same size, and
there are no dummies to eliminate, then just copy the pointers. */
if (so->fill == 0 && so->mask == other->mask && other->fill == other->used) {
for (i = 0; i <= other->mask; i++, so_entry++, other_entry++) {
key = other_entry->key;
if (key != NULL) {
assert(so_entry->key == NULL);
Py_INCREF(key);
so_entry->key = key;
so_entry->hash = other_entry->hash;
}
}
so->fill = other->fill;
so->used = other->used;
return 0;
}
/* If our table is empty, we can use set_insert_clean() */
if (so->fill == 0) {
setentry *newtable = so->table;
size_t newmask = (size_t)so->mask;
so->fill = other->used;
so->used = other->used;
for (i = other->mask + 1; i > 0 ; i--, other_entry++) {
key = other_entry->key;
if (key != NULL && key != dummy) {
Py_INCREF(key);
set_insert_clean(newtable, newmask, key, other_entry->hash);
}
}
return 0;
}
/* We can't assure there are no duplicates, so do normal insertions */
for (i = 0; i <= other->mask; i++) {
other_entry = &other->table[i];
key = other_entry->key;
if (key != NULL && key != dummy) {
if (set_add_entry(so, key, other_entry->hash))
return -1;
}
}
return 0;
}
static PyObject *
set_pop(PySetObject *so)
{
/* Make sure the search finger is in bounds */
Py_ssize_t i = so->finger & so->mask;
setentry *entry;
PyObject *key;
assert (PyAnySet_Check(so));
if (so->used == 0) {
PyErr_SetString(PyExc_KeyError, "pop from an empty set");
return NULL;
}
while ((entry = &so->table[i])->key == NULL || entry->key==dummy) {
i++;
if (i > so->mask)
i = 0;
}
key = entry->key;
entry->key = dummy;
entry->hash = -1;
so->used--;
so->finger = i + 1; /* next place to start */
return key;
}
PyDoc_STRVAR(pop_doc, "Remove and return an arbitrary set element.\n\
Raises KeyError if the set is empty.");
static int
set_traverse(PySetObject *so, visitproc visit, void *arg)
{
Py_ssize_t pos = 0;
setentry *entry;
while (set_next(so, &pos, &entry))
Py_VISIT(entry->key);
return 0;
}
/* Work to increase the bit dispersion for closely spaced hash values.
This is important because some use cases have many combinations of a
small number of elements with nearby hashes so that many distinct
combinations collapse to only a handful of distinct hash values. */
static Py_uhash_t
_shuffle_bits(Py_uhash_t h)
{
return ((h ^ 89869747UL) ^ (h << 16)) * 3644798167UL;
}
/* Most of the constants in this hash algorithm are randomly chosen
large primes with "interesting bit patterns" and that passed tests
for good collision statistics on a variety of problematic datasets
including powersets and graph structures (such as David Eppstein's
graph recipes in Lib/test/test_set.py) */
static Py_hash_t
frozenset_hash(PyObject *self)
{
PySetObject *so = (PySetObject *)self;
Py_uhash_t hash = 0;
setentry *entry;
if (so->hash != -1)
return so->hash;
/* Xor-in shuffled bits from every entry's hash field because xor is
commutative and a frozenset hash should be independent of order.
For speed, include null entries and dummy entries and then
subtract out their effect afterwards so that the final hash
depends only on active entries. This allows the code to be
vectorized by the compiler and it saves the unpredictable
branches that would arise when trying to exclude null and dummy
entries on every iteration. */
for (entry = so->table; entry <= &so->table[so->mask]; entry++)
hash ^= _shuffle_bits(entry->hash);
/* Remove the effect of an odd number of NULL entries */
if ((so->mask + 1 - so->fill) & 1)
hash ^= _shuffle_bits(0);
/* Remove the effect of an odd number of dummy entries */
if ((so->fill - so->used) & 1)
hash ^= _shuffle_bits(-1);
/* Factor in the number of active entries */
hash ^= ((Py_uhash_t)PySet_GET_SIZE(self) + 1) * 1927868237UL;
/* Disperse patterns arising in nested frozensets */
hash ^= (hash >> 11) ^ (hash >> 25);
hash = hash * 69069U + 907133923UL;
/* -1 is reserved as an error code */
if (hash == (Py_uhash_t)-1)
hash = 590923713UL;
so->hash = hash;
return hash;
}
/***** Set iterator type ***********************************************/
typedef struct {
PyObject_HEAD
PySetObject *si_set; /* Set to NULL when iterator is exhausted */
Py_ssize_t si_used;
Py_ssize_t si_pos;
Py_ssize_t len;
} setiterobject;
static void
setiter_dealloc(setiterobject *si)
{
/* bpo-31095: UnTrack is needed before calling any callbacks */
_PyObject_GC_UNTRACK(si);
Py_XDECREF(si->si_set);
PyObject_GC_Del(si);
}
static int
setiter_traverse(setiterobject *si, visitproc visit, void *arg)
{
Py_VISIT(si->si_set);
return 0;
}
static PyObject *
setiter_len(setiterobject *si)
{
Py_ssize_t len = 0;
if (si->si_set != NULL && si->si_used == si->si_set->used)
len = si->len;
return PyLong_FromSsize_t(len);
}
PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it)).");
static PyObject *setiter_iternext(setiterobject *si);
static PyObject *
setiter_reduce(setiterobject *si)
{
PyObject *list;
setiterobject tmp;
list = PyList_New(0);
if (!list)
return NULL;
/* copy the iterator state */
tmp = *si;
Py_XINCREF(tmp.si_set);
/* iterate the temporary into a list */
for(;;) {
PyObject *element = setiter_iternext(&tmp);
if (element) {
if (PyList_Append(list, element)) {
Py_DECREF(element);
Py_DECREF(list);
Py_XDECREF(tmp.si_set);
return NULL;
}
Py_DECREF(element);
} else
break;
}
Py_XDECREF(tmp.si_set);
/* check for error */
if (tmp.si_set != NULL) {
/* we have an error */
Py_DECREF(list);
return NULL;
}
return Py_BuildValue("N(N)", _PyObject_GetBuiltin("iter"), list);
}
PyDoc_STRVAR(reduce_doc, "Return state information for pickling.");
static PyMethodDef setiter_methods[] = {
{"__length_hint__", (PyCFunction)setiter_len, METH_NOARGS, length_hint_doc},
{"__reduce__", (PyCFunction)setiter_reduce, METH_NOARGS, reduce_doc},
{NULL, NULL} /* sentinel */
};
static PyObject *setiter_iternext(setiterobject *si)
{
PyObject *key;
Py_ssize_t i, mask;
setentry *entry;
PySetObject *so = si->si_set;
if (so == NULL)
return NULL;
assert (PyAnySet_Check(so));
if (si->si_used != so->used) {
PyErr_SetString(PyExc_RuntimeError,
"Set changed size during iteration");
si->si_used = -1; /* Make this state sticky */
return NULL;
}
i = si->si_pos;
assert(i>=0);
entry = so->table;
mask = so->mask;
while (i <= mask && (entry[i].key == NULL || entry[i].key == dummy))
i++;
si->si_pos = i+1;
if (i > mask)
goto fail;
si->len--;
key = entry[i].key;
Py_INCREF(key);
return key;
fail:
si->si_set = NULL;
Py_DECREF(so);
return NULL;
}
PyTypeObject PySetIter_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"set_iterator", /* tp_name */
sizeof(setiterobject), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor)setiter_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_reserved */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /* tp_flags */
0, /* tp_doc */
(traverseproc)setiter_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
PyObject_SelfIter, /* tp_iter */
(iternextfunc)setiter_iternext, /* tp_iternext */
setiter_methods, /* tp_methods */
0,
};
static PyObject *
set_iter(PySetObject *so)
{
setiterobject *si = PyObject_GC_New(setiterobject, &PySetIter_Type);
if (si == NULL)
return NULL;
Py_INCREF(so);
si->si_set = so;
si->si_used = so->used;
si->si_pos = 0;
si->len = so->used;
_PyObject_GC_TRACK(si);
return (PyObject *)si;
}
static int
set_update_internal(PySetObject *so, PyObject *other)
{
PyObject *key, *it;
if (PyAnySet_Check(other))
return set_merge(so, other);
if (PyDict_CheckExact(other)) {
PyObject *value;
Py_ssize_t pos = 0;
Py_hash_t hash;
Py_ssize_t dictsize = PyDict_GET_SIZE(other);
/* Do one big resize at the start, rather than
* incrementally resizing as we insert new keys. Expect
* that there will be no (or few) overlapping keys.
*/
if (dictsize < 0)
return -1;
if ((so->fill + dictsize)*5 >= so->mask*3) {