-
-
Notifications
You must be signed in to change notification settings - Fork 30.9k
/
Copy pathitertools.rst
1772 lines (1468 loc) · 65.2 KB
/
itertools.rst
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
:mod:`itertools` --- Functions creating iterators for efficient looping
=======================================================================
.. module:: itertools
:synopsis: Functions creating iterators for efficient looping.
.. moduleauthor:: Raymond Hettinger <python@rcn.com>
.. sectionauthor:: Raymond Hettinger <python@rcn.com>
.. testsetup::
from itertools import *
import collections
import math
import operator
import random
--------------
This module implements a number of :term:`iterator` building blocks inspired
by constructs from APL, Haskell, and SML. Each has been recast in a form
suitable for Python.
The module standardizes a core set of fast, memory efficient tools that are
useful by themselves or in combination. Together, they form an "iterator
algebra" making it possible to construct specialized tools succinctly and
efficiently in pure Python.
For instance, SML provides a tabulation tool: ``tabulate(f)`` which produces a
sequence ``f(0), f(1), ...``. The same effect can be achieved in Python
by combining :func:`map` and :func:`count` to form ``map(f, count())``.
These tools and their built-in counterparts also work well with the high-speed
functions in the :mod:`operator` module. For example, the multiplication
operator can be mapped across two vectors to form an efficient dot-product:
``sum(starmap(operator.mul, zip(vec1, vec2, strict=True)))``.
**Infinite iterators:**
================== ================= ================================================= =========================================
Iterator Arguments Results Example
================== ================= ================================================= =========================================
:func:`count` [start[, step]] start, start+step, start+2*step, ... ``count(10) → 10 11 12 13 14 ...``
:func:`cycle` p p0, p1, ... plast, p0, p1, ... ``cycle('ABCD') → A B C D A B C D ...``
:func:`repeat` elem [,n] elem, elem, elem, ... endlessly or up to n times ``repeat(10, 3) → 10 10 10``
================== ================= ================================================= =========================================
**Iterators terminating on the shortest input sequence:**
============================ ============================ ================================================= =============================================================
Iterator Arguments Results Example
============================ ============================ ================================================= =============================================================
:func:`accumulate` p [,func] p0, p0+p1, p0+p1+p2, ... ``accumulate([1,2,3,4,5]) → 1 3 6 10 15``
:func:`batched` p, n (p0, p1, ..., p_n-1), ... ``batched('ABCDEFG', n=3) → ABC DEF G``
:func:`chain` p, q, ... p0, p1, ... plast, q0, q1, ... ``chain('ABC', 'DEF') → A B C D E F``
:func:`chain.from_iterable` iterable p0, p1, ... plast, q0, q1, ... ``chain.from_iterable(['ABC', 'DEF']) → A B C D E F``
:func:`compress` data, selectors (d[0] if s[0]), (d[1] if s[1]), ... ``compress('ABCDEF', [1,0,1,0,1,1]) → A C E F``
:func:`dropwhile` predicate, seq seq[n], seq[n+1], starting when predicate fails ``dropwhile(lambda x: x<5, [1,4,6,4,1]) → 6 4 1``
:func:`filterfalse` predicate, seq elements of seq where predicate(elem) fails ``filterfalse(lambda x: x%2, range(10)) → 0 2 4 6 8``
:func:`groupby` iterable[, key] sub-iterators grouped by value of key(v)
:func:`islice` seq, [start,] stop [, step] elements from seq[start:stop:step] ``islice('ABCDEFG', 2, None) → C D E F G``
:func:`pairwise` iterable (p[0], p[1]), (p[1], p[2]) ``pairwise('ABCDEFG') → AB BC CD DE EF FG``
:func:`starmap` func, seq func(\*seq[0]), func(\*seq[1]), ... ``starmap(pow, [(2,5), (3,2), (10,3)]) → 32 9 1000``
:func:`takewhile` predicate, seq seq[0], seq[1], until predicate fails ``takewhile(lambda x: x<5, [1,4,6,4,1]) → 1 4``
:func:`tee` it, n it1, it2, ... itn splits one iterator into n
:func:`zip_longest` p, q, ... (p[0], q[0]), (p[1], q[1]), ... ``zip_longest('ABCD', 'xy', fillvalue='-') → Ax By C- D-``
============================ ============================ ================================================= =============================================================
**Combinatoric iterators:**
============================================== ==================== =============================================================
Iterator Arguments Results
============================================== ==================== =============================================================
:func:`product` p, q, ... [repeat=1] cartesian product, equivalent to a nested for-loop
:func:`permutations` p[, r] r-length tuples, all possible orderings, no repeated elements
:func:`combinations` p, r r-length tuples, in sorted order, no repeated elements
:func:`combinations_with_replacement` p, r r-length tuples, in sorted order, with repeated elements
============================================== ==================== =============================================================
============================================== =============================================================
Examples Results
============================================== =============================================================
``product('ABCD', repeat=2)`` ``AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD``
``permutations('ABCD', 2)`` ``AB AC AD BA BC BD CA CB CD DA DB DC``
``combinations('ABCD', 2)`` ``AB AC AD BC BD CD``
``combinations_with_replacement('ABCD', 2)`` ``AA AB AC AD BB BC BD CC CD DD``
============================================== =============================================================
.. _itertools-functions:
Itertool Functions
------------------
The following module functions all construct and return iterators. Some provide
streams of infinite length, so they should only be accessed by functions or
loops that truncate the stream.
.. function:: accumulate(iterable[, func, *, initial=None])
Make an iterator that returns accumulated sums, or accumulated
results of other binary functions (specified via the optional
*func* argument).
If *func* is supplied, it should be a function
of two arguments. Elements of the input *iterable* may be any type
that can be accepted as arguments to *func*. (For example, with
the default operation of addition, elements may be any addable
type including :class:`~decimal.Decimal` or
:class:`~fractions.Fraction`.)
Usually, the number of elements output matches the input iterable.
However, if the keyword argument *initial* is provided, the
accumulation leads off with the *initial* value so that the output
has one more element than the input iterable.
Roughly equivalent to::
def accumulate(iterable, func=operator.add, *, initial=None):
'Return running totals'
# accumulate([1,2,3,4,5]) → 1 3 6 10 15
# accumulate([1,2,3,4,5], initial=100) → 100 101 103 106 110 115
# accumulate([1,2,3,4,5], operator.mul) → 1 2 6 24 120
it = iter(iterable)
total = initial
if initial is None:
try:
total = next(it)
except StopIteration:
return
yield total
for element in it:
total = func(total, element)
yield total
There are a number of uses for the *func* argument. It can be set to
:func:`min` for a running minimum, :func:`max` for a running maximum, or
:func:`operator.mul` for a running product. Amortization tables can be
built by accumulating interest and applying payments:
.. doctest::
>>> data = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
>>> list(accumulate(data, operator.mul)) # running product
[3, 12, 72, 144, 144, 1296, 0, 0, 0, 0]
>>> list(accumulate(data, max)) # running maximum
[3, 4, 6, 6, 6, 9, 9, 9, 9, 9]
# Amortize a 5% loan of 1000 with 10 annual payments of 90
>>> account_update = lambda bal, pmt: round(bal * 1.05) + pmt
>>> list(accumulate(repeat(-90, 10), account_update, initial=1_000))
[1000, 960, 918, 874, 828, 779, 728, 674, 618, 559, 497]
See :func:`functools.reduce` for a similar function that returns only the
final accumulated value.
.. versionadded:: 3.2
.. versionchanged:: 3.3
Added the optional *func* parameter.
.. versionchanged:: 3.8
Added the optional *initial* parameter.
.. function:: batched(iterable, n, *, strict=False)
Batch data from the *iterable* into tuples of length *n*. The last
batch may be shorter than *n*.
If *strict* is true, will raise a :exc:`ValueError` if the final
batch is shorter than *n*.
Loops over the input iterable and accumulates data into tuples up to
size *n*. The input is consumed lazily, just enough to fill a batch.
The result is yielded as soon as the batch is full or when the input
iterable is exhausted:
.. doctest::
>>> flattened_data = ['roses', 'red', 'violets', 'blue', 'sugar', 'sweet']
>>> unflattened = list(batched(flattened_data, 2))
>>> unflattened
[('roses', 'red'), ('violets', 'blue'), ('sugar', 'sweet')]
>>> for batch in batched('ABCDEFG', 3):
... print(batch)
...
('A', 'B', 'C')
('D', 'E', 'F')
('G',)
Roughly equivalent to::
def batched(iterable, n, *, strict=False):
# batched('ABCDEFG', 3) → ABC DEF G
if n < 1:
raise ValueError('n must be at least one')
it = iter(iterable)
while batch := tuple(islice(it, n)):
if strict and len(batch) != n:
raise ValueError('batched(): incomplete batch')
yield batch
.. versionadded:: 3.12
.. versionchanged:: 3.13
Added the *strict* option.
.. function:: chain(*iterables)
Make an iterator that returns elements from the first iterable until it is
exhausted, then proceeds to the next iterable, until all of the iterables are
exhausted. Used for treating consecutive sequences as a single sequence.
Roughly equivalent to::
def chain(*iterables):
# chain('ABC', 'DEF') → A B C D E F
for it in iterables:
for element in it:
yield element
.. classmethod:: chain.from_iterable(iterable)
Alternate constructor for :func:`chain`. Gets chained inputs from a
single iterable argument that is evaluated lazily. Roughly equivalent to::
def from_iterable(iterables):
# chain.from_iterable(['ABC', 'DEF']) → A B C D E F
for it in iterables:
for element in it:
yield element
.. function:: combinations(iterable, r)
Return *r* length subsequences of elements from the input *iterable*.
The combination tuples are emitted in lexicographic ordering according to
the order of the input *iterable*. So, if the input *iterable* is sorted,
the output tuples will be produced in sorted order.
Elements are treated as unique based on their position, not on their
value. So if the input elements are unique, there will be no repeated
values in each combination.
Roughly equivalent to::
def combinations(iterable, r):
# combinations('ABCD', 2) → AB AC AD BC BD CD
# combinations(range(4), 3) → 012 013 023 123
pool = tuple(iterable)
n = len(pool)
if r > n:
return
indices = list(range(r))
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
if indices[i] != i + n - r:
break
else:
return
indices[i] += 1
for j in range(i+1, r):
indices[j] = indices[j-1] + 1
yield tuple(pool[i] for i in indices)
The code for :func:`combinations` can be also expressed as a subsequence
of :func:`permutations` after filtering entries where the elements are not
in sorted order (according to their position in the input pool)::
def combinations(iterable, r):
pool = tuple(iterable)
n = len(pool)
for indices in permutations(range(n), r):
if sorted(indices) == list(indices):
yield tuple(pool[i] for i in indices)
The number of items returned is ``n! / r! / (n-r)!`` when ``0 <= r <= n``
or zero when ``r > n``.
.. function:: combinations_with_replacement(iterable, r)
Return *r* length subsequences of elements from the input *iterable*
allowing individual elements to be repeated more than once.
The combination tuples are emitted in lexicographic ordering according to
the order of the input *iterable*. So, if the input *iterable* is sorted,
the output tuples will be produced in sorted order.
Elements are treated as unique based on their position, not on their
value. So if the input elements are unique, the generated combinations
will also be unique.
Roughly equivalent to::
def combinations_with_replacement(iterable, r):
# combinations_with_replacement('ABC', 2) → AA AB AC BB BC CC
pool = tuple(iterable)
n = len(pool)
if not n and r:
return
indices = [0] * r
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
if indices[i] != n - 1:
break
else:
return
indices[i:] = [indices[i] + 1] * (r - i)
yield tuple(pool[i] for i in indices)
The code for :func:`combinations_with_replacement` can be also expressed as
a subsequence of :func:`product` after filtering entries where the elements
are not in sorted order (according to their position in the input pool)::
def combinations_with_replacement(iterable, r):
pool = tuple(iterable)
n = len(pool)
for indices in product(range(n), repeat=r):
if sorted(indices) == list(indices):
yield tuple(pool[i] for i in indices)
The number of items returned is ``(n+r-1)! / r! / (n-1)!`` when ``n > 0``.
.. versionadded:: 3.1
.. function:: compress(data, selectors)
Make an iterator that filters elements from *data* returning only those that
have a corresponding element in *selectors* that evaluates to ``True``.
Stops when either the *data* or *selectors* iterables has been exhausted.
Roughly equivalent to::
def compress(data, selectors):
# compress('ABCDEF', [1,0,1,0,1,1]) → A C E F
return (d for d, s in zip(data, selectors) if s)
.. versionadded:: 3.1
.. function:: count(start=0, step=1)
Make an iterator that returns evenly spaced values starting with number *start*. Often
used as an argument to :func:`map` to generate consecutive data points.
Also, used with :func:`zip` to add sequence numbers. Roughly equivalent to::
def count(start=0, step=1):
# count(10) → 10 11 12 13 14 ...
# count(2.5, 0.5) → 2.5 3.0 3.5 ...
n = start
while True:
yield n
n += step
When counting with floating point numbers, better accuracy can sometimes be
achieved by substituting multiplicative code such as: ``(start + step * i
for i in count())``.
.. versionchanged:: 3.1
Added *step* argument and allowed non-integer arguments.
.. function:: cycle(iterable)
Make an iterator returning elements from the iterable and saving a copy of each.
When the iterable is exhausted, return elements from the saved copy. Repeats
indefinitely. Roughly equivalent to::
def cycle(iterable):
# cycle('ABCD') → A B C D A B C D A B C D ...
saved = []
for element in iterable:
yield element
saved.append(element)
while saved:
for element in saved:
yield element
Note, this member of the toolkit may require significant auxiliary storage
(depending on the length of the iterable).
.. function:: dropwhile(predicate, iterable)
Make an iterator that drops elements from the iterable as long as the predicate
is true; afterwards, returns every element. Note, the iterator does not produce
*any* output until the predicate first becomes false, so it may have a lengthy
start-up time. Roughly equivalent to::
def dropwhile(predicate, iterable):
# dropwhile(lambda x: x<5, [1,4,6,4,1]) → 6 4 1
iterable = iter(iterable)
for x in iterable:
if not predicate(x):
yield x
break
for x in iterable:
yield x
.. function:: filterfalse(predicate, iterable)
Make an iterator that filters elements from iterable returning only those for
which the predicate is false. If *predicate* is ``None``, return the items
that are false. Roughly equivalent to::
def filterfalse(predicate, iterable):
# filterfalse(lambda x: x%2, range(10)) → 0 2 4 6 8
if predicate is None:
predicate = bool
for x in iterable:
if not predicate(x):
yield x
.. function:: groupby(iterable, key=None)
Make an iterator that returns consecutive keys and groups from the *iterable*.
The *key* is a function computing a key value for each element. If not
specified or is ``None``, *key* defaults to an identity function and returns
the element unchanged. Generally, the iterable needs to already be sorted on
the same key function.
The operation of :func:`groupby` is similar to the ``uniq`` filter in Unix. It
generates a break or new group every time the value of the key function changes
(which is why it is usually necessary to have sorted the data using the same key
function). That behavior differs from SQL's GROUP BY which aggregates common
elements regardless of their input order.
The returned group is itself an iterator that shares the underlying iterable
with :func:`groupby`. Because the source is shared, when the :func:`groupby`
object is advanced, the previous group is no longer visible. So, if that data
is needed later, it should be stored as a list::
groups = []
uniquekeys = []
data = sorted(data, key=keyfunc)
for k, g in groupby(data, keyfunc):
groups.append(list(g)) # Store group iterator as a list
uniquekeys.append(k)
:func:`groupby` is roughly equivalent to::
class groupby:
# [k for k, g in groupby('AAAABBBCCDAABBB')] → A B C D A B
# [list(g) for k, g in groupby('AAAABBBCCD')] → AAAA BBB CC D
def __init__(self, iterable, key=None):
if key is None:
key = lambda x: x
self.keyfunc = key
self.it = iter(iterable)
self.tgtkey = self.currkey = self.currvalue = object()
def __iter__(self):
return self
def __next__(self):
self.id = object()
while self.currkey == self.tgtkey:
self.currvalue = next(self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)
self.tgtkey = self.currkey
return (self.currkey, self._grouper(self.tgtkey, self.id))
def _grouper(self, tgtkey, id):
while self.id is id and self.currkey == tgtkey:
yield self.currvalue
try:
self.currvalue = next(self.it)
except StopIteration:
return
self.currkey = self.keyfunc(self.currvalue)
.. function:: islice(iterable, stop)
islice(iterable, start, stop[, step])
Make an iterator that returns selected elements from the iterable. If *start* is
non-zero, then elements from the iterable are skipped until start is reached.
Afterward, elements are returned consecutively unless *step* is set higher than
one which results in items being skipped. If *stop* is ``None``, then iteration
continues until the iterator is exhausted, if at all; otherwise, it stops at the
specified position.
If *start* is ``None``, then iteration starts at zero. If *step* is ``None``,
then the step defaults to one.
Unlike regular slicing, :func:`islice` does not support negative values for
*start*, *stop*, or *step*. Can be used to extract related fields from
data where the internal structure has been flattened (for example, a
multi-line report may list a name field on every third line).
Roughly equivalent to::
def islice(iterable, *args):
# islice('ABCDEFG', 2) → A B
# islice('ABCDEFG', 2, 4) → C D
# islice('ABCDEFG', 2, None) → C D E F G
# islice('ABCDEFG', 0, None, 2) → A C E G
s = slice(*args)
start, stop, step = s.start or 0, s.stop or sys.maxsize, s.step or 1
it = iter(range(start, stop, step))
try:
nexti = next(it)
except StopIteration:
# Consume *iterable* up to the *start* position.
for i, element in zip(range(start), iterable):
pass
return
try:
for i, element in enumerate(iterable):
if i == nexti:
yield element
nexti = next(it)
except StopIteration:
# Consume to *stop*.
for i, element in zip(range(i + 1, stop), iterable):
pass
.. function:: pairwise(iterable)
Return successive overlapping pairs taken from the input *iterable*.
The number of 2-tuples in the output iterator will be one fewer than the
number of inputs. It will be empty if the input iterable has fewer than
two values.
Roughly equivalent to::
def pairwise(iterable):
# pairwise('ABCDEFG') → AB BC CD DE EF FG
iterator = iter(iterable)
a = next(iterator, None)
for b in iterator:
yield a, b
a = b
.. versionadded:: 3.10
.. function:: permutations(iterable, r=None)
Return successive *r* length permutations of elements in the *iterable*.
If *r* is not specified or is ``None``, then *r* defaults to the length
of the *iterable* and all possible full-length permutations
are generated.
The permutation tuples are emitted in lexicographic order according to
the order of the input *iterable*. So, if the input *iterable* is sorted,
the output tuples will be produced in sorted order.
Elements are treated as unique based on their position, not on their
value. So if the input elements are unique, there will be no repeated
values within a permutation.
Roughly equivalent to::
def permutations(iterable, r=None):
# permutations('ABCD', 2) → AB AC AD BA BC BD CA CB CD DA DB DC
# permutations(range(3)) → 012 021 102 120 201 210
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
if r > n:
return
indices = list(range(n))
cycles = list(range(n, n-r, -1))
yield tuple(pool[i] for i in indices[:r])
while n:
for i in reversed(range(r)):
cycles[i] -= 1
if cycles[i] == 0:
indices[i:] = indices[i+1:] + indices[i:i+1]
cycles[i] = n - i
else:
j = cycles[i]
indices[i], indices[-j] = indices[-j], indices[i]
yield tuple(pool[i] for i in indices[:r])
break
else:
return
The code for :func:`permutations` can be also expressed as a subsequence of
:func:`product`, filtered to exclude entries with repeated elements (those
from the same position in the input pool)::
def permutations(iterable, r=None):
pool = tuple(iterable)
n = len(pool)
r = n if r is None else r
for indices in product(range(n), repeat=r):
if len(set(indices)) == r:
yield tuple(pool[i] for i in indices)
The number of items returned is ``n! / (n-r)!`` when ``0 <= r <= n``
or zero when ``r > n``.
.. function:: product(*iterables, repeat=1)
Cartesian product of input iterables.
Roughly equivalent to nested for-loops in a generator expression. For example,
``product(A, B)`` returns the same as ``((x,y) for x in A for y in B)``.
The nested loops cycle like an odometer with the rightmost element advancing
on every iteration. This pattern creates a lexicographic ordering so that if
the input's iterables are sorted, the product tuples are emitted in sorted
order.
To compute the product of an iterable with itself, specify the number of
repetitions with the optional *repeat* keyword argument. For example,
``product(A, repeat=4)`` means the same as ``product(A, A, A, A)``.
This function is roughly equivalent to the following code, except that the
actual implementation does not build up intermediate results in memory::
def product(*args, repeat=1):
# product('ABCD', 'xy') → Ax Ay Bx By Cx Cy Dx Dy
# product(range(2), repeat=3) → 000 001 010 011 100 101 110 111
pools = [tuple(pool) for pool in args] * repeat
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple(prod)
Before :func:`product` runs, it completely consumes the input iterables,
keeping pools of values in memory to generate the products. Accordingly,
it is only useful with finite inputs.
.. function:: repeat(object[, times])
Make an iterator that returns *object* over and over again. Runs indefinitely
unless the *times* argument is specified.
Roughly equivalent to::
def repeat(object, times=None):
# repeat(10, 3) → 10 10 10
if times is None:
while True:
yield object
else:
for i in range(times):
yield object
A common use for *repeat* is to supply a stream of constant values to *map*
or *zip*:
.. doctest::
>>> list(map(pow, range(10), repeat(2)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
.. function:: starmap(function, iterable)
Make an iterator that computes the function using arguments obtained from
the iterable. Used instead of :func:`map` when argument parameters are already
grouped in tuples from a single iterable (when the data has been
"pre-zipped").
The difference between :func:`map` and :func:`starmap` parallels the
distinction between ``function(a,b)`` and ``function(*c)``. Roughly
equivalent to::
def starmap(function, iterable):
# starmap(pow, [(2,5), (3,2), (10,3)]) → 32 9 1000
for args in iterable:
yield function(*args)
.. function:: takewhile(predicate, iterable)
Make an iterator that returns elements from the iterable as long as the
predicate is true. Roughly equivalent to::
def takewhile(predicate, iterable):
# takewhile(lambda x: x<5, [1,4,6,4,1]) → 1 4
for x in iterable:
if predicate(x):
yield x
else:
break
Note, the element that first fails the predicate condition is
consumed from the input iterator and there is no way to access it.
This could be an issue if an application wants to further consume the
input iterator after takewhile has been run to exhaustion. To work
around this problem, consider using `more-iterools before_and_after()
<https://more-itertools.readthedocs.io/en/stable/api.html#more_itertools.before_and_after>`_
instead.
.. function:: tee(iterable, n=2)
Return *n* independent iterators from a single iterable.
The following Python code helps explain what *tee* does (although the actual
implementation is more complex and uses only a single underlying
:abbr:`FIFO (first-in, first-out)` queue)::
def tee(iterable, n=2):
it = iter(iterable)
deques = [collections.deque() for i in range(n)]
def gen(mydeque):
while True:
if not mydeque: # when the local deque is empty
try:
newval = next(it) # fetch a new value and
except StopIteration:
return
for d in deques: # load it to all the deques
d.append(newval)
yield mydeque.popleft()
return tuple(gen(d) for d in deques)
Once a :func:`tee` has been created, the original *iterable* should not be
used anywhere else; otherwise, the *iterable* could get advanced without
the tee objects being informed.
``tee`` iterators are not threadsafe. A :exc:`RuntimeError` may be
raised when simultaneously using iterators returned by the same :func:`tee`
call, even if the original *iterable* is threadsafe.
This itertool may require significant auxiliary storage (depending on how
much temporary data needs to be stored). In general, if one iterator uses
most or all of the data before another iterator starts, it is faster to use
:func:`list` instead of :func:`tee`.
.. function:: zip_longest(*iterables, fillvalue=None)
Make an iterator that aggregates elements from each of the iterables. If the
iterables are of uneven length, missing values are filled-in with *fillvalue*.
Iteration continues until the longest iterable is exhausted. Roughly equivalent to::
def zip_longest(*args, fillvalue=None):
# zip_longest('ABCD', 'xy', fillvalue='-') → Ax By C- D-
iterators = [iter(it) for it in args]
num_active = len(iterators)
if not num_active:
return
while True:
values = []
for i, it in enumerate(iterators):
try:
value = next(it)
except StopIteration:
num_active -= 1
if not num_active:
return
iterators[i] = repeat(fillvalue)
value = fillvalue
values.append(value)
yield tuple(values)
If one of the iterables is potentially infinite, then the :func:`zip_longest`
function should be wrapped with something that limits the number of calls
(for example :func:`islice` or :func:`takewhile`). If not specified,
*fillvalue* defaults to ``None``.
.. _itertools-recipes:
Itertools Recipes
-----------------
This section shows recipes for creating an extended toolset using the existing
itertools as building blocks.
The primary purpose of the itertools recipes is educational. The recipes show
various ways of thinking about individual tools — for example, that
``chain.from_iterable`` is related to the concept of flattening. The recipes
also give ideas about ways that the tools can be combined — for example, how
``starmap()`` and ``repeat()`` can work together. The recipes also show patterns
for using itertools with the :mod:`operator` and :mod:`collections` modules as
well as with the built-in itertools such as ``map()``, ``filter()``,
``reversed()``, and ``enumerate()``.
A secondary purpose of the recipes is to serve as an incubator. The
``accumulate()``, ``compress()``, and ``pairwise()`` itertools started out as
recipes. Currently, the ``sliding_window()``, ``iter_index()``, and ``sieve()``
recipes are being tested to see whether they prove their worth.
Substantially all of these recipes and many, many others can be installed from
the `more-itertools project <https://pypi.org/project/more-itertools/>`_ found
on the Python Package Index::
python -m pip install more-itertools
Many of the recipes offer the same high performance as the underlying toolset.
Superior memory performance is kept by processing elements one at a time rather
than bringing the whole iterable into memory all at once. Code volume is kept
small by linking the tools together in a `functional style
<https://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf>`_. High speed
is retained by preferring "vectorized" building blocks over the use of for-loops
and :term:`generators <generator>` which incur interpreter overhead.
.. testcode::
import collections
import functools
import math
import operator
import random
def take(n, iterable):
"Return first n items of the iterable as a list."
return list(islice(iterable, n))
def prepend(value, iterable):
"Prepend a single value in front of an iterable."
# prepend(1, [2, 3, 4]) → 1 2 3 4
return chain([value], iterable)
def tabulate(function, start=0):
"Return function(0), function(1), ..."
return map(function, count(start))
def repeatfunc(func, times=None, *args):
"""Repeat calls to func with specified arguments.
Example: repeatfunc(random.random)
"""
if times is None:
return starmap(func, repeat(args))
return starmap(func, repeat(args, times))
def flatten(list_of_lists):
"Flatten one level of nesting."
return chain.from_iterable(list_of_lists)
def ncycles(iterable, n):
"Returns the sequence elements n times."
return chain.from_iterable(repeat(tuple(iterable), n))
def tail(n, iterable):
"Return an iterator over the last n items."
# tail(3, 'ABCDEFG') → E F G
return iter(collections.deque(iterable, maxlen=n))
def consume(iterator, n=None):
"Advance the iterator n-steps ahead. If n is None, consume entirely."
# Use functions that consume iterators at C speed.
if n is None:
# feed the entire iterator into a zero-length deque
collections.deque(iterator, maxlen=0)
else:
# advance to the empty slice starting at position n
next(islice(iterator, n, n), None)
def nth(iterable, n, default=None):
"Returns the nth item or a default value."
return next(islice(iterable, n, None), default)
def quantify(iterable, predicate=bool):
"Given a predicate that returns True or False, count the True results."
return sum(map(predicate, iterable))
def first_true(iterable, default=False, predicate=None):
"Returns the first true value or the *default* if there is no true value."
# first_true([a,b,c], x) → a or b or c or x
# first_true([a,b], x, f) → a if f(a) else b if f(b) else x
return next(filter(predicate, iterable), default)
def all_equal(iterable, key=None):
"Returns True if all the elements are equal to each other."
# all_equal('4٤໔4৪', key=int) → True
return len(take(2, groupby(iterable, key))) <= 1
def unique_justseen(iterable, key=None):
"List unique elements, preserving order. Remember only the element just seen."
# unique_justseen('AAAABBBCCDAABBB') → A B C D A B
# unique_justseen('ABBcCAD', str.casefold) → A B c A D
if key is None:
return map(operator.itemgetter(0), groupby(iterable))
return map(next, map(operator.itemgetter(1), groupby(iterable, key)))
def unique_everseen(iterable, key=None):
"List unique elements, preserving order. Remember all elements ever seen."
# unique_everseen('AAAABBBCCDAABBB') → A B C D
# unique_everseen('ABBcCAD', str.casefold) → A B c D
seen = set()
if key is None:
for element in filterfalse(seen.__contains__, iterable):
seen.add(element)
yield element
else:
for element in iterable:
k = key(element)
if k not in seen:
seen.add(k)
yield element
def sliding_window(iterable, n):
"Collect data into overlapping fixed-length chunks or blocks."
# sliding_window('ABCDEFG', 4) → ABCD BCDE CDEF DEFG
it = iter(iterable)
window = collections.deque(islice(it, n-1), maxlen=n)
for x in it:
window.append(x)
yield tuple(window)
def grouper(iterable, n, *, incomplete='fill', fillvalue=None):
"Collect data into non-overlapping fixed-length chunks or blocks."
# grouper('ABCDEFG', 3, fillvalue='x') → ABC DEF Gxx
# grouper('ABCDEFG', 3, incomplete='strict') → ABC DEF ValueError
# grouper('ABCDEFG', 3, incomplete='ignore') → ABC DEF
iterators = [iter(iterable)] * n
match incomplete:
case 'fill':
return zip_longest(*iterators, fillvalue=fillvalue)
case 'strict':
return zip(*iterators, strict=True)
case 'ignore':
return zip(*iterators)
case _:
raise ValueError('Expected fill, strict, or ignore')
def roundrobin(*iterables):
"Visit input iterables in a cycle until each is exhausted."
# roundrobin('ABC', 'D', 'EF') → A D E B F C
# Algorithm credited to George Sakkis
iterators = map(iter, iterables)
for num_active in range(len(iterables), 0, -1):
iterators = cycle(islice(iterators, num_active))
yield from map(next, iterators)
def partition(predicate, iterable):
"""Partition entries into false entries and true entries.
If *predicate* is slow, consider wrapping it with functools.lru_cache().
"""
# partition(is_odd, range(10)) → 0 2 4 6 8 and 1 3 5 7 9
t1, t2 = tee(iterable)
return filterfalse(predicate, t1), filter(predicate, t2)
def subslices(seq):
"Return all contiguous non-empty subslices of a sequence."
# subslices('ABCD') → A AB ABC ABCD B BC BCD C CD D
slices = starmap(slice, combinations(range(len(seq) + 1), 2))
return map(operator.getitem, repeat(seq), slices)
def iter_index(iterable, value, start=0, stop=None):
"Return indices where a value occurs in a sequence or iterable."
# iter_index('AABCADEAF', 'A') → 0 1 4 7
seq_index = getattr(iterable, 'index', None)
if seq_index is None:
# Path for general iterables
it = islice(iterable, start, stop)
for i, element in enumerate(it, start):
if element is value or element == value:
yield i
else:
# Path for sequences with an index() method
stop = len(iterable) if stop is None else stop
i = start
try:
while True:
yield (i := seq_index(value, i, stop))
i += 1
except ValueError:
pass
def iter_except(func, exception, first=None):
""" Call a function repeatedly until an exception is raised.
Converts a call-until-exception interface to an iterator interface.
"""
# iter_except(d.popitem, KeyError) → non-blocking dictionary iterator
try:
if first is not None:
yield first()
while True:
yield func()
except exception:
pass
The following recipes have a more mathematical flavor:
.. testcode::
def powerset(iterable):
"powerset([1,2,3]) → () (1,) (2,) (3,) (1,2) (1,3) (2,3) (1,2,3)"
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
def sum_of_squares(iterable):
"Add up the squares of the input values."
# sum_of_squares([10, 20, 30]) → 1400
return math.sumprod(*tee(iterable))