diff --git a/userbenchmark/optim/run.py b/userbenchmark/optim/run.py index ec27e71c18..08f7c4798c 100644 --- a/userbenchmark/optim/run.py +++ b/userbenchmark/optim/run.py @@ -51,7 +51,7 @@ def get_unstable_models() -> Set[str]: # PT2 dynamo tracing for the for-loop implementation takes over 30s. # This is known + NOT going to be improved anytime soon, see # https://github.com/pytorch/torchdynamo/issues/1803#issuecomment-1336688894 -MODELS_TO_RUN_ON_PT2: List[str] = ['resnet18', 'timm_vision_transformer', 'timm_vision_transformer_large'] +MODELS_TO_RUN_ON_PT2: List[str] = ['resnet18', 'timm_vision_transformer_large'] # NOTE: While it is possible to run these benchmarks on CPU, we skip running on CPU in CI because CPU stats can be # unstable and we had stopped reporting them. You'll still be able to use this script to run CPU though, as it may @@ -213,6 +213,7 @@ def get_unstable_models() -> Set[str]: 'sage', 'sam', 'shufflenet_v2_x1_0', + 'simple_gpt', 'soft_actor_critic', 'speech_transformer', 'squeezenet1_1', @@ -250,7 +251,10 @@ def get_unstable_models() -> Set[str]: # 16h currently OOMs, but once it supports train, we should remove this line # See tracker https://github.com/pytorch/benchmark/issues/1793 {'model': 'llama_v2_7b_16h'} -] +[ +] + [ + # Model needs to be run via dynamo torchbench and be provided distributed parameters + {'model': 'simple_gpt'} +] + [ # SparseAdam does not support dense gradients {'optim': 'SparseAdam', 'model': m} for m in DENSE_MODELS ] + [ @@ -306,7 +310,7 @@ def get_unstable_models() -> Set[str]: # See GH issue: https://github.com/pytorch/pytorch/issues/97361 {'model': m, 'device': 'cuda', 'func_str': 'pt2_', 'defaults': [df], 'optim': 'NAdam'} for m in [ 'densenet121', 'doctr_reco_predictor', 'fambench_xlmr', 'hf_Bart', 'hf_Bert_large', 'hf_GPT2_large','hf_Longformer', - 'hf_T5_base', 'hf_T5_large', 'moco', 'resnet152', 'timm_vision_transformer', 'yolov3' + 'hf_T5_base', 'hf_T5_large', 'moco', 'resnet152', 'timm_vision_transformer', 'timm_vision_transformer_large', 'yolov3' ] for df in ['no_foreach', 'differentiable'] ] + [ # torch.compile()'d optimizer.step() has too many arguments in the generated