-
Notifications
You must be signed in to change notification settings - Fork 440
/
7B_lora_dpo.yaml
86 lines (77 loc) · 2.63 KB
/
7B_lora_dpo.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# Config for multi-device LoRA DPO alignment in lora_dpo_distributed.py
# using a Llama2 7B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Llama-2-7b-hf --output-dir /tmp/Llama-2-7b-hf --ignore-patterns "*.safetensors" --hf-token <HF_TOKEN>
#
# To launch on 2 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 2 lora_dpo_distributed --config llama2/7B_lora_dpo
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 2 lora_dpo_distributed --config llama2/7B_lora_dpo checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works best when the model is being fine-tuned on 2+ GPUs.
# For single device LoRA DPO alignment please use 7B_lora_dpo_single_device.yaml
# Model Arguments
model:
_component_: torchtune.models.llama2.lora_llama2_7b
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
apply_lora_to_mlp: True
apply_lora_to_output: False
lora_rank: 8 # higher increases accuracy and memory
lora_alpha: 16 # usually alpha=2*rank
lora_dropout: 0.0
# Tokenizer
tokenizer:
_component_: torchtune.models.llama2.llama2_tokenizer
path: /tmp/Llama-2-7b-hf/tokenizer.model
max_seq_len: 1024
checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/Llama-2-7b-hf
checkpoint_files:
[pytorch_model-00001-of-00002.bin, pytorch_model-00002-of-00002.bin]
adapter_checkpoint: null
recipe_checkpoint: null
output_dir: /tmp/Llama-2-7b-hf
model_type: LLAMA2
resume_from_checkpoint: False
save_adapter_weights_only: False
# Dataset and Sampler
dataset:
_component_: torchtune.datasets.stack_exchange_paired_dataset
seed: null
shuffle: True
batch_size: 4
# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
fused: True
weight_decay: 0.05
lr: 5e-4
lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 100
loss:
_component_: torchtune.rlhf.loss.DPOLoss
beta: 0.1
label_smoothing: 0
# Training
epochs: 1
max_steps_per_epoch: 1000
gradient_accumulation_steps: 8 # Use to increase virtual batch size
compile: False # pytorch compile, set to true for better perf/memory
# Logging
output_dir: /tmp/lora_dpo_output/
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: True
# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: True # True reduces memory