-
Notifications
You must be signed in to change notification settings - Fork 7k
/
datasets_utils.py
848 lines (675 loc) · 32.4 KB
/
datasets_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
import contextlib
import functools
import importlib
import inspect
import itertools
import os
import pathlib
import random
import string
import unittest
import unittest.mock
from collections import defaultdict
from typing import Any, Callable, Dict, Iterator, List, Optional, Sequence, Tuple, Union
import PIL
import PIL.Image
import torch
import torchvision.datasets
import torchvision.io
from common_utils import get_tmp_dir, disable_console_output
__all__ = [
"UsageError",
"lazy_importer",
"test_all_configs",
"DatasetTestCase",
"ImageDatasetTestCase",
"VideoDatasetTestCase",
"create_image_or_video_tensor",
"create_image_file",
"create_image_folder",
"create_video_file",
"create_video_folder",
"create_random_string",
]
class UsageError(Exception):
"""Should be raised in case an error happens in the setup rather than the test."""
class LazyImporter:
r"""Lazy importer for additional dependencies.
Some datasets require additional packages that are no direct dependencies of torchvision. Instances of this class
provide modules listed in MODULES as attributes. They are only imported when accessed.
"""
MODULES = (
"av",
"lmdb",
"pycocotools",
"requests",
"scipy.io",
"scipy.sparse",
)
def __init__(self):
modules = defaultdict(list)
for module in self.MODULES:
module, *submodules = module.split(".", 1)
if submodules:
modules[module].append(submodules[0])
else:
# This introduces the module so that it is known when we later iterate over the dictionary.
modules.__missing__(module)
for module, submodules in modules.items():
# We need the quirky 'module=module' and submodules=submodules arguments to the lambda since otherwise the
# lookup for these would happen at runtime rather than at definition. Thus, without it, every property
# would try to import the last item in 'modules'
setattr(
type(self),
module,
property(lambda self, module=module, submodules=submodules: LazyImporter._import(module, submodules)),
)
@staticmethod
def _import(package, subpackages):
try:
module = importlib.import_module(package)
except ImportError as error:
raise UsageError(
f"Failed to import module '{package}'. "
f"This probably means that the current test case needs '{package}' installed, "
f"but it is not a dependency of torchvision. "
f"You need to install it manually, for example 'pip install {package}'."
) from error
for name in subpackages:
importlib.import_module(f".{name}", package=package)
return module
lazy_importer = LazyImporter()
def requires_lazy_imports(*modules):
def outer_wrapper(fn):
@functools.wraps(fn)
def inner_wrapper(*args, **kwargs):
for module in modules:
getattr(lazy_importer, module.replace(".", "_"))
return fn(*args, **kwargs)
return inner_wrapper
return outer_wrapper
def test_all_configs(test):
"""Decorator to run test against all configurations.
Add this as decorator to an arbitrary test to run it against all configurations. This includes
:attr:`DatasetTestCase.DEFAULT_CONFIG` and :attr:`DatasetTestCase.ADDITIONAL_CONFIGS`.
The current configuration is provided as the first parameter for the test:
.. code-block::
@test_all_configs()
def test_foo(self, config):
pass
.. note::
This will try to remove duplicate configurations. During this process it will not not preserve a potential
ordering of the configurations or an inner ordering of a configuration.
"""
def maybe_remove_duplicates(configs):
try:
return [dict(config_) for config_ in set(tuple(sorted(config.items())) for config in configs)]
except TypeError:
# A TypeError will be raised if a value of any config is not hashable, e.g. a list. In that case duplicate
# removal would be a lot more elaborate and we simply bail out.
return configs
@functools.wraps(test)
def wrapper(self):
configs = []
if self.DEFAULT_CONFIG is not None:
configs.append(self.DEFAULT_CONFIG)
if self.ADDITIONAL_CONFIGS is not None:
configs.extend(self.ADDITIONAL_CONFIGS)
if not configs:
configs = [self._KWARG_DEFAULTS.copy()]
else:
configs = maybe_remove_duplicates(configs)
for config in configs:
with self.subTest(**config):
test(self, config)
return wrapper
def combinations_grid(**kwargs):
"""Creates a grid of input combinations.
Each element in the returned sequence is a dictionary containing one possible combination as values.
Example:
>>> combinations_grid(foo=("bar", "baz"), spam=("eggs", "ham"))
[
{'foo': 'bar', 'spam': 'eggs'},
{'foo': 'bar', 'spam': 'ham'},
{'foo': 'baz', 'spam': 'eggs'},
{'foo': 'baz', 'spam': 'ham'}
]
"""
return [dict(zip(kwargs.keys(), values)) for values in itertools.product(*kwargs.values())]
class DatasetTestCase(unittest.TestCase):
"""Abstract base class for all dataset testcases.
You have to overwrite the following class attributes:
- DATASET_CLASS (torchvision.datasets.VisionDataset): Class of dataset to be tested.
- FEATURE_TYPES (Sequence[Any]): Types of the elements returned by index access of the dataset. Instead of
providing these manually, you can instead subclass ``ImageDatasetTestCase`` or ``VideoDatasetTestCase```to
get a reasonable default, that should work for most cases. Each entry of the sequence may be a tuple,
to indicate multiple possible values.
Optionally, you can overwrite the following class attributes:
- DEFAULT_CONFIG (Dict[str, Any]): Config that will be used by default. If omitted, this defaults to all
keyword arguments of the dataset minus ``transform``, ``target_transform``, ``transforms``, and
``download``. Overwrite this if you want to use a default value for a parameter for which the dataset does
not provide one.
- ADDITIONAL_CONFIGS (Sequence[Dict[str, Any]]): Additional configs that should be tested. Each dictionary can
contain an arbitrary combination of dataset parameters that are **not** ``transform``, ``target_transform``,
``transforms``, or ``download``.
- REQUIRED_PACKAGES (Iterable[str]): Additional dependencies to use the dataset. If these packages are not
available, the tests are skipped.
Additionally, you need to overwrite the ``inject_fake_data()`` method that provides the data that the tests rely on.
The fake data should resemble the original data as close as necessary, while containing only few examples. During
the creation of the dataset check-, download-, and extract-functions from ``torchvision.datasets.utils`` are
disabled.
Without further configuration, the testcase will test if
1. the dataset raises a :class:`FileNotFoundError` or a :class:`RuntimeError` if the data files are not found or
corrupted,
2. the dataset inherits from `torchvision.datasets.VisionDataset`,
3. the dataset can be turned into a string,
4. the feature types of a returned example matches ``FEATURE_TYPES``,
5. the number of examples matches the injected fake data, and
6. the dataset calls ``transform``, ``target_transform``, or ``transforms`` if available when accessing data.
Case 3. to 6. are tested against all configurations in ``CONFIGS``.
To add dataset-specific tests, create a new method that takes no arguments with ``test_`` as a name prefix:
.. code-block::
def test_foo(self):
pass
If you want to run the test against all configs, add the ``@test_all_configs`` decorator to the definition and
accept a single argument:
.. code-block::
@test_all_configs
def test_bar(self, config):
pass
Within the test you can use the ``create_dataset()`` method that yields the dataset as well as additional
information provided by the ``ìnject_fake_data()`` method:
.. code-block::
def test_baz(self):
with self.create_dataset() as (dataset, info):
pass
"""
DATASET_CLASS = None
FEATURE_TYPES = None
DEFAULT_CONFIG = None
ADDITIONAL_CONFIGS = None
REQUIRED_PACKAGES = None
# These keyword arguments are checked by test_transforms in case they are available in DATASET_CLASS.
_TRANSFORM_KWARGS = {
"transform",
"target_transform",
"transforms",
}
# These keyword arguments get a 'special' treatment and should not be set in DEFAULT_CONFIG or ADDITIONAL_CONFIGS.
_SPECIAL_KWARGS = {
*_TRANSFORM_KWARGS,
"download",
}
# These fields are populated during setupClass() within _populate_private_class_attributes()
# This will be a dictionary containing all keyword arguments with their respective default values extracted from
# the dataset constructor.
_KWARG_DEFAULTS = None
# This will be a set of all _SPECIAL_KWARGS that the dataset constructor takes.
_HAS_SPECIAL_KWARG = None
# These functions are disabled during dataset creation in create_dataset().
_CHECK_FUNCTIONS = {
"check_md5",
"check_integrity",
}
_DOWNLOAD_EXTRACT_FUNCTIONS = {
"download_url",
"download_file_from_google_drive",
"extract_archive",
"download_and_extract_archive",
}
def dataset_args(self, tmpdir: str, config: Dict[str, Any]) -> Sequence[Any]:
"""Define positional arguments passed to the dataset.
.. note::
The default behavior is only valid if the dataset to be tested has ``root`` as the only required parameter.
Otherwise you need to overwrite this method.
Args:
tmpdir (str): Path to a temporary directory. For most cases this acts as root directory for the dataset
to be created and in turn also for the fake data injected here.
config (Dict[str, Any]): Configuration that will be passed to the dataset constructor. It provides at least
fields for all dataset parameters with default values.
Returns:
(Tuple[str]): ``tmpdir`` which corresponds to ``root`` for most datasets.
"""
return (tmpdir,)
def inject_fake_data(self, tmpdir: str, config: Dict[str, Any]) -> Union[int, Dict[str, Any]]:
"""Inject fake data for dataset into a temporary directory.
During the creation of the dataset the download and extract logic is disabled. Thus, the fake data injected
here needs to resemble the raw data, i.e. the state of the dataset directly after the files are downloaded and
potentially extracted.
Args:
tmpdir (str): Path to a temporary directory. For most cases this acts as root directory for the dataset
to be created and in turn also for the fake data injected here.
config (Dict[str, Any]): Configuration that will be passed to the dataset constructor. It provides at least
fields for all dataset parameters with default values.
Needs to return one of the following:
1. (int): Number of examples in the dataset to be created, or
2. (Dict[str, Any]): Additional information about the injected fake data. Must contain the field
``"num_examples"`` that corresponds to the number of examples in the dataset to be created.
"""
raise NotImplementedError("You need to provide fake data in order for the tests to run.")
@contextlib.contextmanager
def create_dataset(
self,
config: Optional[Dict[str, Any]] = None,
inject_fake_data: bool = True,
patch_checks: Optional[bool] = None,
**kwargs: Any,
) -> Iterator[Tuple[torchvision.datasets.VisionDataset, Dict[str, Any]]]:
r"""Create the dataset in a temporary directory.
The configuration passed to the dataset is populated to contain at least all parameters with default values.
For this the following order of precedence is used:
1. Parameters in :attr:`kwargs`.
2. Configuration in :attr:`config`.
3. Configuration in :attr:`~DatasetTestCase.DEFAULT_CONFIG`.
4. Default parameters of the dataset.
Args:
config (Optional[Dict[str, Any]]): Configuration that will be used to create the dataset.
inject_fake_data (bool): If ``True`` (default) inject the fake data with :meth:`.inject_fake_data` before
creating the dataset.
patch_checks (Optional[bool]): If ``True`` disable integrity check logic while creating the dataset. If
omitted defaults to the same value as ``inject_fake_data``.
**kwargs (Any): Additional parameters passed to the dataset. These parameters take precedence in case they
overlap with ``config``.
Yields:
dataset (torchvision.dataset.VisionDataset): Dataset.
info (Dict[str, Any]): Additional information about the injected fake data. See :meth:`.inject_fake_data`
for details.
"""
if patch_checks is None:
patch_checks = inject_fake_data
special_kwargs, other_kwargs = self._split_kwargs(kwargs)
complete_config = self._KWARG_DEFAULTS.copy()
if self.DEFAULT_CONFIG:
complete_config.update(self.DEFAULT_CONFIG)
if config:
complete_config.update(config)
if other_kwargs:
complete_config.update(other_kwargs)
if "download" in self._HAS_SPECIAL_KWARG and special_kwargs.get("download", False):
# override download param to False param if its default is truthy
special_kwargs["download"] = False
patchers = self._patch_download_extract()
if patch_checks:
patchers.update(self._patch_checks())
with get_tmp_dir() as tmpdir:
args = self.dataset_args(tmpdir, complete_config)
info = self._inject_fake_data(tmpdir, complete_config) if inject_fake_data else None
with self._maybe_apply_patches(patchers), disable_console_output():
dataset = self.DATASET_CLASS(*args, **complete_config, **special_kwargs)
yield dataset, info
@classmethod
def setUpClass(cls):
cls._verify_required_public_class_attributes()
cls._populate_private_class_attributes()
cls._process_optional_public_class_attributes()
super().setUpClass()
@classmethod
def _verify_required_public_class_attributes(cls):
if cls.DATASET_CLASS is None:
raise UsageError(
"The class attribute 'DATASET_CLASS' needs to be overwritten. "
"It should contain the class of the dataset to be tested."
)
if cls.FEATURE_TYPES is None:
raise UsageError(
"The class attribute 'FEATURE_TYPES' needs to be overwritten. "
"It should contain a sequence of types that the dataset returns when accessed by index."
)
@classmethod
def _populate_private_class_attributes(cls):
defaults = []
for cls_ in cls.DATASET_CLASS.__mro__:
if cls_ is torchvision.datasets.VisionDataset:
break
argspec = inspect.getfullargspec(cls_.__init__)
if not argspec.defaults:
continue
defaults.append(
{kwarg: default for kwarg, default in zip(argspec.args[-len(argspec.defaults):], argspec.defaults)}
)
if not argspec.varkw:
break
kwarg_defaults = dict()
for config in reversed(defaults):
kwarg_defaults.update(config)
has_special_kwargs = set()
for name in cls._SPECIAL_KWARGS:
if name not in kwarg_defaults:
continue
del kwarg_defaults[name]
has_special_kwargs.add(name)
cls._KWARG_DEFAULTS = kwarg_defaults
cls._HAS_SPECIAL_KWARG = has_special_kwargs
@classmethod
def _process_optional_public_class_attributes(cls):
def check_config(config, name):
special_kwargs = tuple(f"'{name}'" for name in cls._SPECIAL_KWARGS if name in config)
if special_kwargs:
raise UsageError(
f"{name} contains a value for the parameter(s) {', '.join(special_kwargs)}. "
f"These are handled separately by the test case and should not be set here. "
f"If you need to test some custom behavior regarding these parameters, "
f"you need to write a custom test (*not* test case), e.g. test_custom_transform()."
)
if cls.DEFAULT_CONFIG is not None:
check_config(cls.DEFAULT_CONFIG, "DEFAULT_CONFIG")
if cls.ADDITIONAL_CONFIGS is not None:
for idx, config in enumerate(cls.ADDITIONAL_CONFIGS):
check_config(config, f"CONFIGS[{idx}]")
if cls.REQUIRED_PACKAGES:
missing_pkgs = []
for pkg in cls.REQUIRED_PACKAGES:
try:
importlib.import_module(pkg)
except ImportError:
missing_pkgs.append(f"'{pkg}'")
if missing_pkgs:
raise unittest.SkipTest(
f"The package(s) {', '.join(missing_pkgs)} are required to load the dataset "
f"'{cls.DATASET_CLASS.__name__}', but are not installed."
)
def _split_kwargs(self, kwargs):
special_kwargs = kwargs.copy()
other_kwargs = {key: special_kwargs.pop(key) for key in set(special_kwargs.keys()) - self._SPECIAL_KWARGS}
return special_kwargs, other_kwargs
def _inject_fake_data(self, tmpdir, config):
info = self.inject_fake_data(tmpdir, config)
if info is None:
raise UsageError(
"The method 'inject_fake_data' needs to return at least an integer indicating the number of "
"examples for the current configuration."
)
elif isinstance(info, int):
info = dict(num_examples=info)
elif not isinstance(info, dict):
raise UsageError(
f"The additional information returned by the method 'inject_fake_data' must be either an "
f"integer indicating the number of examples for the current configuration or a dictionary with "
f"the same content. Got {type(info)} instead."
)
elif "num_examples" not in info:
raise UsageError(
"The information dictionary returned by the method 'inject_fake_data' must contain a "
"'num_examples' field that holds the number of examples for the current configuration."
)
return info
def _patch_download_extract(self):
module = inspect.getmodule(self.DATASET_CLASS).__name__
return {unittest.mock.patch(f"{module}.{function}") for function in self._DOWNLOAD_EXTRACT_FUNCTIONS}
def _patch_checks(self):
module = inspect.getmodule(self.DATASET_CLASS).__name__
return {unittest.mock.patch(f"{module}.{function}", return_value=True) for function in self._CHECK_FUNCTIONS}
@contextlib.contextmanager
def _maybe_apply_patches(self, patchers):
with contextlib.ExitStack() as stack:
mocks = {}
for patcher in patchers:
with contextlib.suppress(AttributeError):
mocks[patcher.target] = stack.enter_context(patcher)
yield mocks
def test_not_found_or_corrupted(self):
with self.assertRaises((FileNotFoundError, RuntimeError)):
with self.create_dataset(inject_fake_data=False):
pass
def test_smoke(self):
with self.create_dataset() as (dataset, _):
self.assertIsInstance(dataset, torchvision.datasets.VisionDataset)
@test_all_configs
def test_str_smoke(self, config):
with self.create_dataset(config) as (dataset, _):
self.assertIsInstance(str(dataset), str)
@test_all_configs
def test_feature_types(self, config):
with self.create_dataset(config) as (dataset, _):
example = dataset[0]
if len(self.FEATURE_TYPES) > 1:
actual = len(example)
expected = len(self.FEATURE_TYPES)
self.assertEqual(
actual,
expected,
f"The number of the returned features does not match the the number of elements in FEATURE_TYPES: "
f"{actual} != {expected}",
)
else:
example = (example,)
for idx, (feature, expected_feature_type) in enumerate(zip(example, self.FEATURE_TYPES)):
with self.subTest(idx=idx):
self.assertIsInstance(feature, expected_feature_type)
@test_all_configs
def test_num_examples(self, config):
with self.create_dataset(config) as (dataset, info):
self.assertEqual(len(dataset), info["num_examples"])
@test_all_configs
def test_transforms(self, config):
mock = unittest.mock.Mock(wraps=lambda *args: args[0] if len(args) == 1 else args)
for kwarg in self._TRANSFORM_KWARGS:
if kwarg not in self._HAS_SPECIAL_KWARG:
continue
mock.reset_mock()
with self.subTest(kwarg=kwarg):
with self.create_dataset(config, **{kwarg: mock}) as (dataset, _):
dataset[0]
mock.assert_called()
class ImageDatasetTestCase(DatasetTestCase):
"""Abstract base class for image dataset testcases.
- Overwrites the FEATURE_TYPES class attribute to expect a :class:`PIL.Image.Image` and an integer label.
"""
FEATURE_TYPES = (PIL.Image.Image, int)
@contextlib.contextmanager
def create_dataset(
self,
config: Optional[Dict[str, Any]] = None,
inject_fake_data: bool = True,
patch_checks: Optional[bool] = None,
**kwargs: Any,
) -> Iterator[Tuple[torchvision.datasets.VisionDataset, Dict[str, Any]]]:
with super().create_dataset(
config=config,
inject_fake_data=inject_fake_data,
patch_checks=patch_checks,
**kwargs,
) as (dataset, info):
# PIL.Image.open() only loads the image meta data upfront and keeps the file open until the first access
# to the pixel data occurs. Trying to delete such a file results in an PermissionError on Windows. Thus, we
# force-load opened images.
# This problem only occurs during testing since some tests, e.g. DatasetTestCase.test_feature_types open an
# image, but never use the underlying data. During normal operation it is reasonable to assume that the
# user wants to work with the image he just opened rather than deleting the underlying file.
with self._force_load_images():
yield dataset, info
@contextlib.contextmanager
def _force_load_images(self):
open = PIL.Image.open
def new(fp, *args, **kwargs):
image = open(fp, *args, **kwargs)
if isinstance(fp, (str, pathlib.Path)):
image.load()
return image
with unittest.mock.patch("PIL.Image.open", new=new):
yield
class VideoDatasetTestCase(DatasetTestCase):
"""Abstract base class for video dataset testcases.
- Overwrites the 'FEATURE_TYPES' class attribute to expect two :class:`torch.Tensor` s for the video and audio as
well as an integer label.
- Overwrites the 'REQUIRED_PACKAGES' class attribute to require PyAV (``av``).
- Adds the 'DEFAULT_FRAMES_PER_CLIP' class attribute. If no 'frames_per_clip' is provided by 'inject_fake_data()'
and it is the last parameter without a default value in the dataset constructor, the value of the
'DEFAULT_FRAMES_PER_CLIP' class attribute is appended to the output.
"""
FEATURE_TYPES = (torch.Tensor, torch.Tensor, int)
REQUIRED_PACKAGES = ("av",)
DEFAULT_FRAMES_PER_CLIP = 1
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.dataset_args = self._set_default_frames_per_clip(self.dataset_args)
def _set_default_frames_per_clip(self, inject_fake_data):
argspec = inspect.getfullargspec(self.DATASET_CLASS.__init__)
args_without_default = argspec.args[1:-len(argspec.defaults)]
frames_per_clip_last = args_without_default[-1] == "frames_per_clip"
@functools.wraps(inject_fake_data)
def wrapper(tmpdir, config):
args = inject_fake_data(tmpdir, config)
if frames_per_clip_last and len(args) == len(args_without_default) - 1:
args = (*args, self.DEFAULT_FRAMES_PER_CLIP)
return args
return wrapper
def create_image_or_video_tensor(size: Sequence[int]) -> torch.Tensor:
r"""Create a random uint8 tensor.
Args:
size (Sequence[int]): Size of the tensor.
"""
return torch.randint(0, 256, size, dtype=torch.uint8)
def create_image_file(
root: Union[pathlib.Path, str], name: Union[pathlib.Path, str], size: Union[Sequence[int], int] = 10, **kwargs: Any
) -> pathlib.Path:
"""Create an image file from random data.
Args:
root (Union[str, pathlib.Path]): Root directory the image file will be placed in.
name (Union[str, pathlib.Path]): Name of the image file.
size (Union[Sequence[int], int]): Size of the image that represents the ``(num_channels, height, width)``. If
scalar, the value is used for the height and width. If not provided, three channels are assumed.
kwargs (Any): Additional parameters passed to :meth:`PIL.Image.Image.save`.
Returns:
pathlib.Path: Path to the created image file.
"""
if isinstance(size, int):
size = (size, size)
if len(size) == 2:
size = (3, *size)
if len(size) != 3:
raise UsageError(
f"The 'size' argument should either be an int or a sequence of length 2 or 3. Got {len(size)} instead"
)
image = create_image_or_video_tensor(size)
file = pathlib.Path(root) / name
# torch (num_channels x height x width) -> PIL (width x height x num_channels)
image = image.permute(2, 1, 0)
# For grayscale images PIL doesn't use a channel dimension
if image.shape[2] == 1:
image = torch.squeeze(image, 2)
PIL.Image.fromarray(image.numpy()).save(file, **kwargs)
return file
def create_image_folder(
root: Union[pathlib.Path, str],
name: Union[pathlib.Path, str],
file_name_fn: Callable[[int], str],
num_examples: int,
size: Optional[Union[Sequence[int], int, Callable[[int], Union[Sequence[int], int]]]] = None,
**kwargs: Any,
) -> List[pathlib.Path]:
"""Create a folder of random images.
Args:
root (Union[str, pathlib.Path]): Root directory the image folder will be placed in.
name (Union[str, pathlib.Path]): Name of the image folder.
file_name_fn (Callable[[int], str]): Should return a file name if called with the file index.
num_examples (int): Number of images to create.
size (Optional[Union[Sequence[int], int, Callable[[int], Union[Sequence[int], int]]]]): Size of the images. If
callable, will be called with the index of the corresponding file. If omitted, a random height and width
between 3 and 10 pixels is selected on a per-image basis.
kwargs (Any): Additional parameters passed to :func:`create_image_file`.
Returns:
List[pathlib.Path]: Paths to all created image files.
.. seealso::
- :func:`create_image_file`
"""
if size is None:
def size(idx: int) -> Tuple[int, int, int]:
num_channels = 3
height, width = torch.randint(3, 11, size=(2,), dtype=torch.int).tolist()
return (num_channels, height, width)
root = pathlib.Path(root) / name
os.makedirs(root, exist_ok=True)
return [
create_image_file(root, file_name_fn(idx), size=size(idx) if callable(size) else size, **kwargs)
for idx in range(num_examples)
]
@requires_lazy_imports("av")
def create_video_file(
root: Union[pathlib.Path, str],
name: Union[pathlib.Path, str],
size: Union[Sequence[int], int] = (1, 3, 10, 10),
fps: float = 25,
**kwargs: Any,
) -> pathlib.Path:
"""Create an video file from random data.
Args:
root (Union[str, pathlib.Path]): Root directory the video file will be placed in.
name (Union[str, pathlib.Path]): Name of the video file.
size (Union[Sequence[int], int]): Size of the video that represents the
``(num_frames, num_channels, height, width)``. If scalar, the value is used for the height and width.
If not provided, ``num_frames=1`` and ``num_channels=3`` are assumed.
fps (float): Frame rate in frames per second.
kwargs (Any): Additional parameters passed to :func:`torchvision.io.write_video`.
Returns:
pathlib.Path: Path to the created image file.
Raises:
UsageError: If PyAV is not available.
"""
if isinstance(size, int):
size = (size, size)
if len(size) == 2:
size = (3, *size)
if len(size) == 3:
size = (1, *size)
if len(size) != 4:
raise UsageError(
f"The 'size' argument should either be an int or a sequence of length 2, 3, or 4. Got {len(size)} instead"
)
video = create_image_or_video_tensor(size)
file = pathlib.Path(root) / name
torchvision.io.write_video(str(file), video.permute(0, 2, 3, 1), fps, **kwargs)
return file
@requires_lazy_imports("av")
def create_video_folder(
root: Union[str, pathlib.Path],
name: Union[str, pathlib.Path],
file_name_fn: Callable[[int], str],
num_examples: int,
size: Optional[Union[Sequence[int], int, Callable[[int], Union[Sequence[int], int]]]] = None,
fps=25,
**kwargs,
) -> List[pathlib.Path]:
"""Create a folder of random videos.
Args:
root (Union[str, pathlib.Path]): Root directory the video folder will be placed in.
name (Union[str, pathlib.Path]): Name of the video folder.
file_name_fn (Callable[[int], str]): Should return a file name if called with the file index.
num_examples (int): Number of videos to create.
size (Optional[Union[Sequence[int], int, Callable[[int], Union[Sequence[int], int]]]]): Size of the videos. If
callable, will be called with the index of the corresponding file. If omitted, a random even height and
width between 4 and 10 pixels is selected on a per-video basis.
fps (float): Frame rate in frames per second.
kwargs (Any): Additional parameters passed to :func:`create_video_file`.
Returns:
List[pathlib.Path]: Paths to all created video files.
Raises:
UsageError: If PyAV is not available.
.. seealso::
- :func:`create_video_file`
"""
if size is None:
def size(idx):
num_frames = 1
num_channels = 3
# The 'libx264' video codec, which is the default of torchvision.io.write_video, requires the height and
# width of the video to be divisible by 2.
height, width = (torch.randint(2, 6, size=(2,), dtype=torch.int) * 2).tolist()
return (num_frames, num_channels, height, width)
root = pathlib.Path(root) / name
os.makedirs(root, exist_ok=True)
return [
create_video_file(root, file_name_fn(idx), size=size(idx) if callable(size) else size, **kwargs)
for idx in range(num_examples)
]
def create_random_string(length: int, *digits: str) -> str:
"""Create a random string.
Args:
length (int): Number of characters in the generated string.
*characters (str): Characters to sample from. If omitted defaults to :attr:`string.ascii_lowercase`.
"""
if not digits:
digits = string.ascii_lowercase
else:
digits = "".join(itertools.chain(*digits))
return "".join(random.choice(digits) for _ in range(length))