-
Notifications
You must be signed in to change notification settings - Fork 7k
/
mvit.py
892 lines (783 loc) · 32 KB
/
mvit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
import math
from dataclasses import dataclass
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple
import torch
import torch.fx
import torch.nn as nn
from ...ops import MLP, StochasticDepth
from ...transforms._presets import VideoClassification
from ...utils import _log_api_usage_once
from .._api import register_model, Weights, WeightsEnum
from .._meta import _KINETICS400_CATEGORIES
from .._utils import _ovewrite_named_param, handle_legacy_interface
__all__ = [
"MViT",
"MViT_V1_B_Weights",
"mvit_v1_b",
"MViT_V2_S_Weights",
"mvit_v2_s",
]
@dataclass
class MSBlockConfig:
num_heads: int
input_channels: int
output_channels: int
kernel_q: List[int]
kernel_kv: List[int]
stride_q: List[int]
stride_kv: List[int]
def _prod(s: Sequence[int]) -> int:
product = 1
for v in s:
product *= v
return product
def _unsqueeze(x: torch.Tensor, target_dim: int, expand_dim: int) -> Tuple[torch.Tensor, int]:
tensor_dim = x.dim()
if tensor_dim == target_dim - 1:
x = x.unsqueeze(expand_dim)
elif tensor_dim != target_dim:
raise ValueError(f"Unsupported input dimension {x.shape}")
return x, tensor_dim
def _squeeze(x: torch.Tensor, target_dim: int, expand_dim: int, tensor_dim: int) -> torch.Tensor:
if tensor_dim == target_dim - 1:
x = x.squeeze(expand_dim)
return x
torch.fx.wrap("_unsqueeze")
torch.fx.wrap("_squeeze")
class Pool(nn.Module):
def __init__(
self,
pool: nn.Module,
norm: Optional[nn.Module],
activation: Optional[nn.Module] = None,
norm_before_pool: bool = False,
) -> None:
super().__init__()
self.pool = pool
layers = []
if norm is not None:
layers.append(norm)
if activation is not None:
layers.append(activation)
self.norm_act = nn.Sequential(*layers) if layers else None
self.norm_before_pool = norm_before_pool
def forward(self, x: torch.Tensor, thw: Tuple[int, int, int]) -> Tuple[torch.Tensor, Tuple[int, int, int]]:
x, tensor_dim = _unsqueeze(x, 4, 1)
# Separate the class token and reshape the input
class_token, x = torch.tensor_split(x, indices=(1,), dim=2)
x = x.transpose(2, 3)
B, N, C = x.shape[:3]
x = x.reshape((B * N, C) + thw).contiguous()
# normalizing prior pooling is useful when we use BN which can be absorbed to speed up inference
if self.norm_before_pool and self.norm_act is not None:
x = self.norm_act(x)
# apply the pool on the input and add back the token
x = self.pool(x)
T, H, W = x.shape[2:]
x = x.reshape(B, N, C, -1).transpose(2, 3)
x = torch.cat((class_token, x), dim=2)
if not self.norm_before_pool and self.norm_act is not None:
x = self.norm_act(x)
x = _squeeze(x, 4, 1, tensor_dim)
return x, (T, H, W)
def _interpolate(embedding: torch.Tensor, d: int) -> torch.Tensor:
if embedding.shape[0] == d:
return embedding
return (
nn.functional.interpolate(
embedding.permute(1, 0).unsqueeze(0),
size=d,
mode="linear",
)
.squeeze(0)
.permute(1, 0)
)
def _add_rel_pos(
attn: torch.Tensor,
q: torch.Tensor,
q_thw: Tuple[int, int, int],
k_thw: Tuple[int, int, int],
rel_pos_h: torch.Tensor,
rel_pos_w: torch.Tensor,
rel_pos_t: torch.Tensor,
) -> torch.Tensor:
# Modified code from: https://github.com/facebookresearch/SlowFast/commit/1aebd71a2efad823d52b827a3deaf15a56cf4932
q_t, q_h, q_w = q_thw
k_t, k_h, k_w = k_thw
dh = int(2 * max(q_h, k_h) - 1)
dw = int(2 * max(q_w, k_w) - 1)
dt = int(2 * max(q_t, k_t) - 1)
# Scale up rel pos if shapes for q and k are different.
q_h_ratio = max(k_h / q_h, 1.0)
k_h_ratio = max(q_h / k_h, 1.0)
dist_h = torch.arange(q_h)[:, None] * q_h_ratio - (torch.arange(k_h)[None, :] + (1.0 - k_h)) * k_h_ratio
q_w_ratio = max(k_w / q_w, 1.0)
k_w_ratio = max(q_w / k_w, 1.0)
dist_w = torch.arange(q_w)[:, None] * q_w_ratio - (torch.arange(k_w)[None, :] + (1.0 - k_w)) * k_w_ratio
q_t_ratio = max(k_t / q_t, 1.0)
k_t_ratio = max(q_t / k_t, 1.0)
dist_t = torch.arange(q_t)[:, None] * q_t_ratio - (torch.arange(k_t)[None, :] + (1.0 - k_t)) * k_t_ratio
# Interpolate rel pos if needed.
rel_pos_h = _interpolate(rel_pos_h, dh)
rel_pos_w = _interpolate(rel_pos_w, dw)
rel_pos_t = _interpolate(rel_pos_t, dt)
Rh = rel_pos_h[dist_h.long()]
Rw = rel_pos_w[dist_w.long()]
Rt = rel_pos_t[dist_t.long()]
B, n_head, _, dim = q.shape
r_q = q[:, :, 1:].reshape(B, n_head, q_t, q_h, q_w, dim)
rel_h_q = torch.einsum("bythwc,hkc->bythwk", r_q, Rh) # [B, H, q_t, qh, qw, k_h]
rel_w_q = torch.einsum("bythwc,wkc->bythwk", r_q, Rw) # [B, H, q_t, qh, qw, k_w]
# [B, H, q_t, q_h, q_w, dim] -> [q_t, B, H, q_h, q_w, dim] -> [q_t, B*H*q_h*q_w, dim]
r_q = r_q.permute(2, 0, 1, 3, 4, 5).reshape(q_t, B * n_head * q_h * q_w, dim)
# [q_t, B*H*q_h*q_w, dim] * [q_t, dim, k_t] = [q_t, B*H*q_h*q_w, k_t] -> [B*H*q_h*q_w, q_t, k_t]
rel_q_t = torch.matmul(r_q, Rt.transpose(1, 2)).transpose(0, 1)
# [B*H*q_h*q_w, q_t, k_t] -> [B, H, q_t, q_h, q_w, k_t]
rel_q_t = rel_q_t.view(B, n_head, q_h, q_w, q_t, k_t).permute(0, 1, 4, 2, 3, 5)
# Combine rel pos.
rel_pos = (
rel_h_q[:, :, :, :, :, None, :, None]
+ rel_w_q[:, :, :, :, :, None, None, :]
+ rel_q_t[:, :, :, :, :, :, None, None]
).reshape(B, n_head, q_t * q_h * q_w, k_t * k_h * k_w)
# Add it to attention
attn[:, :, 1:, 1:] += rel_pos
return attn
def _add_shortcut(x: torch.Tensor, shortcut: torch.Tensor, residual_with_cls_embed: bool):
if residual_with_cls_embed:
x.add_(shortcut)
else:
x[:, :, 1:, :] += shortcut[:, :, 1:, :]
return x
torch.fx.wrap("_add_rel_pos")
torch.fx.wrap("_add_shortcut")
class MultiscaleAttention(nn.Module):
def __init__(
self,
input_size: List[int],
embed_dim: int,
output_dim: int,
num_heads: int,
kernel_q: List[int],
kernel_kv: List[int],
stride_q: List[int],
stride_kv: List[int],
residual_pool: bool,
residual_with_cls_embed: bool,
rel_pos_embed: bool,
dropout: float = 0.0,
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
) -> None:
super().__init__()
self.embed_dim = embed_dim
self.output_dim = output_dim
self.num_heads = num_heads
self.head_dim = output_dim // num_heads
self.scaler = 1.0 / math.sqrt(self.head_dim)
self.residual_pool = residual_pool
self.residual_with_cls_embed = residual_with_cls_embed
self.qkv = nn.Linear(embed_dim, 3 * output_dim)
layers: List[nn.Module] = [nn.Linear(output_dim, output_dim)]
if dropout > 0.0:
layers.append(nn.Dropout(dropout, inplace=True))
self.project = nn.Sequential(*layers)
self.pool_q: Optional[nn.Module] = None
if _prod(kernel_q) > 1 or _prod(stride_q) > 1:
padding_q = [int(q // 2) for q in kernel_q]
self.pool_q = Pool(
nn.Conv3d(
self.head_dim,
self.head_dim,
kernel_q, # type: ignore[arg-type]
stride=stride_q, # type: ignore[arg-type]
padding=padding_q, # type: ignore[arg-type]
groups=self.head_dim,
bias=False,
),
norm_layer(self.head_dim),
)
self.pool_k: Optional[nn.Module] = None
self.pool_v: Optional[nn.Module] = None
if _prod(kernel_kv) > 1 or _prod(stride_kv) > 1:
padding_kv = [int(kv // 2) for kv in kernel_kv]
self.pool_k = Pool(
nn.Conv3d(
self.head_dim,
self.head_dim,
kernel_kv, # type: ignore[arg-type]
stride=stride_kv, # type: ignore[arg-type]
padding=padding_kv, # type: ignore[arg-type]
groups=self.head_dim,
bias=False,
),
norm_layer(self.head_dim),
)
self.pool_v = Pool(
nn.Conv3d(
self.head_dim,
self.head_dim,
kernel_kv, # type: ignore[arg-type]
stride=stride_kv, # type: ignore[arg-type]
padding=padding_kv, # type: ignore[arg-type]
groups=self.head_dim,
bias=False,
),
norm_layer(self.head_dim),
)
self.rel_pos_h: Optional[nn.Parameter] = None
self.rel_pos_w: Optional[nn.Parameter] = None
self.rel_pos_t: Optional[nn.Parameter] = None
if rel_pos_embed:
size = max(input_size[1:])
q_size = size // stride_q[1] if len(stride_q) > 0 else size
kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size
spatial_dim = 2 * max(q_size, kv_size) - 1
temporal_dim = 2 * input_size[0] - 1
self.rel_pos_h = nn.Parameter(torch.zeros(spatial_dim, self.head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(spatial_dim, self.head_dim))
self.rel_pos_t = nn.Parameter(torch.zeros(temporal_dim, self.head_dim))
nn.init.trunc_normal_(self.rel_pos_h, std=0.02)
nn.init.trunc_normal_(self.rel_pos_w, std=0.02)
nn.init.trunc_normal_(self.rel_pos_t, std=0.02)
def forward(self, x: torch.Tensor, thw: Tuple[int, int, int]) -> Tuple[torch.Tensor, Tuple[int, int, int]]:
B, N, C = x.shape
q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).transpose(1, 3).unbind(dim=2)
if self.pool_k is not None:
k, k_thw = self.pool_k(k, thw)
else:
k_thw = thw
if self.pool_v is not None:
v = self.pool_v(v, thw)[0]
if self.pool_q is not None:
q, thw = self.pool_q(q, thw)
attn = torch.matmul(self.scaler * q, k.transpose(2, 3))
if self.rel_pos_h is not None and self.rel_pos_w is not None and self.rel_pos_t is not None:
attn = _add_rel_pos(
attn,
q,
thw,
k_thw,
self.rel_pos_h,
self.rel_pos_w,
self.rel_pos_t,
)
attn = attn.softmax(dim=-1)
x = torch.matmul(attn, v)
if self.residual_pool:
_add_shortcut(x, q, self.residual_with_cls_embed)
x = x.transpose(1, 2).reshape(B, -1, self.output_dim)
x = self.project(x)
return x, thw
class MultiscaleBlock(nn.Module):
def __init__(
self,
input_size: List[int],
cnf: MSBlockConfig,
residual_pool: bool,
residual_with_cls_embed: bool,
rel_pos_embed: bool,
proj_after_attn: bool,
dropout: float = 0.0,
stochastic_depth_prob: float = 0.0,
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
) -> None:
super().__init__()
self.proj_after_attn = proj_after_attn
self.pool_skip: Optional[nn.Module] = None
if _prod(cnf.stride_q) > 1:
kernel_skip = [s + 1 if s > 1 else s for s in cnf.stride_q]
padding_skip = [int(k // 2) for k in kernel_skip]
self.pool_skip = Pool(
nn.MaxPool3d(kernel_skip, stride=cnf.stride_q, padding=padding_skip), None # type: ignore[arg-type]
)
attn_dim = cnf.output_channels if proj_after_attn else cnf.input_channels
self.norm1 = norm_layer(cnf.input_channels)
self.norm2 = norm_layer(attn_dim)
self.needs_transposal = isinstance(self.norm1, nn.BatchNorm1d)
self.attn = MultiscaleAttention(
input_size,
cnf.input_channels,
attn_dim,
cnf.num_heads,
kernel_q=cnf.kernel_q,
kernel_kv=cnf.kernel_kv,
stride_q=cnf.stride_q,
stride_kv=cnf.stride_kv,
rel_pos_embed=rel_pos_embed,
residual_pool=residual_pool,
residual_with_cls_embed=residual_with_cls_embed,
dropout=dropout,
norm_layer=norm_layer,
)
self.mlp = MLP(
attn_dim,
[4 * attn_dim, cnf.output_channels],
activation_layer=nn.GELU,
dropout=dropout,
inplace=None,
)
self.stochastic_depth = StochasticDepth(stochastic_depth_prob, "row")
self.project: Optional[nn.Module] = None
if cnf.input_channels != cnf.output_channels:
self.project = nn.Linear(cnf.input_channels, cnf.output_channels)
def forward(self, x: torch.Tensor, thw: Tuple[int, int, int]) -> Tuple[torch.Tensor, Tuple[int, int, int]]:
x_norm1 = self.norm1(x.transpose(1, 2)).transpose(1, 2) if self.needs_transposal else self.norm1(x)
x_attn, thw_new = self.attn(x_norm1, thw)
x = x if self.project is None or not self.proj_after_attn else self.project(x_norm1)
x_skip = x if self.pool_skip is None else self.pool_skip(x, thw)[0]
x = x_skip + self.stochastic_depth(x_attn)
x_norm2 = self.norm2(x.transpose(1, 2)).transpose(1, 2) if self.needs_transposal else self.norm2(x)
x_proj = x if self.project is None or self.proj_after_attn else self.project(x_norm2)
return x_proj + self.stochastic_depth(self.mlp(x_norm2)), thw_new
class PositionalEncoding(nn.Module):
def __init__(self, embed_size: int, spatial_size: Tuple[int, int], temporal_size: int, rel_pos_embed: bool) -> None:
super().__init__()
self.spatial_size = spatial_size
self.temporal_size = temporal_size
self.class_token = nn.Parameter(torch.zeros(embed_size))
self.spatial_pos: Optional[nn.Parameter] = None
self.temporal_pos: Optional[nn.Parameter] = None
self.class_pos: Optional[nn.Parameter] = None
if not rel_pos_embed:
self.spatial_pos = nn.Parameter(torch.zeros(self.spatial_size[0] * self.spatial_size[1], embed_size))
self.temporal_pos = nn.Parameter(torch.zeros(self.temporal_size, embed_size))
self.class_pos = nn.Parameter(torch.zeros(embed_size))
def forward(self, x: torch.Tensor) -> torch.Tensor:
class_token = self.class_token.expand(x.size(0), -1).unsqueeze(1)
x = torch.cat((class_token, x), dim=1)
if self.spatial_pos is not None and self.temporal_pos is not None and self.class_pos is not None:
hw_size, embed_size = self.spatial_pos.shape
pos_embedding = torch.repeat_interleave(self.temporal_pos, hw_size, dim=0)
pos_embedding.add_(self.spatial_pos.unsqueeze(0).expand(self.temporal_size, -1, -1).reshape(-1, embed_size))
pos_embedding = torch.cat((self.class_pos.unsqueeze(0), pos_embedding), dim=0).unsqueeze(0)
x.add_(pos_embedding)
return x
class MViT(nn.Module):
def __init__(
self,
spatial_size: Tuple[int, int],
temporal_size: int,
block_setting: Sequence[MSBlockConfig],
residual_pool: bool,
residual_with_cls_embed: bool,
rel_pos_embed: bool,
proj_after_attn: bool,
dropout: float = 0.5,
attention_dropout: float = 0.0,
stochastic_depth_prob: float = 0.0,
num_classes: int = 400,
block: Optional[Callable[..., nn.Module]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
patch_embed_kernel: Tuple[int, int, int] = (3, 7, 7),
patch_embed_stride: Tuple[int, int, int] = (2, 4, 4),
patch_embed_padding: Tuple[int, int, int] = (1, 3, 3),
) -> None:
"""
MViT main class.
Args:
spatial_size (tuple of ints): The spacial size of the input as ``(H, W)``.
temporal_size (int): The temporal size ``T`` of the input.
block_setting (sequence of MSBlockConfig): The Network structure.
residual_pool (bool): If True, use MViTv2 pooling residual connection.
residual_with_cls_embed (bool): If True, the addition on the residual connection will include
the class embedding.
rel_pos_embed (bool): If True, use MViTv2's relative positional embeddings.
proj_after_attn (bool): If True, apply the projection after the attention.
dropout (float): Dropout rate. Default: 0.0.
attention_dropout (float): Attention dropout rate. Default: 0.0.
stochastic_depth_prob: (float): Stochastic depth rate. Default: 0.0.
num_classes (int): The number of classes.
block (callable, optional): Module specifying the layer which consists of the attention and mlp.
norm_layer (callable, optional): Module specifying the normalization layer to use.
patch_embed_kernel (tuple of ints): The kernel of the convolution that patchifies the input.
patch_embed_stride (tuple of ints): The stride of the convolution that patchifies the input.
patch_embed_padding (tuple of ints): The padding of the convolution that patchifies the input.
"""
super().__init__()
# This implementation employs a different parameterization scheme than the one used at PyTorch Video:
# https://github.com/facebookresearch/pytorchvideo/blob/718d0a4/pytorchvideo/models/vision_transformers.py
# We remove any experimental configuration that didn't make it to the final variants of the models. To represent
# the configuration of the architecture we use the simplified form suggested at Table 1 of the paper.
_log_api_usage_once(self)
total_stage_blocks = len(block_setting)
if total_stage_blocks == 0:
raise ValueError("The configuration parameter can't be empty.")
if block is None:
block = MultiscaleBlock
if norm_layer is None:
norm_layer = partial(nn.LayerNorm, eps=1e-6)
# Patch Embedding module
self.conv_proj = nn.Conv3d(
in_channels=3,
out_channels=block_setting[0].input_channels,
kernel_size=patch_embed_kernel,
stride=patch_embed_stride,
padding=patch_embed_padding,
)
input_size = [size // stride for size, stride in zip((temporal_size,) + spatial_size, self.conv_proj.stride)]
# Spatio-Temporal Class Positional Encoding
self.pos_encoding = PositionalEncoding(
embed_size=block_setting[0].input_channels,
spatial_size=(input_size[1], input_size[2]),
temporal_size=input_size[0],
rel_pos_embed=rel_pos_embed,
)
# Encoder module
self.blocks = nn.ModuleList()
for stage_block_id, cnf in enumerate(block_setting):
# adjust stochastic depth probability based on the depth of the stage block
sd_prob = stochastic_depth_prob * stage_block_id / (total_stage_blocks - 1.0)
self.blocks.append(
block(
input_size=input_size,
cnf=cnf,
residual_pool=residual_pool,
residual_with_cls_embed=residual_with_cls_embed,
rel_pos_embed=rel_pos_embed,
proj_after_attn=proj_after_attn,
dropout=attention_dropout,
stochastic_depth_prob=sd_prob,
norm_layer=norm_layer,
)
)
if len(cnf.stride_q) > 0:
input_size = [size // stride for size, stride in zip(input_size, cnf.stride_q)]
self.norm = norm_layer(block_setting[-1].output_channels)
# Classifier module
self.head = nn.Sequential(
nn.Dropout(dropout, inplace=True),
nn.Linear(block_setting[-1].output_channels, num_classes),
)
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0.0)
elif isinstance(m, nn.LayerNorm):
if m.weight is not None:
nn.init.constant_(m.weight, 1.0)
if m.bias is not None:
nn.init.constant_(m.bias, 0.0)
elif isinstance(m, PositionalEncoding):
for weights in m.parameters():
nn.init.trunc_normal_(weights, std=0.02)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Convert if necessary (B, C, H, W) -> (B, C, 1, H, W)
x = _unsqueeze(x, 5, 2)[0]
# patchify and reshape: (B, C, T, H, W) -> (B, embed_channels[0], T', H', W') -> (B, THW', embed_channels[0])
x = self.conv_proj(x)
x = x.flatten(2).transpose(1, 2)
# add positional encoding
x = self.pos_encoding(x)
# pass patches through the encoder
thw = (self.pos_encoding.temporal_size,) + self.pos_encoding.spatial_size
for block in self.blocks:
x, thw = block(x, thw)
x = self.norm(x)
# classifier "token" as used by standard language architectures
x = x[:, 0]
x = self.head(x)
return x
def _mvit(
block_setting: List[MSBlockConfig],
stochastic_depth_prob: float,
weights: Optional[WeightsEnum],
progress: bool,
**kwargs: Any,
) -> MViT:
if weights is not None:
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
assert weights.meta["min_size"][0] == weights.meta["min_size"][1]
_ovewrite_named_param(kwargs, "spatial_size", weights.meta["min_size"])
_ovewrite_named_param(kwargs, "temporal_size", weights.meta["min_temporal_size"])
spatial_size = kwargs.pop("spatial_size", (224, 224))
temporal_size = kwargs.pop("temporal_size", 16)
model = MViT(
spatial_size=spatial_size,
temporal_size=temporal_size,
block_setting=block_setting,
residual_pool=kwargs.pop("residual_pool", False),
residual_with_cls_embed=kwargs.pop("residual_with_cls_embed", True),
rel_pos_embed=kwargs.pop("rel_pos_embed", False),
proj_after_attn=kwargs.pop("proj_after_attn", False),
stochastic_depth_prob=stochastic_depth_prob,
**kwargs,
)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress))
return model
class MViT_V1_B_Weights(WeightsEnum):
KINETICS400_V1 = Weights(
url="https://download.pytorch.org/models/mvit_v1_b-dbeb1030.pth",
transforms=partial(
VideoClassification,
crop_size=(224, 224),
resize_size=(256,),
mean=(0.45, 0.45, 0.45),
std=(0.225, 0.225, 0.225),
),
meta={
"min_size": (224, 224),
"min_temporal_size": 16,
"categories": _KINETICS400_CATEGORIES,
"recipe": "https://github.com/facebookresearch/pytorchvideo/blob/main/docs/source/model_zoo.md",
"_docs": (
"The weights were ported from the paper. The accuracies are estimated on video-level "
"with parameters `frame_rate=7.5`, `clips_per_video=5`, and `clip_len=16`"
),
"num_params": 36610672,
"_metrics": {
"Kinetics-400": {
"acc@1": 78.477,
"acc@5": 93.582,
}
},
},
)
DEFAULT = KINETICS400_V1
class MViT_V2_S_Weights(WeightsEnum):
KINETICS400_V1 = Weights(
url="https://download.pytorch.org/models/mvit_v2_s-ae3be167.pth",
transforms=partial(
VideoClassification,
crop_size=(224, 224),
resize_size=(256,),
mean=(0.45, 0.45, 0.45),
std=(0.225, 0.225, 0.225),
),
meta={
"min_size": (224, 224),
"min_temporal_size": 16,
"categories": _KINETICS400_CATEGORIES,
"recipe": "https://github.com/facebookresearch/SlowFast/blob/main/MODEL_ZOO.md",
"_docs": (
"The weights were ported from the paper. The accuracies are estimated on video-level "
"with parameters `frame_rate=7.5`, `clips_per_video=5`, and `clip_len=16`"
),
"num_params": 34537744,
"_metrics": {
"Kinetics-400": {
"acc@1": 80.757,
"acc@5": 94.665,
}
},
},
)
DEFAULT = KINETICS400_V1
@register_model()
@handle_legacy_interface(weights=("pretrained", MViT_V1_B_Weights.KINETICS400_V1))
def mvit_v1_b(*, weights: Optional[MViT_V1_B_Weights] = None, progress: bool = True, **kwargs: Any) -> MViT:
"""
Constructs a base MViTV1 architecture from
`Multiscale Vision Transformers <https://arxiv.org/abs/2104.11227>`__.
.. betastatus:: video module
Args:
weights (:class:`~torchvision.models.video.MViT_V1_B_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.video.MViT_V1_B_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.video.MViT``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/video/mvit.py>`_
for more details about this class.
.. autoclass:: torchvision.models.video.MViT_V1_B_Weights
:members:
"""
weights = MViT_V1_B_Weights.verify(weights)
config: Dict[str, List] = {
"num_heads": [1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8],
"input_channels": [96, 192, 192, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 768, 768],
"output_channels": [192, 192, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 768, 768, 768],
"kernel_q": [[], [3, 3, 3], [], [3, 3, 3], [], [], [], [], [], [], [], [], [], [], [3, 3, 3], []],
"kernel_kv": [
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
],
"stride_q": [[], [1, 2, 2], [], [1, 2, 2], [], [], [], [], [], [], [], [], [], [], [1, 2, 2], []],
"stride_kv": [
[1, 8, 8],
[1, 4, 4],
[1, 4, 4],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 1, 1],
[1, 1, 1],
],
}
block_setting = []
for i in range(len(config["num_heads"])):
block_setting.append(
MSBlockConfig(
num_heads=config["num_heads"][i],
input_channels=config["input_channels"][i],
output_channels=config["output_channels"][i],
kernel_q=config["kernel_q"][i],
kernel_kv=config["kernel_kv"][i],
stride_q=config["stride_q"][i],
stride_kv=config["stride_kv"][i],
)
)
return _mvit(
spatial_size=(224, 224),
temporal_size=16,
block_setting=block_setting,
residual_pool=False,
residual_with_cls_embed=False,
stochastic_depth_prob=kwargs.pop("stochastic_depth_prob", 0.2),
weights=weights,
progress=progress,
**kwargs,
)
@register_model()
@handle_legacy_interface(weights=("pretrained", MViT_V2_S_Weights.KINETICS400_V1))
def mvit_v2_s(*, weights: Optional[MViT_V2_S_Weights] = None, progress: bool = True, **kwargs: Any) -> MViT:
"""
Constructs a small MViTV2 architecture from
`Multiscale Vision Transformers <https://arxiv.org/abs/2104.11227>`__.
.. betastatus:: video module
Args:
weights (:class:`~torchvision.models.video.MViT_V2_S_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.video.MViT_V2_S_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.video.MViT``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/video/mvit.py>`_
for more details about this class.
.. autoclass:: torchvision.models.video.MViT_V2_S_Weights
:members:
"""
weights = MViT_V2_S_Weights.verify(weights)
config: Dict[str, List] = {
"num_heads": [1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8],
"input_channels": [96, 96, 192, 192, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 768],
"output_channels": [96, 192, 192, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 384, 768, 768],
"kernel_q": [
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
],
"kernel_kv": [
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
[3, 3, 3],
],
"stride_q": [
[1, 1, 1],
[1, 2, 2],
[1, 1, 1],
[1, 2, 2],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 2, 2],
[1, 1, 1],
],
"stride_kv": [
[1, 8, 8],
[1, 4, 4],
[1, 4, 4],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 2, 2],
[1, 1, 1],
[1, 1, 1],
],
}
block_setting = []
for i in range(len(config["num_heads"])):
block_setting.append(
MSBlockConfig(
num_heads=config["num_heads"][i],
input_channels=config["input_channels"][i],
output_channels=config["output_channels"][i],
kernel_q=config["kernel_q"][i],
kernel_kv=config["kernel_kv"][i],
stride_q=config["stride_q"][i],
stride_kv=config["stride_kv"][i],
)
)
return _mvit(
spatial_size=(224, 224),
temporal_size=16,
block_setting=block_setting,
residual_pool=True,
residual_with_cls_embed=False,
rel_pos_embed=True,
proj_after_attn=True,
stochastic_depth_prob=kwargs.pop("stochastic_depth_prob", 0.2),
weights=weights,
progress=progress,
**kwargs,
)