-
Notifications
You must be signed in to change notification settings - Fork 7k
/
rpn.py
388 lines (324 loc) · 15.5 KB
/
rpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
from typing import Dict, List, Optional, Tuple
import torch
from torch import nn, Tensor
from torch.nn import functional as F
from torchvision.ops import boxes as box_ops, Conv2dNormActivation
from . import _utils as det_utils
# Import AnchorGenerator to keep compatibility.
from .anchor_utils import AnchorGenerator # noqa: 401
from .image_list import ImageList
class RPNHead(nn.Module):
"""
Adds a simple RPN Head with classification and regression heads
Args:
in_channels (int): number of channels of the input feature
num_anchors (int): number of anchors to be predicted
conv_depth (int, optional): number of convolutions
"""
_version = 2
def __init__(self, in_channels: int, num_anchors: int, conv_depth=1) -> None:
super().__init__()
convs = []
for _ in range(conv_depth):
convs.append(Conv2dNormActivation(in_channels, in_channels, kernel_size=3, norm_layer=None))
self.conv = nn.Sequential(*convs)
self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1)
self.bbox_pred = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=1, stride=1)
for layer in self.modules():
if isinstance(layer, nn.Conv2d):
torch.nn.init.normal_(layer.weight, std=0.01) # type: ignore[arg-type]
if layer.bias is not None:
torch.nn.init.constant_(layer.bias, 0) # type: ignore[arg-type]
def _load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
version = local_metadata.get("version", None)
if version is None or version < 2:
for type in ["weight", "bias"]:
old_key = f"{prefix}conv.{type}"
new_key = f"{prefix}conv.0.0.{type}"
if old_key in state_dict:
state_dict[new_key] = state_dict.pop(old_key)
super()._load_from_state_dict(
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
)
def forward(self, x: List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]:
logits = []
bbox_reg = []
for feature in x:
t = self.conv(feature)
logits.append(self.cls_logits(t))
bbox_reg.append(self.bbox_pred(t))
return logits, bbox_reg
def permute_and_flatten(layer: Tensor, N: int, A: int, C: int, H: int, W: int) -> Tensor:
layer = layer.view(N, -1, C, H, W)
layer = layer.permute(0, 3, 4, 1, 2)
layer = layer.reshape(N, -1, C)
return layer
def concat_box_prediction_layers(box_cls: List[Tensor], box_regression: List[Tensor]) -> Tuple[Tensor, Tensor]:
box_cls_flattened = []
box_regression_flattened = []
# for each feature level, permute the outputs to make them be in the
# same format as the labels. Note that the labels are computed for
# all feature levels concatenated, so we keep the same representation
# for the objectness and the box_regression
for box_cls_per_level, box_regression_per_level in zip(box_cls, box_regression):
N, AxC, H, W = box_cls_per_level.shape
Ax4 = box_regression_per_level.shape[1]
A = Ax4 // 4
C = AxC // A
box_cls_per_level = permute_and_flatten(box_cls_per_level, N, A, C, H, W)
box_cls_flattened.append(box_cls_per_level)
box_regression_per_level = permute_and_flatten(box_regression_per_level, N, A, 4, H, W)
box_regression_flattened.append(box_regression_per_level)
# concatenate on the first dimension (representing the feature levels), to
# take into account the way the labels were generated (with all feature maps
# being concatenated as well)
box_cls = torch.cat(box_cls_flattened, dim=1).flatten(0, -2)
box_regression = torch.cat(box_regression_flattened, dim=1).reshape(-1, 4)
return box_cls, box_regression
class RegionProposalNetwork(torch.nn.Module):
"""
Implements Region Proposal Network (RPN).
Args:
anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
maps.
head (nn.Module): module that computes the objectness and regression deltas
fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
considered as positive during training of the RPN.
bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
considered as negative during training of the RPN.
batch_size_per_image (int): number of anchors that are sampled during training of the RPN
for computing the loss
positive_fraction (float): proportion of positive anchors in a mini-batch during training
of the RPN
pre_nms_top_n (Dict[str, int]): number of proposals to keep before applying NMS. It should
contain two fields: training and testing, to allow for different values depending
on training or evaluation
post_nms_top_n (Dict[str, int]): number of proposals to keep after applying NMS. It should
contain two fields: training and testing, to allow for different values depending
on training or evaluation
nms_thresh (float): NMS threshold used for postprocessing the RPN proposals
score_thresh (float): only return proposals with an objectness score greater than score_thresh
"""
__annotations__ = {
"box_coder": det_utils.BoxCoder,
"proposal_matcher": det_utils.Matcher,
"fg_bg_sampler": det_utils.BalancedPositiveNegativeSampler,
}
def __init__(
self,
anchor_generator: AnchorGenerator,
head: nn.Module,
# Faster-RCNN Training
fg_iou_thresh: float,
bg_iou_thresh: float,
batch_size_per_image: int,
positive_fraction: float,
# Faster-RCNN Inference
pre_nms_top_n: Dict[str, int],
post_nms_top_n: Dict[str, int],
nms_thresh: float,
score_thresh: float = 0.0,
) -> None:
super().__init__()
self.anchor_generator = anchor_generator
self.head = head
self.box_coder = det_utils.BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))
# used during training
self.box_similarity = box_ops.box_iou
self.proposal_matcher = det_utils.Matcher(
fg_iou_thresh,
bg_iou_thresh,
allow_low_quality_matches=True,
)
self.fg_bg_sampler = det_utils.BalancedPositiveNegativeSampler(batch_size_per_image, positive_fraction)
# used during testing
self._pre_nms_top_n = pre_nms_top_n
self._post_nms_top_n = post_nms_top_n
self.nms_thresh = nms_thresh
self.score_thresh = score_thresh
self.min_size = 1e-3
def pre_nms_top_n(self) -> int:
if self.training:
return self._pre_nms_top_n["training"]
return self._pre_nms_top_n["testing"]
def post_nms_top_n(self) -> int:
if self.training:
return self._post_nms_top_n["training"]
return self._post_nms_top_n["testing"]
def assign_targets_to_anchors(
self, anchors: List[Tensor], targets: List[Dict[str, Tensor]]
) -> Tuple[List[Tensor], List[Tensor]]:
labels = []
matched_gt_boxes = []
for anchors_per_image, targets_per_image in zip(anchors, targets):
gt_boxes = targets_per_image["boxes"]
if gt_boxes.numel() == 0:
# Background image (negative example)
device = anchors_per_image.device
matched_gt_boxes_per_image = torch.zeros(anchors_per_image.shape, dtype=torch.float32, device=device)
labels_per_image = torch.zeros((anchors_per_image.shape[0],), dtype=torch.float32, device=device)
else:
match_quality_matrix = self.box_similarity(gt_boxes, anchors_per_image)
matched_idxs = self.proposal_matcher(match_quality_matrix)
# get the targets corresponding GT for each proposal
# NB: need to clamp the indices because we can have a single
# GT in the image, and matched_idxs can be -2, which goes
# out of bounds
matched_gt_boxes_per_image = gt_boxes[matched_idxs.clamp(min=0)]
labels_per_image = matched_idxs >= 0
labels_per_image = labels_per_image.to(dtype=torch.float32)
# Background (negative examples)
bg_indices = matched_idxs == self.proposal_matcher.BELOW_LOW_THRESHOLD
labels_per_image[bg_indices] = 0.0
# discard indices that are between thresholds
inds_to_discard = matched_idxs == self.proposal_matcher.BETWEEN_THRESHOLDS
labels_per_image[inds_to_discard] = -1.0
labels.append(labels_per_image)
matched_gt_boxes.append(matched_gt_boxes_per_image)
return labels, matched_gt_boxes
def _get_top_n_idx(self, objectness: Tensor, num_anchors_per_level: List[int]) -> Tensor:
r = []
offset = 0
for ob in objectness.split(num_anchors_per_level, 1):
num_anchors = ob.shape[1]
pre_nms_top_n = det_utils._topk_min(ob, self.pre_nms_top_n(), 1)
_, top_n_idx = ob.topk(pre_nms_top_n, dim=1)
r.append(top_n_idx + offset)
offset += num_anchors
return torch.cat(r, dim=1)
def filter_proposals(
self,
proposals: Tensor,
objectness: Tensor,
image_shapes: List[Tuple[int, int]],
num_anchors_per_level: List[int],
) -> Tuple[List[Tensor], List[Tensor]]:
num_images = proposals.shape[0]
device = proposals.device
# do not backprop through objectness
objectness = objectness.detach()
objectness = objectness.reshape(num_images, -1)
levels = [
torch.full((n,), idx, dtype=torch.int64, device=device) for idx, n in enumerate(num_anchors_per_level)
]
levels = torch.cat(levels, 0)
levels = levels.reshape(1, -1).expand_as(objectness)
# select top_n boxes independently per level before applying nms
top_n_idx = self._get_top_n_idx(objectness, num_anchors_per_level)
image_range = torch.arange(num_images, device=device)
batch_idx = image_range[:, None]
objectness = objectness[batch_idx, top_n_idx]
levels = levels[batch_idx, top_n_idx]
proposals = proposals[batch_idx, top_n_idx]
objectness_prob = torch.sigmoid(objectness)
final_boxes = []
final_scores = []
for boxes, scores, lvl, img_shape in zip(proposals, objectness_prob, levels, image_shapes):
boxes = box_ops.clip_boxes_to_image(boxes, img_shape)
# remove small boxes
keep = box_ops.remove_small_boxes(boxes, self.min_size)
boxes, scores, lvl = boxes[keep], scores[keep], lvl[keep]
# remove low scoring boxes
# use >= for Backwards compatibility
keep = torch.where(scores >= self.score_thresh)[0]
boxes, scores, lvl = boxes[keep], scores[keep], lvl[keep]
# non-maximum suppression, independently done per level
keep = box_ops.batched_nms(boxes, scores, lvl, self.nms_thresh)
# keep only topk scoring predictions
keep = keep[: self.post_nms_top_n()]
boxes, scores = boxes[keep], scores[keep]
final_boxes.append(boxes)
final_scores.append(scores)
return final_boxes, final_scores
def compute_loss(
self, objectness: Tensor, pred_bbox_deltas: Tensor, labels: List[Tensor], regression_targets: List[Tensor]
) -> Tuple[Tensor, Tensor]:
"""
Args:
objectness (Tensor)
pred_bbox_deltas (Tensor)
labels (List[Tensor])
regression_targets (List[Tensor])
Returns:
objectness_loss (Tensor)
box_loss (Tensor)
"""
sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
sampled_pos_inds = torch.where(torch.cat(sampled_pos_inds, dim=0))[0]
sampled_neg_inds = torch.where(torch.cat(sampled_neg_inds, dim=0))[0]
sampled_inds = torch.cat([sampled_pos_inds, sampled_neg_inds], dim=0)
objectness = objectness.flatten()
labels = torch.cat(labels, dim=0)
regression_targets = torch.cat(regression_targets, dim=0)
box_loss = F.smooth_l1_loss(
pred_bbox_deltas[sampled_pos_inds],
regression_targets[sampled_pos_inds],
beta=1 / 9,
reduction="sum",
) / (sampled_inds.numel())
objectness_loss = F.binary_cross_entropy_with_logits(objectness[sampled_inds], labels[sampled_inds])
return objectness_loss, box_loss
def forward(
self,
images: ImageList,
features: Dict[str, Tensor],
targets: Optional[List[Dict[str, Tensor]]] = None,
) -> Tuple[List[Tensor], Dict[str, Tensor]]:
"""
Args:
images (ImageList): images for which we want to compute the predictions
features (Dict[str, Tensor]): features computed from the images that are
used for computing the predictions. Each tensor in the list
correspond to different feature levels
targets (List[Dict[str, Tensor]]): ground-truth boxes present in the image (optional).
If provided, each element in the dict should contain a field `boxes`,
with the locations of the ground-truth boxes.
Returns:
boxes (List[Tensor]): the predicted boxes from the RPN, one Tensor per
image.
losses (Dict[str, Tensor]): the losses for the model during training. During
testing, it is an empty dict.
"""
# RPN uses all feature maps that are available
features = list(features.values())
objectness, pred_bbox_deltas = self.head(features)
anchors = self.anchor_generator(images, features)
num_images = len(anchors)
num_anchors_per_level_shape_tensors = [o[0].shape for o in objectness]
num_anchors_per_level = [s[0] * s[1] * s[2] for s in num_anchors_per_level_shape_tensors]
objectness, pred_bbox_deltas = concat_box_prediction_layers(objectness, pred_bbox_deltas)
# apply pred_bbox_deltas to anchors to obtain the decoded proposals
# note that we detach the deltas because Faster R-CNN do not backprop through
# the proposals
proposals = self.box_coder.decode(pred_bbox_deltas.detach(), anchors)
proposals = proposals.view(num_images, -1, 4)
boxes, scores = self.filter_proposals(proposals, objectness, images.image_sizes, num_anchors_per_level)
losses = {}
if self.training:
if targets is None:
raise ValueError("targets should not be None")
labels, matched_gt_boxes = self.assign_targets_to_anchors(anchors, targets)
regression_targets = self.box_coder.encode(matched_gt_boxes, anchors)
loss_objectness, loss_rpn_box_reg = self.compute_loss(
objectness, pred_bbox_deltas, labels, regression_targets
)
losses = {
"loss_objectness": loss_objectness,
"loss_rpn_box_reg": loss_rpn_box_reg,
}
return boxes, losses