-
Notifications
You must be signed in to change notification settings - Fork 7k
/
mobilenetv3.py
423 lines (364 loc) · 15.9 KB
/
mobilenetv3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
from functools import partial
from typing import Any, Callable, List, Optional, Sequence
import torch
from torch import nn, Tensor
from ..ops.misc import Conv2dNormActivation, SqueezeExcitation as SElayer
from ..transforms._presets import ImageClassification
from ..utils import _log_api_usage_once
from ._api import register_model, Weights, WeightsEnum
from ._meta import _IMAGENET_CATEGORIES
from ._utils import _make_divisible, _ovewrite_named_param, handle_legacy_interface
__all__ = [
"MobileNetV3",
"MobileNet_V3_Large_Weights",
"MobileNet_V3_Small_Weights",
"mobilenet_v3_large",
"mobilenet_v3_small",
]
class InvertedResidualConfig:
# Stores information listed at Tables 1 and 2 of the MobileNetV3 paper
def __init__(
self,
input_channels: int,
kernel: int,
expanded_channels: int,
out_channels: int,
use_se: bool,
activation: str,
stride: int,
dilation: int,
width_mult: float,
):
self.input_channels = self.adjust_channels(input_channels, width_mult)
self.kernel = kernel
self.expanded_channels = self.adjust_channels(expanded_channels, width_mult)
self.out_channels = self.adjust_channels(out_channels, width_mult)
self.use_se = use_se
self.use_hs = activation == "HS"
self.stride = stride
self.dilation = dilation
@staticmethod
def adjust_channels(channels: int, width_mult: float):
return _make_divisible(channels * width_mult, 8)
class InvertedResidual(nn.Module):
# Implemented as described at section 5 of MobileNetV3 paper
def __init__(
self,
cnf: InvertedResidualConfig,
norm_layer: Callable[..., nn.Module],
se_layer: Callable[..., nn.Module] = partial(SElayer, scale_activation=nn.Hardsigmoid),
):
super().__init__()
if not (1 <= cnf.stride <= 2):
raise ValueError("illegal stride value")
self.use_res_connect = cnf.stride == 1 and cnf.input_channels == cnf.out_channels
layers: List[nn.Module] = []
activation_layer = nn.Hardswish if cnf.use_hs else nn.ReLU
# expand
if cnf.expanded_channels != cnf.input_channels:
layers.append(
Conv2dNormActivation(
cnf.input_channels,
cnf.expanded_channels,
kernel_size=1,
norm_layer=norm_layer,
activation_layer=activation_layer,
)
)
# depthwise
stride = 1 if cnf.dilation > 1 else cnf.stride
layers.append(
Conv2dNormActivation(
cnf.expanded_channels,
cnf.expanded_channels,
kernel_size=cnf.kernel,
stride=stride,
dilation=cnf.dilation,
groups=cnf.expanded_channels,
norm_layer=norm_layer,
activation_layer=activation_layer,
)
)
if cnf.use_se:
squeeze_channels = _make_divisible(cnf.expanded_channels // 4, 8)
layers.append(se_layer(cnf.expanded_channels, squeeze_channels))
# project
layers.append(
Conv2dNormActivation(
cnf.expanded_channels, cnf.out_channels, kernel_size=1, norm_layer=norm_layer, activation_layer=None
)
)
self.block = nn.Sequential(*layers)
self.out_channels = cnf.out_channels
self._is_cn = cnf.stride > 1
def forward(self, input: Tensor) -> Tensor:
result = self.block(input)
if self.use_res_connect:
result += input
return result
class MobileNetV3(nn.Module):
def __init__(
self,
inverted_residual_setting: List[InvertedResidualConfig],
last_channel: int,
num_classes: int = 1000,
block: Optional[Callable[..., nn.Module]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
dropout: float = 0.2,
**kwargs: Any,
) -> None:
"""
MobileNet V3 main class
Args:
inverted_residual_setting (List[InvertedResidualConfig]): Network structure
last_channel (int): The number of channels on the penultimate layer
num_classes (int): Number of classes
block (Optional[Callable[..., nn.Module]]): Module specifying inverted residual building block for mobilenet
norm_layer (Optional[Callable[..., nn.Module]]): Module specifying the normalization layer to use
dropout (float): The droupout probability
"""
super().__init__()
_log_api_usage_once(self)
if not inverted_residual_setting:
raise ValueError("The inverted_residual_setting should not be empty")
elif not (
isinstance(inverted_residual_setting, Sequence)
and all([isinstance(s, InvertedResidualConfig) for s in inverted_residual_setting])
):
raise TypeError("The inverted_residual_setting should be List[InvertedResidualConfig]")
if block is None:
block = InvertedResidual
if norm_layer is None:
norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.01)
layers: List[nn.Module] = []
# building first layer
firstconv_output_channels = inverted_residual_setting[0].input_channels
layers.append(
Conv2dNormActivation(
3,
firstconv_output_channels,
kernel_size=3,
stride=2,
norm_layer=norm_layer,
activation_layer=nn.Hardswish,
)
)
# building inverted residual blocks
for cnf in inverted_residual_setting:
layers.append(block(cnf, norm_layer))
# building last several layers
lastconv_input_channels = inverted_residual_setting[-1].out_channels
lastconv_output_channels = 6 * lastconv_input_channels
layers.append(
Conv2dNormActivation(
lastconv_input_channels,
lastconv_output_channels,
kernel_size=1,
norm_layer=norm_layer,
activation_layer=nn.Hardswish,
)
)
self.features = nn.Sequential(*layers)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Sequential(
nn.Linear(lastconv_output_channels, last_channel),
nn.Hardswish(inplace=True),
nn.Dropout(p=dropout, inplace=True),
nn.Linear(last_channel, num_classes),
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out")
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def _forward_impl(self, x: Tensor) -> Tensor:
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
def forward(self, x: Tensor) -> Tensor:
return self._forward_impl(x)
def _mobilenet_v3_conf(
arch: str, width_mult: float = 1.0, reduced_tail: bool = False, dilated: bool = False, **kwargs: Any
):
reduce_divider = 2 if reduced_tail else 1
dilation = 2 if dilated else 1
bneck_conf = partial(InvertedResidualConfig, width_mult=width_mult)
adjust_channels = partial(InvertedResidualConfig.adjust_channels, width_mult=width_mult)
if arch == "mobilenet_v3_large":
inverted_residual_setting = [
bneck_conf(16, 3, 16, 16, False, "RE", 1, 1),
bneck_conf(16, 3, 64, 24, False, "RE", 2, 1), # C1
bneck_conf(24, 3, 72, 24, False, "RE", 1, 1),
bneck_conf(24, 5, 72, 40, True, "RE", 2, 1), # C2
bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),
bneck_conf(40, 5, 120, 40, True, "RE", 1, 1),
bneck_conf(40, 3, 240, 80, False, "HS", 2, 1), # C3
bneck_conf(80, 3, 200, 80, False, "HS", 1, 1),
bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),
bneck_conf(80, 3, 184, 80, False, "HS", 1, 1),
bneck_conf(80, 3, 480, 112, True, "HS", 1, 1),
bneck_conf(112, 3, 672, 112, True, "HS", 1, 1),
bneck_conf(112, 5, 672, 160 // reduce_divider, True, "HS", 2, dilation), # C4
bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),
bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1, dilation),
]
last_channel = adjust_channels(1280 // reduce_divider) # C5
elif arch == "mobilenet_v3_small":
inverted_residual_setting = [
bneck_conf(16, 3, 16, 16, True, "RE", 2, 1), # C1
bneck_conf(16, 3, 72, 24, False, "RE", 2, 1), # C2
bneck_conf(24, 3, 88, 24, False, "RE", 1, 1),
bneck_conf(24, 5, 96, 40, True, "HS", 2, 1), # C3
bneck_conf(40, 5, 240, 40, True, "HS", 1, 1),
bneck_conf(40, 5, 240, 40, True, "HS", 1, 1),
bneck_conf(40, 5, 120, 48, True, "HS", 1, 1),
bneck_conf(48, 5, 144, 48, True, "HS", 1, 1),
bneck_conf(48, 5, 288, 96 // reduce_divider, True, "HS", 2, dilation), # C4
bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation),
bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1, dilation),
]
last_channel = adjust_channels(1024 // reduce_divider) # C5
else:
raise ValueError(f"Unsupported model type {arch}")
return inverted_residual_setting, last_channel
def _mobilenet_v3(
inverted_residual_setting: List[InvertedResidualConfig],
last_channel: int,
weights: Optional[WeightsEnum],
progress: bool,
**kwargs: Any,
) -> MobileNetV3:
if weights is not None:
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
model = MobileNetV3(inverted_residual_setting, last_channel, **kwargs)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
return model
_COMMON_META = {
"min_size": (1, 1),
"categories": _IMAGENET_CATEGORIES,
}
class MobileNet_V3_Large_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
url="https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
**_COMMON_META,
"num_params": 5483032,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv3-large--small",
"_metrics": {
"ImageNet-1K": {
"acc@1": 74.042,
"acc@5": 91.340,
}
},
"_ops": 0.217,
"_file_size": 21.114,
"_docs": """These weights were trained from scratch by using a simple training recipe.""",
},
)
IMAGENET1K_V2 = Weights(
url="https://download.pytorch.org/models/mobilenet_v3_large-5c1a4163.pth",
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
meta={
**_COMMON_META,
"num_params": 5483032,
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-reg-tuning",
"_metrics": {
"ImageNet-1K": {
"acc@1": 75.274,
"acc@5": 92.566,
}
},
"_ops": 0.217,
"_file_size": 21.107,
"_docs": """
These weights improve marginally upon the results of the original paper by using a modified version of
TorchVision's `new training recipe
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
""",
},
)
DEFAULT = IMAGENET1K_V2
class MobileNet_V3_Small_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
url="https://download.pytorch.org/models/mobilenet_v3_small-047dcff4.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
**_COMMON_META,
"num_params": 2542856,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv3-large--small",
"_metrics": {
"ImageNet-1K": {
"acc@1": 67.668,
"acc@5": 87.402,
}
},
"_ops": 0.057,
"_file_size": 9.829,
"_docs": """
These weights improve upon the results of the original paper by using a simple training recipe.
""",
},
)
DEFAULT = IMAGENET1K_V1
@register_model()
@handle_legacy_interface(weights=("pretrained", MobileNet_V3_Large_Weights.IMAGENET1K_V1))
def mobilenet_v3_large(
*, weights: Optional[MobileNet_V3_Large_Weights] = None, progress: bool = True, **kwargs: Any
) -> MobileNetV3:
"""
Constructs a large MobileNetV3 architecture from
`Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`__.
Args:
weights (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.MobileNet_V3_Large_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.mobilenet.MobileNetV3``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py>`_
for more details about this class.
.. autoclass:: torchvision.models.MobileNet_V3_Large_Weights
:members:
"""
weights = MobileNet_V3_Large_Weights.verify(weights)
inverted_residual_setting, last_channel = _mobilenet_v3_conf("mobilenet_v3_large", **kwargs)
return _mobilenet_v3(inverted_residual_setting, last_channel, weights, progress, **kwargs)
@register_model()
@handle_legacy_interface(weights=("pretrained", MobileNet_V3_Small_Weights.IMAGENET1K_V1))
def mobilenet_v3_small(
*, weights: Optional[MobileNet_V3_Small_Weights] = None, progress: bool = True, **kwargs: Any
) -> MobileNetV3:
"""
Constructs a small MobileNetV3 architecture from
`Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`__.
Args:
weights (:class:`~torchvision.models.MobileNet_V3_Small_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.MobileNet_V3_Small_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.mobilenet.MobileNetV3``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py>`_
for more details about this class.
.. autoclass:: torchvision.models.MobileNet_V3_Small_Weights
:members:
"""
weights = MobileNet_V3_Small_Weights.verify(weights)
inverted_residual_setting, last_channel = _mobilenet_v3_conf("mobilenet_v3_small", **kwargs)
return _mobilenet_v3(inverted_residual_setting, last_channel, weights, progress, **kwargs)