diff --git a/test/test_functional_tensor.py b/test/test_functional_tensor.py index d181dd94be2..38a565310d0 100644 --- a/test/test_functional_tensor.py +++ b/test/test_functional_tensor.py @@ -9,12 +9,12 @@ import torchvision.transforms.functional_tensor as F_t import torchvision.transforms.functional_pil as F_pil import torchvision.transforms.functional as F -from torchvision.transforms import InterpolationModes +from torchvision.transforms import InterpolationMode from common_utils import TransformsTester -NEAREST, BILINEAR, BICUBIC = InterpolationModes.NEAREST, InterpolationModes.BILINEAR, InterpolationModes.BICUBIC +NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC class Tester(TransformsTester): @@ -419,7 +419,7 @@ def test_resize(self): ) # assert changed type warning - with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationModes"): + with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"): res1 = F.resize(tensor, size=32, interpolation=2) res2 = F.resize(tensor, size=32, interpolation=BILINEAR) self.assertTrue(res1.equal(res2)) @@ -626,7 +626,7 @@ def test_affine(self): self.assertTrue(res1.equal(res2)) # assert changed type warning - with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationModes"): + with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"): res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=2) res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR) self.assertTrue(res1.equal(res2)) @@ -714,7 +714,7 @@ def test_rotate(self): self.assertTrue(res1.equal(res2)) # assert changed type warning - with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationModes"): + with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"): res1 = F.rotate(tensor, 45, interpolation=2) res2 = F.rotate(tensor, 45, interpolation=BILINEAR) self.assertTrue(res1.equal(res2)) @@ -788,7 +788,7 @@ def test_perspective(self): # assert changed type warning spoints = [[0, 0], [33, 0], [33, 25], [0, 25]] epoints = [[3, 2], [32, 3], [30, 24], [2, 25]] - with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationModes"): + with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"): res1 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=2) res2 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=BILINEAR) self.assertTrue(res1.equal(res2)) diff --git a/test/test_transforms.py b/test/test_transforms.py index f113f9ee653..30749772d6a 100644 --- a/test/test_transforms.py +++ b/test/test_transforms.py @@ -1500,12 +1500,12 @@ def test_random_rotation(self): # assert deprecation warning and non-BC with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"): t = transforms.RandomRotation((-10, 10), resample=2) - self.assertEqual(t.interpolation, transforms.InterpolationModes.BILINEAR) + self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR) # assert changed type warning - with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationModes"): + with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"): t = transforms.RandomRotation((-10, 10), interpolation=2) - self.assertEqual(t.interpolation, transforms.InterpolationModes.BILINEAR) + self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR) def test_random_affine(self): @@ -1547,22 +1547,22 @@ def test_random_affine(self): # Checking if RandomAffine can be printed as string t.__repr__() - t = transforms.RandomAffine(10, interpolation=transforms.InterpolationModes.BILINEAR) + t = transforms.RandomAffine(10, interpolation=transforms.InterpolationMode.BILINEAR) self.assertIn("bilinear", t.__repr__()) # assert deprecation warning and non-BC with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"): t = transforms.RandomAffine(10, resample=2) - self.assertEqual(t.interpolation, transforms.InterpolationModes.BILINEAR) + self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR) with self.assertWarnsRegex(UserWarning, r"Argument fillcolor is deprecated and will be removed"): t = transforms.RandomAffine(10, fillcolor=10) self.assertEqual(t.fill, 10) # assert changed type warning - with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationModes"): + with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"): t = transforms.RandomAffine(10, interpolation=2) - self.assertEqual(t.interpolation, transforms.InterpolationModes.BILINEAR) + self.assertEqual(t.interpolation, transforms.InterpolationMode.BILINEAR) def test_to_grayscale(self): """Unit tests for grayscale transform""" diff --git a/test/test_transforms_tensor.py b/test/test_transforms_tensor.py index ad5d303d36d..c5c4a7f09e0 100644 --- a/test/test_transforms_tensor.py +++ b/test/test_transforms_tensor.py @@ -2,7 +2,7 @@ import torch from torchvision import transforms as T from torchvision.transforms import functional as F -from torchvision.transforms import InterpolationModes +from torchvision.transforms import InterpolationMode import numpy as np @@ -11,7 +11,7 @@ from common_utils import TransformsTester, get_tmp_dir, int_dtypes, float_dtypes -NEAREST, BILINEAR, BICUBIC = InterpolationModes.NEAREST, InterpolationModes.BILINEAR, InterpolationModes.BICUBIC +NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC class Tester(TransformsTester): diff --git a/torchvision/transforms/functional.py b/torchvision/transforms/functional.py index b1c2bc187ed..3f6548357d5 100644 --- a/torchvision/transforms/functional.py +++ b/torchvision/transforms/functional.py @@ -20,7 +20,7 @@ from . import functional_tensor as F_t -class InterpolationModes(Enum): +class InterpolationMode(Enum): """Interpolation modes """ NEAREST = "nearest" @@ -33,26 +33,26 @@ class InterpolationModes(Enum): # TODO: Once torchscript supports Enums with staticmethod -# this can be put into InterpolationModes as staticmethod -def _interpolation_modes_from_int(i: int) -> InterpolationModes: +# this can be put into InterpolationMode as staticmethod +def _interpolation_modes_from_int(i: int) -> InterpolationMode: inverse_modes_mapping = { - 0: InterpolationModes.NEAREST, - 2: InterpolationModes.BILINEAR, - 3: InterpolationModes.BICUBIC, - 4: InterpolationModes.BOX, - 5: InterpolationModes.HAMMING, - 1: InterpolationModes.LANCZOS, + 0: InterpolationMode.NEAREST, + 2: InterpolationMode.BILINEAR, + 3: InterpolationMode.BICUBIC, + 4: InterpolationMode.BOX, + 5: InterpolationMode.HAMMING, + 1: InterpolationMode.LANCZOS, } return inverse_modes_mapping[i] pil_modes_mapping = { - InterpolationModes.NEAREST: 0, - InterpolationModes.BILINEAR: 2, - InterpolationModes.BICUBIC: 3, - InterpolationModes.BOX: 4, - InterpolationModes.HAMMING: 5, - InterpolationModes.LANCZOS: 1, + InterpolationMode.NEAREST: 0, + InterpolationMode.BILINEAR: 2, + InterpolationMode.BICUBIC: 3, + InterpolationMode.BOX: 4, + InterpolationMode.HAMMING: 5, + InterpolationMode.LANCZOS: 1, } _is_pil_image = F_pil._is_pil_image @@ -329,7 +329,7 @@ def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool return tensor -def resize(img: Tensor, size: List[int], interpolation: InterpolationModes = InterpolationModes.BILINEAR) -> Tensor: +def resize(img: Tensor, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR) -> Tensor: r"""Resize the input image to the given size. The image can be a PIL Image or a torch Tensor, in which case it is expected to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions @@ -343,10 +343,10 @@ def resize(img: Tensor, size: List[int], interpolation: InterpolationModes = Int :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`. In torchscript mode size as single int is not supported, use a tuple or list of length 1: ``[size, ]``. - interpolation (InterpolationModes): Desired interpolation enum defined by - :class:`torchvision.transforms.InterpolationModes`. - Default is ``InterpolationModes.BILINEAR``. If input is Tensor, only ``InterpolationModes.NEAREST``, - ``InterpolationModes.BILINEAR`` and ``InterpolationModes.BICUBIC`` are supported. + interpolation (InterpolationMode): Desired interpolation enum defined by + :class:`torchvision.transforms.InterpolationMode`. + Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``, + ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported. For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable. Returns: @@ -355,13 +355,13 @@ def resize(img: Tensor, size: List[int], interpolation: InterpolationModes = Int # Backward compatibility with integer value if isinstance(interpolation, int): warnings.warn( - "Argument interpolation should be of type InterpolationModes instead of int. " - "Please, use InterpolationModes enum." + "Argument interpolation should be of type InterpolationMode instead of int. " + "Please, use InterpolationMode enum." ) interpolation = _interpolation_modes_from_int(interpolation) - if not isinstance(interpolation, InterpolationModes): - raise TypeError("Argument interpolation should be a InterpolationModes") + if not isinstance(interpolation, InterpolationMode): + raise TypeError("Argument interpolation should be a InterpolationMode") if not isinstance(img, torch.Tensor): pil_interpolation = pil_modes_mapping[interpolation] @@ -475,7 +475,7 @@ def center_crop(img: Tensor, output_size: List[int]) -> Tensor: def resized_crop( img: Tensor, top: int, left: int, height: int, width: int, size: List[int], - interpolation: InterpolationModes = InterpolationModes.BILINEAR + interpolation: InterpolationMode = InterpolationMode.BILINEAR ) -> Tensor: """Crop the given image and resize it to desired size. The image can be a PIL Image or a Tensor, in which case it is expected @@ -490,10 +490,10 @@ def resized_crop( height (int): Height of the crop box. width (int): Width of the crop box. size (sequence or int): Desired output size. Same semantics as ``resize``. - interpolation (InterpolationModes): Desired interpolation enum defined by - :class:`torchvision.transforms.InterpolationModes`. - Default is ``InterpolationModes.BILINEAR``. If input is Tensor, only ``InterpolationModes.NEAREST``, - ``InterpolationModes.BILINEAR`` and ``InterpolationModes.BICUBIC`` are supported. + interpolation (InterpolationMode): Desired interpolation enum defined by + :class:`torchvision.transforms.InterpolationMode`. + Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``, + ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported. For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable. Returns: @@ -556,7 +556,7 @@ def perspective( img: Tensor, startpoints: List[List[int]], endpoints: List[List[int]], - interpolation: InterpolationModes = InterpolationModes.BILINEAR, + interpolation: InterpolationMode = InterpolationMode.BILINEAR, fill: Optional[int] = None ) -> Tensor: """Perform perspective transform of the given image. @@ -569,9 +569,9 @@ def perspective( ``[top-left, top-right, bottom-right, bottom-left]`` of the original image. endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image. - interpolation (InterpolationModes): Desired interpolation enum defined by - :class:`torchvision.transforms.InterpolationModes`. Default is ``InterpolationModes.BILINEAR``. - If input is Tensor, only ``InterpolationModes.NEAREST``, ``InterpolationModes.BILINEAR`` are supported. + interpolation (InterpolationMode): Desired interpolation enum defined by + :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``. + If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported. For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable. fill (n-tuple or int or float): Pixel fill value for area outside the rotated image. If int or float, the value is used for all bands respectively. @@ -587,13 +587,13 @@ def perspective( # Backward compatibility with integer value if isinstance(interpolation, int): warnings.warn( - "Argument interpolation should be of type InterpolationModes instead of int. " - "Please, use InterpolationModes enum." + "Argument interpolation should be of type InterpolationMode instead of int. " + "Please, use InterpolationMode enum." ) interpolation = _interpolation_modes_from_int(interpolation) - if not isinstance(interpolation, InterpolationModes): - raise TypeError("Argument interpolation should be a InterpolationModes") + if not isinstance(interpolation, InterpolationMode): + raise TypeError("Argument interpolation should be a InterpolationMode") if not isinstance(img, torch.Tensor): pil_interpolation = pil_modes_mapping[interpolation] @@ -869,7 +869,7 @@ def _get_inverse_affine_matrix( def rotate( - img: Tensor, angle: float, interpolation: InterpolationModes = InterpolationModes.NEAREST, + img: Tensor, angle: float, interpolation: InterpolationMode = InterpolationMode.NEAREST, expand: bool = False, center: Optional[List[int]] = None, fill: Optional[int] = None, resample: Optional[int] = None ) -> Tensor: @@ -880,9 +880,9 @@ def rotate( Args: img (PIL Image or Tensor): image to be rotated. angle (float or int): rotation angle value in degrees, counter-clockwise. - interpolation (InterpolationModes): Desired interpolation enum defined by - :class:`torchvision.transforms.InterpolationModes`. Default is ``InterpolationModes.NEAREST``. - If input is Tensor, only ``InterpolationModes.NEAREST``, ``InterpolationModes.BILINEAR`` are supported. + interpolation (InterpolationMode): Desired interpolation enum defined by + :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``. + If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported. For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable. expand (bool, optional): Optional expansion flag. If true, expands the output image to make it large enough to hold the entire rotated image. @@ -913,8 +913,8 @@ def rotate( # Backward compatibility with integer value if isinstance(interpolation, int): warnings.warn( - "Argument interpolation should be of type InterpolationModes instead of int. " - "Please, use InterpolationModes enum." + "Argument interpolation should be of type InterpolationMode instead of int. " + "Please, use InterpolationMode enum." ) interpolation = _interpolation_modes_from_int(interpolation) @@ -924,8 +924,8 @@ def rotate( if center is not None and not isinstance(center, (list, tuple)): raise TypeError("Argument center should be a sequence") - if not isinstance(interpolation, InterpolationModes): - raise TypeError("Argument interpolation should be a InterpolationModes") + if not isinstance(interpolation, InterpolationMode): + raise TypeError("Argument interpolation should be a InterpolationMode") if not isinstance(img, torch.Tensor): pil_interpolation = pil_modes_mapping[interpolation] @@ -945,7 +945,7 @@ def rotate( def affine( img: Tensor, angle: float, translate: List[int], scale: float, shear: List[float], - interpolation: InterpolationModes = InterpolationModes.NEAREST, fill: Optional[int] = None, + interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: Optional[int] = None, resample: Optional[int] = None, fillcolor: Optional[int] = None ) -> Tensor: """Apply affine transformation on the image keeping image center invariant. @@ -960,9 +960,9 @@ def affine( shear (float or tuple or list): shear angle value in degrees between -180 to 180, clockwise direction. If a tuple of list is specified, the first value corresponds to a shear parallel to the x axis, while the second value corresponds to a shear parallel to the y axis. - interpolation (InterpolationModes): Desired interpolation enum defined by - :class:`torchvision.transforms.InterpolationModes`. Default is ``InterpolationModes.NEAREST``. - If input is Tensor, only ``InterpolationModes.NEAREST``, ``InterpolationModes.BILINEAR`` are supported. + interpolation (InterpolationMode): Desired interpolation enum defined by + :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``. + If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported. For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable. fill (int): Optional fill color for the area outside the transform in the output image (Pillow>=5.0.0). This option is not supported for Tensor input. Fill value for the area outside the transform in the output @@ -984,8 +984,8 @@ def affine( # Backward compatibility with integer value if isinstance(interpolation, int): warnings.warn( - "Argument interpolation should be of type InterpolationModes instead of int. " - "Please, use InterpolationModes enum." + "Argument interpolation should be of type InterpolationMode instead of int. " + "Please, use InterpolationMode enum." ) interpolation = _interpolation_modes_from_int(interpolation) @@ -1010,8 +1010,8 @@ def affine( if not isinstance(shear, (numbers.Number, (list, tuple))): raise TypeError("Shear should be either a single value or a sequence of two values") - if not isinstance(interpolation, InterpolationModes): - raise TypeError("Argument interpolation should be a InterpolationModes") + if not isinstance(interpolation, InterpolationMode): + raise TypeError("Argument interpolation should be a InterpolationMode") if isinstance(angle, int): angle = float(angle) diff --git a/torchvision/transforms/transforms.py b/torchvision/transforms/transforms.py index 40198ee2cc5..25886d59a60 100644 --- a/torchvision/transforms/transforms.py +++ b/torchvision/transforms/transforms.py @@ -14,14 +14,14 @@ accimage = None from . import functional as F -from .functional import InterpolationModes, _interpolation_modes_from_int +from .functional import InterpolationMode, _interpolation_modes_from_int __all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale", "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop", "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop", "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale", - "RandomPerspective", "RandomErasing", "GaussianBlur", "InterpolationModes"] + "RandomPerspective", "RandomErasing", "GaussianBlur", "InterpolationMode"] class Compose: @@ -234,15 +234,15 @@ class Resize(torch.nn.Module): (size * height / width, size). In torchscript mode padding as single int is not supported, use a tuple or list of length 1: ``[size, ]``. - interpolation (InterpolationModes): Desired interpolation enum defined by - :class:`torchvision.transforms.InterpolationModes`. Default is ``InterpolationModes.BILINEAR``. - If input is Tensor, only ``InterpolationModes.NEAREST``, ``InterpolationModes.BILINEAR`` and - ``InterpolationModes.BICUBIC`` are supported. + interpolation (InterpolationMode): Desired interpolation enum defined by + :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``. + If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and + ``InterpolationMode.BICUBIC`` are supported. For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable. """ - def __init__(self, size, interpolation=InterpolationModes.BILINEAR): + def __init__(self, size, interpolation=InterpolationMode.BILINEAR): super().__init__() if not isinstance(size, (int, Sequence)): raise TypeError("Size should be int or sequence. Got {}".format(type(size))) @@ -253,8 +253,8 @@ def __init__(self, size, interpolation=InterpolationModes.BILINEAR): # Backward compatibility with integer value if isinstance(interpolation, int): warnings.warn( - "Argument interpolation should be of type InterpolationModes instead of int. " - "Please, use InterpolationModes enum." + "Argument interpolation should be of type InterpolationMode instead of int. " + "Please, use InterpolationMode enum." ) interpolation = _interpolation_modes_from_int(interpolation) @@ -663,9 +663,9 @@ class RandomPerspective(torch.nn.Module): distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1. Default is 0.5. p (float): probability of the image being transformed. Default is 0.5. - interpolation (InterpolationModes): Desired interpolation enum defined by - :class:`torchvision.transforms.InterpolationModes`. Default is ``InterpolationModes.BILINEAR``. - If input is Tensor, only ``InterpolationModes.NEAREST``, ``InterpolationModes.BILINEAR`` are supported. + interpolation (InterpolationMode): Desired interpolation enum defined by + :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``. + If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported. For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable. fill (n-tuple or int or float): Pixel fill value for area outside the rotated image. If int or float, the value is used for all bands respectively. Default is 0. @@ -673,15 +673,15 @@ class RandomPerspective(torch.nn.Module): input. Fill value for the area outside the transform in the output image is always 0. """ - def __init__(self, distortion_scale=0.5, p=0.5, interpolation=InterpolationModes.BILINEAR, fill=0): + def __init__(self, distortion_scale=0.5, p=0.5, interpolation=InterpolationMode.BILINEAR, fill=0): super().__init__() self.p = p # Backward compatibility with integer value if isinstance(interpolation, int): warnings.warn( - "Argument interpolation should be of type InterpolationModes instead of int. " - "Please, use InterpolationModes enum." + "Argument interpolation should be of type InterpolationMode instead of int. " + "Please, use InterpolationMode enum." ) interpolation = _interpolation_modes_from_int(interpolation) @@ -758,15 +758,15 @@ class RandomResizedCrop(torch.nn.Module): made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]). scale (tuple of float): scale range of the cropped image before resizing, relatively to the origin image. ratio (tuple of float): aspect ratio range of the cropped image before resizing. - interpolation (InterpolationModes): Desired interpolation enum defined by - :class:`torchvision.transforms.InterpolationModes`. Default is ``InterpolationModes.BILINEAR``. - If input is Tensor, only ``InterpolationModes.NEAREST``, ``InterpolationModes.BILINEAR`` and - ``InterpolationModes.BICUBIC`` are supported. + interpolation (InterpolationMode): Desired interpolation enum defined by + :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``. + If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and + ``InterpolationMode.BICUBIC`` are supported. For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable. """ - def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=InterpolationModes.BILINEAR): + def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=InterpolationMode.BILINEAR): super().__init__() self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.") @@ -780,8 +780,8 @@ def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolat # Backward compatibility with integer value if isinstance(interpolation, int): warnings.warn( - "Argument interpolation should be of type InterpolationModes instead of int. " - "Please, use InterpolationModes enum." + "Argument interpolation should be of type InterpolationMode instead of int. " + "Please, use InterpolationMode enum." ) interpolation = _interpolation_modes_from_int(interpolation) @@ -1147,9 +1147,9 @@ class RandomRotation(torch.nn.Module): degrees (sequence or float or int): Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees). - interpolation (InterpolationModes): Desired interpolation enum defined by - :class:`torchvision.transforms.InterpolationModes`. Default is ``InterpolationModes.NEAREST``. - If input is Tensor, only ``InterpolationModes.NEAREST``, ``InterpolationModes.BILINEAR`` are supported. + interpolation (InterpolationMode): Desired interpolation enum defined by + :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``. + If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported. For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable. expand (bool, optional): Optional expansion flag. If true, expands the output to make it large enough to hold the entire rotated image. @@ -1170,7 +1170,7 @@ class RandomRotation(torch.nn.Module): """ def __init__( - self, degrees, interpolation=InterpolationModes.NEAREST, expand=False, center=None, fill=None, resample=None + self, degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=None, resample=None ): super().__init__() if resample is not None: @@ -1182,8 +1182,8 @@ def __init__( # Backward compatibility with integer value if isinstance(interpolation, int): warnings.warn( - "Argument interpolation should be of type InterpolationModes instead of int. " - "Please, use InterpolationModes enum." + "Argument interpolation should be of type InterpolationMode instead of int. " + "Please, use InterpolationMode enum." ) interpolation = _interpolation_modes_from_int(interpolation) @@ -1253,9 +1253,9 @@ class RandomAffine(torch.nn.Module): range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values, a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied. Will not apply shear by default. - interpolation (InterpolationModes): Desired interpolation enum defined by - :class:`torchvision.transforms.InterpolationModes`. Default is ``InterpolationModes.NEAREST``. - If input is Tensor, only ``InterpolationModes.NEAREST``, ``InterpolationModes.BILINEAR`` are supported. + interpolation (InterpolationMode): Desired interpolation enum defined by + :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``. + If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported. For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable. fill (tuple or int): Optional fill color (Tuple for RGB Image and int for grayscale) for the area outside the transform in the output image (Pillow>=5.0.0). This option is not supported for Tensor @@ -1270,7 +1270,7 @@ class RandomAffine(torch.nn.Module): """ def __init__( - self, degrees, translate=None, scale=None, shear=None, interpolation=InterpolationModes.NEAREST, fill=0, + self, degrees, translate=None, scale=None, shear=None, interpolation=InterpolationMode.NEAREST, fill=0, fillcolor=None, resample=None ): super().__init__() @@ -1283,8 +1283,8 @@ def __init__( # Backward compatibility with integer value if isinstance(interpolation, int): warnings.warn( - "Argument interpolation should be of type InterpolationModes instead of int. " - "Please, use InterpolationModes enum." + "Argument interpolation should be of type InterpolationMode instead of int. " + "Please, use InterpolationMode enum." ) interpolation = _interpolation_modes_from_int(interpolation) @@ -1377,7 +1377,7 @@ def __repr__(self): s += ', scale={scale}' if self.shear is not None: s += ', shear={shear}' - if self.interpolation != InterpolationModes.NEAREST: + if self.interpolation != InterpolationMode.NEAREST: s += ', interpolation={interpolation}' if self.fill != 0: s += ', fill={fill}'