-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompete.py
97 lines (79 loc) · 2.75 KB
/
compete.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/bin/python
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.cross_validation import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.grid_search import ParameterGrid
from sklearn.grid_search import GridSearchCV
from sklearn.decomposition import PCA
from sklearn import cross_validation
import pandas as pd
import numpy as np
from time import time
import sys
def Gridsearch_impl(X,Y,clf,param,cv):
grid_search = GridSearchCV(clf,param,verbose=10,cv=cv,n_jobs=10)
start = time()
grid_search.fit(X,Y)
print(grid_search.grid_scores_)
def PCA_analysis(X, nfeatures):
pca = PCA(n_components = nfeatures)
pca.fit(X)
print(pca.explained_variance_ratio_)
def importdata():
trainf = './training_data.txt'
testf = './testing_data.txt'
train_data = np.loadtxt(trainf,delimiter='|',skiprows = 1)
test_data = np.loadtxt(testf,delimiter='|',skiprows = 1)
X = train_data[:,1:-1]
Y = train_data[:,-1]
N,D = X.shape
for ii in range(0,D):
if(np.sum(X[:,ii]) == 0.0):
print("%d, feature all 0!"%ii)
# for ii in range(0,79):
# for jj in range(0,ii):
# if( np.alltrue(X[ii,:] == X[jj,:])):
# print("pair %d, %d, %d, %d"%(ii,jj,Y[ii],Y[jj]))
# print(X[ii,:])
# print(X[jj,:])
Xtest = test_data[:,1:]
return X,Y,Xtest
def cross_val(X,Y):
depth = 10
clf = AdaBoostClassifier(DecisionTreeClassifier(max_depth=depth))
param_grid={
"n_estimator":[600]}
Gridsearch_impl(X,Y,clf,param_grid,cv=5)
def output_trainE(X,Y,clf):
Ytrain = clf.predict(X)
print(Ytrain)
print(Y)
print(np.sum(np.abs(Y-Ytrain))/Y.shape[0])
def main():
X,Y,Xtest = importdata()
print(Y.shape)
for i in range(2,50):
clf = DecisionTreeClassifier(min_samples_split=i)
#rf = RandomForestClassifier(n_estimators = 300)
#ab = AdaBoostClassifier(n_estimators = 100)
ab = GradientBoostingClassifier(n_estimators = 100)
score = cross_validation.cross_val_score(ab,X,Y,cv=5)
print("average score %f"%np.mean(score))
print("std %f"%np.std(score))
clf.fit(X,Y)
print(clf.score(X,Y))
#output_trainE(X,Y,clf)
#PCA_analysis(X,100)
# nleaf = 100
# dt = DecisionTreeClassifier(min_samples_split = nleaf)
# clf = AdaBoostClassifier(dt,algorithm="SAMME",n_estimators=200,random_state=nleaf)
# clf.fit(X,Y)
# Ytest=clf.predict(Xtest)
#output(Ytest,'adaboost_005_many_{}.csv'.format(nleaf))
# Yt=clf.predict(X)
# print(np.sum((np.abs(Y-Yt))))
if __name__ == '__main__':
main()