-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmesh_labyrinth_seal.py
514 lines (415 loc) · 20.1 KB
/
mesh_labyrinth_seal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
# -*- coding: utf-8 -*-
from __future__ import print_function, division
'''
# to find parameter_salome in the current folder, if caller script is not in this folder
try:
os.chdir('/media/sf_OneDrive/gitrepo/seal_design') # change to working dir
except:
print('First of all, os.chdir to the folder where salome_parameter.py is located')
sys.exit()
#os.chdir('/media/OneDrive/Fenics/metal_cut/')
'''
######################################
#/opt/SALOME-8.5.0-UB16.04-SRC/runSalome -t -b /myScript
#can not make a symbolic link to this salome
#/opt/SALOME-9.3.0-UB16.04-SRC/salome -t -b /myScript
## the sequence of gmsh options is important, your gmsh maybe called gmsh, gmsh version 4 is required
#gmsh4 -format msh2 -o metal_cut.msh -save Mesh_1.med
#dolfin-convert metal_cut.msh metal_cut.xml
##########################################
from math import sin, cos, tan, pi, atan2
from seal_parameter import * # restart salome if any change in this parameter file
# for quick testing, copy parameter.py content here
###
### This file is generated automatically by SALOME v8.5.0 with dump python functionality
###
import os
import sys
import salome
salome.salome_init()
theStudy = salome.myStudy
import salome_notebook
notebook = salome_notebook.NoteBook(theStudy)
# rotate those points or rotate the face
###
### GEOM component
###
import GEOM
from salome.geom import geomBuilder
import math
import SALOMEDS
#============================
try:
geompy = geomBuilder.New(theStudy)
except:
geompy = geomBuilder.New()
O = geompy.MakeVertex(0, 0, 0)
OX = geompy.MakeVectorDXDYDZ(1, 0, 0)
OY = geompy.MakeVectorDXDYDZ(0, 1, 0)
OZ = geompy.MakeVectorDXDYDZ(0, 0, 1)
OZ_minus = geompy.MakeVectorDXDYDZ(0, 0, -1)
geompy.addToStudy( O, 'O' )
geompy.addToStudy( OX, 'OX' )
geompy.addToStudy( OY, 'OY' )
geompy.addToStudy( OZ, 'OZ' )
def near(pa, pb, rtol = 1e-3):
if isinstance(pa, (int, float)) and isinstance(pb, (int, float)):
if max([math.fabs(pa), math.fabs(pb)]) < 1e-6: # including both are zero
return math.fabs(pa-pb) / 1e-6 < rtol
else:
return math.fabs(pa-pb) / max([math.fabs(pa), math.fabs(pb)]) < rtol
else:
A = geompy.PointCoordinates(pa)
B = geompy.PointCoordinates(pb)
dist2 = sum([(A[i]-B[i])*(A[i]-B[i]) for i in range(3)])
return dist2 < rtol*0.001
def edge_length(edge):
if len(geompy.ExtractShapes(edge, geompy.ShapeType["VERTEX"], True)) !=2:
print(edge, "edge is not a line with two points")
return None
else:
[pa, pb] = geompy.ExtractShapes(edge, geompy.ShapeType["VERTEX"], True)
A = geompy.PointCoordinates(pa)
B = geompy.PointCoordinates(pb)
dist2 = sum([(A[i]-B[i])*(A[i]-B[i]) for i in range(3)])
return dist2**0.5
def get_shape_list_by_center_condition(geom, cond, shape_type = "EDGE"):
edgelist = geompy.ExtractShapes(geom, geompy.ShapeType[shape_type], True)
elist = []
for i,e in enumerate(edgelist):
cg = geompy.PointCoordinates(geompy.MakeCDG(e)) #center of gravity, only for solid? return type?
if cond(cg): #z-coordinate
elist.append(e)
#geompy.addToStudyInFather( geom, e, "Edge_{}".format(i))
# geompy.getCoordinate(vertex) # return a 3elm tuple?
return elist
def add_group_by_condition(geom, cond, shape_type, group_name):
# can use various property to filter element
slist = geompy.ExtractShapes(geom, geompy.ShapeType[shape_type], True)
elist = []
for i,e in enumerate(slist):
if cond(e): #z-coordinate
elist.append(e)
shape_group = geompy.CreateGroup(geom, geompy.ShapeType[shape_type])
geompy.UnionList(shape_group, elist)
geompy.addToStudyInFather(geom, shape_group, group_name)
return shape_group
def add_group_by_center_condition(geom, cond, shape_type, group_name):
sl = get_shape_list_by_center_condition(geom, cond, shape_type = shape_type)
shape_group = geompy.CreateGroup(geom, geompy.ShapeType[shape_type])
geompy.UnionList(shape_group, sl)
geompy.addToStudyInFather(geom, shape_group, group_name)
return shape_group
def get_edge_list_by_length_condition(geom, cond):
edgelist = geompy.ExtractShapes(geom, geompy.ShapeType["EDGE"], True) # True means ?
elist = []
for i,e in enumerate(edgelist):
cg = geompy.PointCoordinates(geompy.MakeCDG(e)) #center of gravity, only for solid? return type?
l = edge_length(e)
if l and cond(cg, l): #z-coordinate
elist.append(e)
#geompy.addToStudyInFather( geom, e, "Edge_{}".format(i))
# geompy.getCoordinate(vertex) # return a 3elm tuple?
return elist
if sys.version_info[0]>=3:
# python 3 has no execfile, but exec() does not give error line number <string> <module>
pass
###########################################
seal_points = generate_seal_xy(N_tooth_group)
# turning the points position for different valve opening angle, +cos(alpha)*r_stator
rotor_points = generate_rotor_xy(N_tooth_group)
wall_vlist = [geompy.MakeVertex(px, py, z0) for (px, py) in seal_points]
rotor_vlist = [geompy.MakeVertex(px, py, z0) for (px, py) in rotor_points]
print(inlet_points)
inlet_vlist = [geompy.MakeVertex(px, py, z0) for (px, py) in inlet_points]
outlet_vlist = [geompy.MakeVertex(px, py, z0) for (px, py) in outlet_points]
#close the loop, relly depends on
rotor_vlist.insert(0, inlet_vlist[0])
rotor_vlist.append(outlet_vlist[0])
inlet_vlist.append(wall_vlist[0])
outlet_vlist.append(wall_vlist[-1])
# div = geompy.DivideEdgeByPoint( box, edge, [p1, p2], theName="box (edge divided)")
# Shape is a shape, which contains an edge to be divided;
# Edge is an edge to be divided (or its ID, if it is = -1, then Shape should be an edge itself);
# Points is a list of points to be projected to the Edge.
line_inlet_gap = geompy.MakePolyline([rotor_vlist[1], wall_vlist[2]])
line_outlet_gap = geompy.MakePolyline([rotor_vlist[-1], wall_vlist[-1]])
split_tool = []
rotor_profile = geompy.MakePolyline(rotor_vlist)
wall_profile = geompy.MakePolyline(wall_vlist)
inlet_profile = geompy.MakePolyline(inlet_vlist)
outlet_profile = geompy.MakePolyline(outlet_vlist)
geompy.addToStudy(rotor_profile, 'rotor_profile')
geompy.addToStudy(wall_profile, 'wall_profile')
geompy.addToStudy(inlet_profile, 'inlet_profile')
geompy.addToStudy(outlet_profile, 'outlet_profile')
#geompy.MakeRotation(Shape, Axis, angle)
#===============build geomtry=================
Face_1 = geompy.MakeFaceWires([inlet_profile, rotor_profile, outlet_profile, wall_profile], 1) #
Partition_1 = geompy.MakePartition([Face_1], split_tool, [], [], geompy.ShapeType["FACE"], 0, [], 0)
geompy.addToStudy(Partition_1, 'Partition_1')
if using_3D:
Extrusion_1 = geompy.MakePrismVecH(Partition_1, OZ, extrusion_thickness)
geompy.addToStudy( Extrusion_1, 'Extrusion_1' )
domain = Extrusion_1
#is there a way to detect whether a point is in solid?
vlist = geompy.ExtractShapes(domain, geompy.ShapeType["SOLID"], True)
solid_type = "SOLID"
boundary_type = "FACE"
else:
domain = Partition_1
#is there a way to detect whether a point is in solid?
vlist = geompy.ExtractShapes(domain, geompy.ShapeType["FACE"], True)
solid_type = "FACE"
boundary_type = "EDGE"
# ============ export CAD file ============
#
#geompy.ExportSTEP(domain, geom_filename, GEOM.LU_MILLIMETER) #length unit
'''
slist = geompy.ExtractShapes(domain, geompy.ShapeType['SOLID'], True)
elist = []
for i,e in enumerate(slist):
p = geompy.PointCoordinates(geompy.MakeCDG(e))
A = geompy.BasicProperties(e)[1]
volume = geompy.BasicProperties(e)[2]
print(p)
print(volume)
'''
############## group geomtry for meshing propurse ##########
# ========== solid group ============
#if domain is not split, all_regions has nothing selected, why?
all_regions = add_group_by_center_condition(domain, lambda p: True, solid_type, 'all_regions')
# could be useful in region init
cond_upstream = lambda p: p[0] < seal_min_x
upstream_regions = add_group_by_center_condition(domain, cond_upstream, solid_type, 'upstream_regions')
cond_downstream = lambda p: p[0] > seal_max_x
downstream_regions = add_group_by_center_condition(domain, cond_downstream, solid_type, 'downstream_regions')
cond_seal = lambda p: p[0] < seal_max_x and p[0] < seal_min_x
downstream_regions = add_group_by_center_condition(domain, cond_downstream, solid_type, 'seal_regions')
#########################################################
#Face_rotor_rim = add_group_by_condition(domain, cond_rotor_rim, boundary_type, 'Face_rotor_rim')
#Face_rotor_chamfer = add_group_by_condition(domain, cond_rotor_chamfer, boundary_type, 'Face_rotor_chamfer')
#cond_hole_gap_interface = lambda p: p[0] < rotor_centerline_x + thickness * 0.35 and p[0] > rotor_centerline_x - thickness * 0.35\
# =========== edges =============
short_edge_cond = lambda p, l: math.fabs(l) < small_edge_length_threshold and math.fabs(p[2]) < 1e-8
long_edge_cond = lambda p, l: math.fabs(l) > long_edge_length_threshold # and math.fabs(p[2]) < 1e-8
# independent of 2D or 3D, in same case, heat thickness is not counted as short edge
velist = get_edge_list_by_length_condition(domain, short_edge_cond)
ShortEdgeGroup = geompy.CreateGroup(domain, geompy.ShapeType["EDGE"])
geompy.UnionList(ShortEdgeGroup, velist)
geompy.addToStudyInFather(domain, ShortEdgeGroup, 'ShortEdgeGroup' )
velist = get_edge_list_by_length_condition(domain, long_edge_cond)
LongEdgeGroup = geompy.CreateGroup(domain, geompy.ShapeType["EDGE"])
geompy.UnionList(LongEdgeGroup, velist)
geompy.addToStudyInFather(domain, LongEdgeGroup, 'LongEdgeGroup' )
if using_3D:
#cond_vertical = lambda p: math.fabs(p[2] - 0.5*extrusion_thickness) < 1e-5
vertical_edge_cond = lambda p, l: math.fabs(p[2] - 0.5*extrusion_thickness) < 1e-5 # should automatically filter out cricle edge
#velist = get_shape_list_by_edge_(domain, cond_vertical)
velist = get_edge_list_by_length_condition(domain, vertical_edge_cond)
VerticalEdgeGroup = geompy.CreateGroup(domain, geompy.ShapeType["EDGE"])
geompy.UnionList(VerticalEdgeGroup, velist)
geompy.addToStudyInFather(domain, VerticalEdgeGroup, 'VerticalEdgeGroup')
if using_3D:
on_boundary = lambda p: near(p[2], extrusion_thickness*0.5) # internal faces also selected, only for quasi-2D cases
else:
on_boundary = lambda p: True
# ============== boundary =============
_small_dist = 1e-6
cond_inlet = lambda p: on_boundary(p) and (p[0] < seal_min_x-_small_dist and not near(p[1], rotor_min_y))
cond_outlet = lambda p: on_boundary(p) and (p[0] > seal_max_x+_small_dist and not near(p[1], rotor_min_y))
def cond_wall(e):
p = geompy.PointCoordinates(geompy.MakeCDG(e))
A = geompy.BasicProperties(e)[1] # length, area, volume
b1 = on_boundary(p) and p[1]>rotor_min_y+_small_dist and p[1]<seal_origin[1]+_small_dist \
and p[0] > seal_min_x-gap and p[0] < seal_max_x+gap
b2 = not (near(A, extrusion_thickness*rotor_step_height) or near(p[1], rotor_max_y))
return b1 and b2
def cond_rotor(e):
p = geompy.PointCoordinates(geompy.MakeCDG(e))
A = geompy.BasicProperties(e)[1] # length, area, volume
b1 = on_boundary(p) and p[1]< rotor_max_y+1e-6
b2 = near(A, extrusion_thickness*rotor_step_height) or near(p[1], rotor_max_y) or near(p[1], rotor_min_y)
return b1 and b2
if using_pressure_tapping_hole:
tap_g = add_group_by_condition(domain, cond_tap_wall, boundary_type, 'tap_wall')
cond_front = lambda p: near(p[2], z0+extrusion_thickness)
front_g = add_group_by_center_condition(domain, cond_front, boundary_type, 'front_g')
cond_back = lambda p: near(p[2], z0)
back_g = add_group_by_center_condition(domain, cond_back, boundary_type, 'back_g')
inlet_g = add_group_by_center_condition(domain, cond_inlet, boundary_type, 'inlet_g')
outlet_g = add_group_by_center_condition(domain, cond_outlet, boundary_type, 'outlet_g')
wall_g = add_group_by_condition(domain, cond_wall, boundary_type, 'wall_g')
rotor_g = add_group_by_condition(domain, cond_rotor, boundary_type, 'rotor_g')
# internal edges are also selected
viscous_layer_g = geompy.CreateGroup(domain, geompy.ShapeType[boundary_type]) # list of subshape
geompy.UnionIDs(viscous_layer_g, geompy.GetObjectIDs(wall_g))
geompy.UnionIDs(viscous_layer_g, geompy.GetObjectIDs(rotor_g))
geompy.addToStudyInFather(domain, viscous_layer_g, 'viscous_layer_g' )
###################################################
if salome.sg.hasDesktop():
try:
salome.sg.updateObjBrowser(True) # salome v8
except:
salome.sg.updateObjBrowser()
###
### SMESH component
###
import SMESH, SALOMEDS
from salome.smesh import smeshBuilder
smesh = smeshBuilder.New(theStudy)
Mesh_1 = smesh.Mesh(domain, 'CFD')
Regular_1D = Mesh_1.Segment()
Number_of_Segments_default = Regular_1D.NumberOfSegments(line_segment_nb_default)
# table desity, is kind of viscous layer
Number_of_Segments_default.SetNumberOfSegments( line_segment_nb_default )
Number_of_Segments_default.SetConversionMode( 1 )
Number_of_Segments_default.SetReversedEdges( [] )
Number_of_Segments_default.SetTableFunction( [ 0, 3, 0.2, 1, 0.8, 1, 1, 3 ] )
smesh.SetName(Number_of_Segments_default, 'Number_of_Segments_default')
smesh.SetName(Regular_1D.GetAlgorithm(), 'Regular_1D')
#####################################
bl_thickness = gap*0.1 # total thickness
bl_numberOfLayers = 3
bl_stretchFactor = 1.5
if using_quad_mesh:
Quadrangle_2D = Mesh_1.Quadrangle(algo=smeshBuilder.QUADRANGLE) # or limited to a group: geom=FaceGroupQuadMesh
mesh2D = Quadrangle_2D
smesh.SetName(Quadrangle_2D.GetAlgorithm(), 'Quadrangle_2D')
else:
MEFISTO_2D = Mesh_1.Triangle(algo=smeshBuilder.MEFISTO)
smesh.SetName(MEFISTO_2D.GetAlgorithm(), 'MEFISTO_2D')
mesh2D = MEFISTO_2D
'''
ViscousLayers.SetTotalThickness( gap*0.1 )
ViscousLayers.SetNumberLayers( 5 )
ViscousLayers.SetStretchFactor( 1.2 )
#ViscousLayers.SetIgnoreFaces( [ 34, 48, 14, 26, 42, 45 ] )
ViscousLayers.SetIgnoreEdges(non_viscous_faces.GetSubShapeIndices()) # geompy.SubShapeAllIDs(shape, type)
mesh.AddHypothesis()
'''
#SegmentAroundVertex_0D = smesh.CreateHypothesis('SegmentAroundVertex_0D')
#status = Mesh_1.AddHypothesis(SegmentAroundVertex_0D,Auto_group_for_Sub_mesh_2)
#=========== submesh ==========
Regular_1D_large= Mesh_1.Segment(geom=LongEdgeGroup)
Number_of_Segments_large = Regular_1D_large.NumberOfSegments(line_segment_nb_large)
status = Mesh_1.AddHypothesis(Number_of_Segments_large, domain)
Sub_mesh_large = Regular_1D_large.GetSubMesh()
smesh.SetName(Number_of_Segments_large, 'Number_of_Segments_large')
if using_3D:
Regular_1D_3 = Mesh_1.Segment(geom=VerticalEdgeGroup)
Number_of_Segments_vertical = Regular_1D_3.NumberOfSegments(line_segment_nb_vertical)
Sub_mesh_vertical = Regular_1D_3.GetSubMesh()
smesh.SetName(Number_of_Segments_vertical, 'Number_of_Segments_vertical')
if True:
Regular_1D_small = Mesh_1.Segment(geom=ShortEdgeGroup)
Number_of_Segments_small = Regular_1D_small.NumberOfSegments(line_segment_nb_small)
Number_of_Segments_small.SetNumberOfSegments( line_segment_nb_small )
Number_of_Segments_small.SetConversionMode( 1 )
Number_of_Segments_small.SetReversedEdges( [] )
Number_of_Segments_small.SetTableFunction( [ 0, 3, 0.2, 1, 0.8, 1, 1, 3 ] )
Sub_mesh_small = Regular_1D_small.GetSubMesh()
smesh.SetName(Number_of_Segments_small, 'Number_of_Segments_small')
smesh.SetName(Sub_mesh_small, 'Sub_mesh_small')
# added to 0D of short egde, but only one points
Length_Near_Vertex_1 = Regular_1D_small.LengthNearVertex(gap*0.1, ShortEdgeGroup)
status = Mesh_1.AddHypothesis(Length_Near_Vertex_1, ShortEdgeGroup)
smesh.SetName(Length_Near_Vertex_1, 'Length Near Vertex_1')
if using_viscous_layers:
if using_3D:
Sub_mesh_face_m = Mesh_1.Triangle(algo=smeshBuilder.NETGEN_2D, geom=back_g)
Max_Element_Area_1 = Sub_mesh_face_m.MaxElementArea(3e-08)
Sub_mesh_face = Sub_mesh_face_m.GetSubMesh()
smesh.SetName(Sub_mesh_face, 'Sub_mesh_face')
mesh2D = Sub_mesh_face_m
#faceIDs = viscous_layer_g.GetSubShapeIndices() # todo, UnionIds
faceIDs = geompy.GetObjectIDs(rotor_g) + geompy.GetObjectIDs(wall_g)
ViscousLayers = mesh2D.ViscousLayers2D(bl_thickness, bl_numberOfLayers, bl_stretchFactor, faceIDs, isEdgesToIgnore=False)
status = Mesh_1.AddHypothesis(ViscousLayers, back_g)
else: # apply directly to 2D domain
ViscousLayers = mesh2D.ViscousLayers2D(bl_thickness, bl_numberOfLayers, bl_stretchFactor, viscous_layer_g.GetSubShapeIndices(), isEdgesToIgnore=False)
if using_3D:
if False:
Mesh_3D = Mesh_1.Tetrahedron(algo=smeshBuilder.NETGEN_3D) # default 3D meshing method
NETGEN_3D_Parameters = Mesh_3D.Parameters()
NETGEN_3D_Parameters.SetMaxSize( 0.0005 )
NETGEN_3D_Parameters.SetSecondOrder( 0 )
NETGEN_3D_Parameters.SetOptimize( 1 )
NETGEN_3D_Parameters.SetFineness( 2 )
NETGEN_3D_Parameters.SetChordalError( 0.1 )
NETGEN_3D_Parameters.SetChordalErrorEnabled( 0 )
NETGEN_3D_Parameters.SetMinSize( 2e-05 )
NETGEN_3D_Parameters.SetUseSurfaceCurvature( 1 )
NETGEN_3D_Parameters.SetFuseEdges( 1 )
NETGEN_3D_Parameters.SetQuadAllowed( 1 )
smesh.SetName(Mesh_3D.GetAlgorithm(), 'Tetra_3D_netgen')
smesh.SetName(Mesh_3D, 'Tetra_3D')
else:
Prism_3D = Mesh_1.Prism()
algo_3D = Prism_3D.GetAlgorithm()
smesh.SetName(algo_3D, 'algo_3D')
smesh.SetName(Prism_3D, 'Prism_3D')
if using_viscous_layers and False:
ViscousLayers = algo_3D.ViscousLayers(bl_thickness, bl_numberOfLayers, bl_stretchFactor, viscous_layer_g.GetSubShapeIndices(), False)
mesh_solid_type= SMESH.VOLUME
mesh_boundary_type = SMESH.FACE
else:
mesh_solid_type= SMESH.FACE
mesh_boundary_type = SMESH.EDGE
smesh.SetName(Mesh_1.GetMesh(), 'Mesh_1')
smesh.SetName(Sub_mesh_large, 'Sub_mesh_large')
smesh.SetName(Sub_mesh_vertical, 'Sub_mesh_vertical')
Mesh_1.SetMeshOrder([[Sub_mesh_large, Sub_mesh_vertical, Sub_mesh_small, Sub_mesh_face]])
###############################
isDone = Mesh_1.Compute()
#hole_region_1 = Mesh_1.GroupOnGeom(hole_region,'hole_region',mesh_solid_type)
#smesh.SetName(hole_region_1, 'hole_region')
inlet_1 = Mesh_1.GroupOnGeom(inlet_g,'inlet_g', mesh_boundary_type)
outlet_1 = Mesh_1.GroupOnGeom(outlet_g,'outlet_g', mesh_boundary_type)
wall_1 = Mesh_1.GroupOnGeom(wall_g,'wall_g', mesh_boundary_type)
if using_pressure_tapping_hole:
tap_1 = Mesh_1.GroupOnGeom(tap_g,'tap_g', mesh_boundary_type)
rotor_1 = Mesh_1.GroupOnGeom(rotor_g,'rotor_g', mesh_boundary_type)
smesh.SetName(inlet_1, 'inlet')
smesh.SetName(outlet_1, 'outlet')
smesh.SetName(wall_1, 'wall')
smesh.SetName(rotor_1, 'rotor')
if using_pressure_tapping_hole:
smesh.SetName(tap_1, 'tap')
front_1 = Mesh_1.GroupOnGeom(front_g,'frontb_g', mesh_boundary_type)
smesh.SetName(front_1, 'front')
back_1 = Mesh_1.GroupOnGeom(back_g,'back_g', mesh_boundary_type)
smesh.SetName(back_1, 'back')
#it is needed,otherwise, gmsh does not found any volume mesh, MED export option may control this
cdomain = Mesh_1.GroupOnGeom(all_regions,'all_regions', mesh_solid_type)
smesh.SetName(cdomain, 'cdomain')
if False:
upstream = Mesh_1.GroupOnGeom(upstream_regions,'upstream_regions', mesh_solid_type)
smesh.SetName(cdomain, 'upstream')
downstream = Mesh_1.GroupOnGeom(downstream_regions,'downstream_regions', mesh_solid_type)
smesh.SetName(cdomain, 'downstream')
##################################
if exporting_fenics:
if using_3D:
Mesh_1.SplitVolumesIntoTetra( Mesh_1, 1)
else:
Mesh_1.QuadTo4Tri(Mesh_1) # split for 2D mesh, it works!
isDone = Mesh_1.Compute()
if exporting_unv:
try:
Mesh_1.ExportUNV(mesh_output_filename[:-4] + '.unv') #cgns
except:
print('ExportPartToUNV() failed. Invalid file name?')
Mesh_1.ExportMED(mesh_output_filename, 0, SMESH.MED_V2_2, 1, None ,1)
print('==== completed mesh saving ====')
#meshio-convert Mesh_1.med test.xdmf # support quad mesh
if salome.sg.hasDesktop():
try:
salome.sg.updateObjBrowser(True) # salome v8
except:
salome.sg.updateObjBrowser()
else:
from runSalome import *
myArgs={}
myArgs["killall"] = True
kill_salome(myArgs)