diff --git a/core/src/num/f16.rs b/core/src/num/f16.rs index 9252e8c601558..da92da1086dab 100644 --- a/core/src/num/f16.rs +++ b/core/src/num/f16.rs @@ -435,6 +435,7 @@ impl f16 { // WASM, see llvm/llvm-project#96437). These are platforms bugs, and Rust will misbehave on // such platforms, but we can at least try to make things seem as sane as possible by being // careful here. + // see also https://github.com/rust-lang/rust/issues/114479 if self.is_infinite() { // Thus, a value may compare unequal to infinity, despite having a "full" exponent mask. FpCategory::Infinite diff --git a/core/src/num/f32.rs b/core/src/num/f32.rs index 2bc897224970d..885f7608a337e 100644 --- a/core/src/num/f32.rs +++ b/core/src/num/f32.rs @@ -662,10 +662,7 @@ impl f32 { // hardware flushes subnormals to zero. These are platforms bugs, and Rust will misbehave on // such hardware, but we can at least try to make things seem as sane as possible by being // careful here. - // - // FIXME(jubilee): Using x87 operations is never necessary in order to function - // on x86 processors for Rust-to-Rust calls, so this issue should not happen. - // Code generation should be adjusted to use non-C calling conventions, avoiding this. + // see also https://github.com/rust-lang/rust/issues/114479 if self.is_infinite() { // A value may compare unequal to infinity, despite having a "full" exponent mask. FpCategory::Infinite diff --git a/core/src/num/f64.rs b/core/src/num/f64.rs index b3f5be9fc8a46..28cc231ccc76d 100644 --- a/core/src/num/f64.rs +++ b/core/src/num/f64.rs @@ -660,10 +660,7 @@ impl f64 { // float semantics Rust relies on: x87 uses a too-large exponent, and some hardware flushes // subnormals to zero. These are platforms bugs, and Rust will misbehave on such hardware, // but we can at least try to make things seem as sane as possible by being careful here. - // - // FIXME(jubilee): Using x87 operations is never necessary in order to function - // on x86 processors for Rust-to-Rust calls, so this issue should not happen. - // Code generation should be adjusted to use non-C calling conventions, avoiding this. + // see also https://github.com/rust-lang/rust/issues/114479 // // Thus, a value may compare unequal to infinity, despite having a "full" exponent mask. // And it may not be NaN, as it can simply be an "overextended" finite value. diff --git a/std/src/f32/tests.rs b/std/src/f32/tests.rs index 3a4c1c120a495..99cfcfb231dad 100644 --- a/std/src/f32/tests.rs +++ b/std/src/f32/tests.rs @@ -2,31 +2,24 @@ use crate::f32::consts; use crate::num::{FpCategory as Fp, *}; /// Smallest number -#[allow(dead_code)] // unused on x86 const TINY_BITS: u32 = 0x1; /// Next smallest number -#[allow(dead_code)] // unused on x86 const TINY_UP_BITS: u32 = 0x2; /// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0 -#[allow(dead_code)] // unused on x86 const MAX_DOWN_BITS: u32 = 0x7f7f_fffe; /// Zeroed exponent, full significant -#[allow(dead_code)] // unused on x86 const LARGEST_SUBNORMAL_BITS: u32 = 0x007f_ffff; /// Exponent = 0b1, zeroed significand -#[allow(dead_code)] // unused on x86 const SMALLEST_NORMAL_BITS: u32 = 0x0080_0000; /// First pattern over the mantissa -#[allow(dead_code)] // unused on x86 const NAN_MASK1: u32 = 0x002a_aaaa; /// Second pattern over the mantissa -#[allow(dead_code)] // unused on x86 const NAN_MASK2: u32 = 0x0055_5555; #[allow(unused_macros)] @@ -353,9 +346,6 @@ fn test_is_sign_negative() { assert!((-f32::NAN).is_sign_negative()); } -// Ignore test on x87 floating point, these platforms do not guarantee NaN -// payloads are preserved and flush denormals to zero, failing the tests. -#[cfg(not(target_arch = "x86"))] #[test] fn test_next_up() { let tiny = f32::from_bits(TINY_BITS); @@ -386,9 +376,6 @@ fn test_next_up() { assert_f32_biteq!(nan2.next_up(), nan2); } -// Ignore test on x87 floating point, these platforms do not guarantee NaN -// payloads are preserved and flush denormals to zero, failing the tests. -#[cfg(not(target_arch = "x86"))] #[test] fn test_next_down() { let tiny = f32::from_bits(TINY_BITS); diff --git a/std/src/f64/tests.rs b/std/src/f64/tests.rs index bac8405f97361..3fac2efe0d76c 100644 --- a/std/src/f64/tests.rs +++ b/std/src/f64/tests.rs @@ -2,31 +2,24 @@ use crate::f64::consts; use crate::num::{FpCategory as Fp, *}; /// Smallest number -#[allow(dead_code)] // unused on x86 const TINY_BITS: u64 = 0x1; /// Next smallest number -#[allow(dead_code)] // unused on x86 const TINY_UP_BITS: u64 = 0x2; /// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0 -#[allow(dead_code)] // unused on x86 const MAX_DOWN_BITS: u64 = 0x7fef_ffff_ffff_fffe; /// Zeroed exponent, full significant -#[allow(dead_code)] // unused on x86 const LARGEST_SUBNORMAL_BITS: u64 = 0x000f_ffff_ffff_ffff; /// Exponent = 0b1, zeroed significand -#[allow(dead_code)] // unused on x86 const SMALLEST_NORMAL_BITS: u64 = 0x0010_0000_0000_0000; /// First pattern over the mantissa -#[allow(dead_code)] // unused on x86 const NAN_MASK1: u64 = 0x000a_aaaa_aaaa_aaaa; /// Second pattern over the mantissa -#[allow(dead_code)] // unused on x86 const NAN_MASK2: u64 = 0x0005_5555_5555_5555; #[allow(unused_macros)] @@ -343,9 +336,6 @@ fn test_is_sign_negative() { assert!((-f64::NAN).is_sign_negative()); } -// Ignore test on x87 floating point, these platforms do not guarantee NaN -// payloads are preserved and flush denormals to zero, failing the tests. -#[cfg(not(target_arch = "x86"))] #[test] fn test_next_up() { let tiny = f64::from_bits(TINY_BITS); @@ -375,9 +365,6 @@ fn test_next_up() { assert_f64_biteq!(nan2.next_up(), nan2); } -// Ignore test on x87 floating point, these platforms do not guarantee NaN -// payloads are preserved and flush denormals to zero, failing the tests. -#[cfg(not(target_arch = "x86"))] #[test] fn test_next_down() { let tiny = f64::from_bits(TINY_BITS);