forked from ChristoferNal/multi-nilm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiments.py
206 lines (173 loc) · 9.21 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import time
from typing import Tuple, List, Any
from datasources.datasource import DatasourceFactory
from nilmlab import exp_model_list
from nilmlab.lab import Environment, Experiment, TimeSeriesLength
from utils.logger import timing
reset_results = False
class ModelSelectionExperiment(Experiment):
appliances = ['oven', 'microwave', 'dish washer', 'fridge freezer', 'kettle', 'washer dryer',
'toaster', 'boiler', 'television', 'hair dryer', 'vacuum cleaner', 'light']
results_file: str
ts_len: TimeSeriesLength
def __init__(self, cv=3):
super().__init__()
self.transformers = exp_model_list.model_selection_transformers
self.classifiers = exp_model_list.model_selection_clf_list
self.cv = cv
def setup_environment(self):
train_year = '2014'
train_month_end = '8'
train_month_start = '1'
train_end_date = "{}-30-{}".format(train_month_end, train_year)
train_start_date = "{}-1-{}".format(train_month_start, train_year)
train_sample_period = 6
train_building = 1
train_datasource = DatasourceFactory.create_uk_dale_datasource()
test_year = '2014'
test_month_end = '9'
test_month_start = '7'
test_end_date = "{}-30-{}".format(test_month_end, test_year)
test_start_date = "{}-1-{}".format(test_month_start, test_year)
test_sample_period = 6
test_building = 1
test_datasource = DatasourceFactory.create_uk_dale_datasource()
env = Environment(train_datasource, train_building, train_year, train_start_date, train_end_date,
train_sample_period, self.appliances)
self.populate_environment(env)
self.populate_train_parameters(env)
def run(self):
self.setup_environment()
self.env.set_ts_len(self.ts_len)
for transformer in self.transformers:
for clf in self.classifiers:
self.env.place_multilabel_classifier(clf)
self.env.place_ts_transformer(transformer)
macro_scores, micro_scores = self.env.cross_validate(self.appliances, cv=self.cv, raw_data=False)
description = self.create_description(type(clf).__name__,
str(clf),
transformer.get_name(),
str(self.env.get_type_of_transformer()),
str(transformer),
str(self.cv),
macro_scores.mean(),
macro_scores.std(),
micro_scores.mean(),
micro_scores.std(),
str(len(self.appliances)),
str(self.appliances))
self.save_experiment(description, reset_results, self.results_file)
def set_checkpoint_file(self, results_file: str = '../results/cross_val_window_4_hours.csv'):
self.results_file = results_file
def set_ts_len(self, ts_len: TimeSeriesLength = TimeSeriesLength.WINDOW_4_HOURS):
self.ts_len = ts_len
class GenericExperiment(Experiment):
results_file: str
ts_len: TimeSeriesLength
def __init__(self, environment):
super().__init__()
self.env = environment
self.transformers = None
self.classifiers = None
self.train_appliances = []
self.test_appliances = []
self.repeat = 1
def setup_environment(self):
self.env.set_ts_len(self.ts_len)
self.populate_environment(self.env)
self.populate_train_parameters(self.env)
def setup_running_params(self,
transformer_models: List[Tuple[Any, str]],
classifier_models: List[Tuple[Any, str]],
train_appliances,
test_appliances=None,
ts_len: TimeSeriesLength = TimeSeriesLength.WINDOW_4_HOURS,
repeat: int = 1):
self.set_transfomers_and_classifiers(transformer_models, classifier_models)
self.set_ts_len(ts_len)
self.repeat = repeat
self.train_appliances = train_appliances
if test_appliances:
self.test_appliances = test_appliances
else:
self.test_appliances = train_appliances
def run(self):
self.setup_environment()
if len(self.transformers) != len(self.classifiers):
raise Exception("List of transformers doesn't have the same length with list of classifiers. "
"It should be a 1-1 map")
for model_index in range(len(self.transformers)):
transformer = self.transformers[model_index]
transformer_descr = str(transformer)
clf = self.classifiers[model_index]
clf_descr = str(clf)
for i in range(self.repeat):
self.env.place_multilabel_classifier(clf)
self.env.place_ts_transformer(transformer)
start_time = time.time()
preprocess_train_time, fit_time = self.env.train(self.train_appliances)
training_time = time.time() - start_time
timing(f"training time {training_time}")
start_time = time.time()
macro, micro, report, preprocess_time, prediction_time = self.env.test(self.test_appliances)
testing_time = time.time() - start_time
timing(f"testing time {testing_time}")
description = self.create_description(type(clf).__name__,
clf_descr,
transformer.get_name(),
str(self.env.get_type_of_transformer()),
transformer_descr,
"train/test",
macro,
None,
micro,
None,
str(len(self.train_appliances)),
str(self.train_appliances),
str(report),
str(training_time),
str(testing_time),
str(preprocess_time),
str(prediction_time),
str(preprocess_train_time),
str(fit_time)
)
self.save_experiment(description, reset_results, self.results_file)
def set_checkpoint_file(self, results_file: str = '../results/cross_val_window_4_hours.csv'):
self.results_file = results_file
def set_ts_len(self, ts_len: TimeSeriesLength = TimeSeriesLength.WINDOW_4_HOURS):
self.ts_len = ts_len
def set_transfomers_and_classifiers(self, transformer_models: List[Tuple[Any, str]],
classifier_models: List[Tuple[Any, str]]):
self.transformers = transformer_models
self.classifiers = classifier_models
def set(self, environment):
self.env = environment
class REDDModelSelectionExperiment(ModelSelectionExperiment):
appliances_redd3 = ['electric furnace', 'CE appliance', 'microwave', 'washer dryer', 'unknown', 'sockets']
appliances_redd1 = ['electric oven', 'fridge', 'microwave', 'washer dryer', 'unknown', 'sockets', 'light']
results_file: str
ts_len: TimeSeriesLength
def __init__(self, building=1, cv=2):
super().__init__()
self.transformers = exp_model_list.model_selection_transformers
self.classifiers = exp_model_list.model_selection_clf_list
self.building = building
self.cv = cv
def setup_environment(self):
train_year = '2011'
train_month_end = '5'
train_month_start = '4'
train_end_date = "{}-30-{}".format(train_month_end, train_year)
train_start_date = "{}-1-{}".format(train_month_start, train_year)
train_sample_period = 6
train_building = self.building
if self.building == 1:
self.appliances = self.appliances_redd1
elif self.building == 3:
self.appliances = self.appliances_redd3
train_datasource = DatasourceFactory.create_redd_datasource()
env = Environment(train_datasource, train_building, train_year, train_start_date, train_end_date,
train_sample_period, self.appliances)
self.populate_environment(env)
self.populate_train_parameters(env)