-
Notifications
You must be signed in to change notification settings - Fork 42
/
train.py
224 lines (203 loc) · 11.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import json
import math
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader, RandomSampler
from torch.utils.data.distributed import DistributedSampler
import deepspeed
from utils import print_trainable_parameters, print_rank_0, to_device, set_random_seed, save_model
from utils import DataCollator
from peft import LoraConfig, get_peft_model
from model import MODE
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboard import SummaryWriter
def parse_args():
parser = argparse.ArgumentParser()
# Model
parser.add_argument("--model_name_or_path", type=str, help="", required=True)
# DataSet
parser.add_argument("--train_path", default="", type=str, help="")
parser.add_argument("--max_len", type=int, default=1024, help="")
parser.add_argument("--max_src_len", type=int, default=256, help="")
parser.add_argument("--is_skip", action='store_true', help="")
# Train
parser.add_argument("--per_device_train_batch_size", type=int, default=16, help="")
parser.add_argument("--learning_rate", type=float, default=1e-3, help="")
parser.add_argument("--weight_decay", type=float, default=0.1, help="")
parser.add_argument("--num_train_epochs", type=int, default=1, help="")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="")
parser.add_argument("--warmup_ratio", type=float, default=0.1, help="")
parser.add_argument("--output_dir", type=str, default=None, help="")
parser.add_argument("--mode", type=str, default="glm2", help="")
parser.add_argument("--train_type", type=str, default="lora", help="")
parser.add_argument("--seed", type=int, default=1234, help="")
parser.add_argument("--local_rank", type=int, default=-1, help="")
parser.add_argument("--show_loss_step", default=10, type=int, help="")
parser.add_argument("--gradient_checkpointing", action='store_true', help="")
parser.add_argument("--save_model_step", default=None, type=int, help="")
# deepspeed features
parser.add_argument("--ds_file", type=str, default="ds_zero2.json", help="")
# LoRA
parser.add_argument("--lora_dim", type=int, default=8, help="")
parser.add_argument("--lora_alpha", type=int, default=30, help="")
parser.add_argument("--lora_dropout", type=float, default=0.1, help="")
parser.add_argument("--lora_module_name", type=str, default="query_key_value", help="")
# Freeze
parser.add_argument("--freeze_module_name", type=str, default="layers.27.", help="")
# P-tuning
parser.add_argument('--pre_seq_len', type=int, default=16, help='')
parser.add_argument('--prefix_projection', type=bool, default=True, help='')
parser = deepspeed.add_config_arguments(parser)
return parser.parse_args()
def main():
args = parse_args()
if args.local_rank == -1:
device = torch.device("cuda")
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
deepspeed.init_distributed()
args.global_rank = torch.distributed.get_rank()
with open(args.ds_file, "r", encoding="utf-8") as fh:
ds_config = json.load(fh)
ds_config['train_micro_batch_size_per_gpu'] = args.per_device_train_batch_size
ds_config[
'train_batch_size'] = args.per_device_train_batch_size * torch.distributed.get_world_size() * args.gradient_accumulation_steps
ds_config['gradient_accumulation_steps'] = args.gradient_accumulation_steps
if args.global_rank <= 0:
tb_write = SummaryWriter()
set_random_seed(args.seed)
torch.distributed.barrier()
# load tokenizer
tokenizer = MODE[args.mode]["tokenizer"].from_pretrained(args.model_name_or_path)
print_rank_0("tokenizer.pad_token: {}".format(tokenizer.pad_token), args.global_rank)
print_rank_0("tokenizer.eos_token: {}".format(tokenizer.eos_token), args.global_rank)
# load model
if args.train_type == "lora":
model = MODE[args.mode]["model"].from_pretrained(args.model_name_or_path)
lora_module_name = args.lora_module_name.split(",")
config = LoraConfig(r=args.lora_dim,
lora_alpha=args.lora_alpha,
target_modules=lora_module_name,
lora_dropout=args.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
inference_mode=False,
)
model = get_peft_model(model, config)
model.config.torch_dtype = torch.float32
elif args.train_type == "freeze":
model = MODE[args.mode]["model"].from_pretrained(args.model_name_or_path)
freeze_module_name = args.freeze_module_name.split(",")
for name, param in model.named_parameters():
if not any(nd in name for nd in freeze_module_name):
param.requires_grad = False
elif args.train_type == "ptuning":
config = MODE[args.mode]["config"].from_pretrained(args.model_name_or_path)
config.pre_seq_len = args.pre_seq_len
config.prefix_projection = args.prefix_projection
model = MODE[args.mode]["model"].from_pretrained(args.model_name_or_path, config=config)
for name, param in model.named_parameters():
if not any(nd in name for nd in ["prefix_encoder"]):
param.requires_grad = False
elif args.train_type == "all":
model = MODE[args.mode]["model"].from_pretrained(args.model_name_or_path)
else:
raise Exception("train_type无效")
# load data
train_dataset = MODE[args.mode]["dataset"](args.train_path, tokenizer, args.max_len, args.max_src_len, args.is_skip)
if args.local_rank == -1:
train_sampler = RandomSampler(train_dataset)
else:
train_sampler = DistributedSampler(train_dataset)
data_collator = DataCollator(tokenizer)
train_dataloader = DataLoader(train_dataset, collate_fn=data_collator, sampler=train_sampler,
batch_size=args.per_device_train_batch_size)
print_rank_0("len(train_dataloader) = {}".format(len(train_dataloader)), args.global_rank)
print_rank_0("len(train_dataset) = {}".format(len(train_dataset)), args.global_rank)
# load optimizer
ds_config["optimizer"]["params"]["lr"] = args.learning_rate
ds_config["optimizer"]["params"]["betas"] = (0.9, 0.95)
ds_config["optimizer"]["params"]["eps"] = 1e-8
ds_config["optimizer"]["params"]["weight_decay"] = 0.1
num_training_steps = args.num_train_epochs * math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
print_rank_0("num_training_steps = {}".format(num_training_steps), args.global_rank)
num_warmup_steps = int(args.warmup_ratio * num_training_steps)
print_rank_0("num_warmup_steps = {}".format(num_warmup_steps), args.global_rank)
ds_config["scheduler"]["params"]["total_num_steps"] = num_training_steps
ds_config["scheduler"]["params"]["warmup_num_steps"] = num_warmup_steps
ds_config["scheduler"]["params"]["warmup_max_lr"] = args.learning_rate
ds_config["scheduler"]["params"]["warmup_min_lr"] = args.learning_rate * 0.1
# print parameters
for name, param in model.named_parameters():
if param.requires_grad == True:
print_rank_0(name, 0)
print_trainable_parameters(model)
# gradient_checkpointing
if args.gradient_checkpointing:
model.gradient_checkpointing_enable()
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
# init deepspeed
model, optimizer, _, lr_scheduler = deepspeed.initialize(model=model, args=args, config=ds_config,
dist_init_required=True)
model.train()
tr_loss, logging_loss, min_loss = 0.0, 0.0, 0.0
global_step = 0
# train
for epoch in range(args.num_train_epochs):
print_rank_0("Beginning of Epoch {}/{}, Total Micro Batches {}".format(epoch + 1, args.num_train_epochs,
len(train_dataloader)), args.global_rank)
model.train()
for step, batch in tqdm(enumerate(train_dataloader), total=len(train_dataloader), unit="batch"):
batch = to_device(batch, device)
print(batch["input_ids"].shape)
outputs = model(**batch, use_cache=False)
loss = outputs.loss
tr_loss += loss.item()
model.backward(loss)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
model.step()
if (step + 1) % args.gradient_accumulation_steps == 0:
global_step += 1
# write loss
if global_step % args.show_loss_step == 0:
print_rank_0("Epoch: {}, step: {}, global_step:{}, loss: {}".format(epoch, step + 1, global_step,
(tr_loss - logging_loss) /
(
args.show_loss_step * args.gradient_accumulation_steps)
),
args.global_rank)
print_rank_0("step: {}-{}-{}".format(step + 1, global_step, model.global_steps), args.global_rank)
if args.global_rank <= 0:
tb_write.add_scalar("train_loss", (tr_loss - logging_loss) /
(args.show_loss_step * args.gradient_accumulation_steps), global_step)
logging_loss = tr_loss
# save model
if args.save_model_step is not None and global_step % args.save_model_step == 0:
# 若zero3训练,模型参数需要合并保存
if ds_config["zero_optimization"]["stage"] == 3:
state_dict = model._zero3_consolidated_16bit_state_dict()
if args.global_rank <= 0:
save_model(model, tokenizer, args.output_dir, f"epoch-{epoch + 1}-step-{global_step}",
state_dict)
else:
if args.global_rank <= 0:
save_model(model, tokenizer, args.output_dir, f"epoch-{epoch + 1}-step-{global_step}")
model.train()
if ds_config["zero_optimization"]["stage"] == 3:
state_dict = model._zero3_consolidated_16bit_state_dict()
if args.global_rank <= 0:
save_model(model, tokenizer, args.output_dir, f"epoch-{epoch + 1}-step-{global_step}", state_dict)
else:
if args.global_rank <= 0:
save_model(model, tokenizer, args.output_dir, f"epoch-{epoch + 1}-step-{global_step}")
if __name__ == "__main__":
main()