Skip to content

Code for our NeurIPS 2023 paper Improving Adversarial Transferability via Intermediate-level Perturbation Decay

Notifications You must be signed in to change notification settings

qizhangli/ILPD-attack

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ILPD-attack

Code for our NeurIPS 2023 paper Improving Adversarial Transferability via Intermediate-level Perturbation Decay.

Requirements

  • Python 3.8.8
  • PyTorch 1.12.0
  • Torchvision 0.13.0
  • timm 0.6.11

Datasets

Select images from ImageNet validation set, and write .csv file as following:

class_index, class, image_name
0,n01440764,ILSVRC2012_val_00002138.JPEG
2,n01484850,ILSVRC2012_val_00004329.JPEG
...

Attack and Evaluate

Attack

Perform attack:

python3 attack.py --model-name ${SOURCE_MODEL_NAME} --data-dir ${IMAGENET_VAL_DIR} --data-info-dir ${DATASET_CSV_FILE} --save-dir ${ADV_IMG_SAVE_DIR}

For --model-name, use the model name in timm. For instance, --model-name tv_resnet50.

Evaluate

Evaluate the success rate of adversarial examples:

python3 test.py --dir ${ADV_IMG_SAVE_DIR} --model-name ${VICTIM_MODEL_NAME} --log-dir {RESULTS_LOG_DIR}

For --model-name, use the model name in timm. Separate different victim models using commas. For instance, --model-name resnet50,vit_base_patch16_224.

Acknowledgements

The following resources are very helpful for our work:

Citation

Please cite our work in your publications if it helps your research:

@inproceedings{li2023improving,
  title={Improving Adversarial Transferability via Intermediate-level Perturbation Decay},
  author={Li, Qizhang and Guo, Yiwen and Zuo, Wangmeng and Chen, Hao},
  booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
  year={2023}
}

About

Code for our NeurIPS 2023 paper Improving Adversarial Transferability via Intermediate-level Perturbation Decay

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages