-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolo.py
66 lines (53 loc) · 1.97 KB
/
yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import cv2
import numpy as np
# Load Yolo
config = "./content/yolov3.cfg"
weights = "./content/yolov3.weights"
names = "./content/coco.names"
net = cv2.dnn.readNet(weights, config)
with open(names, "r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
def detect_person(frame, height, width, dict):
rects = []
# Detecting objects
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# Showing informations on the screen
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.2:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append((x, y, w, h))
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.8, 0.3)
for i in range(len(boxes)):
if i in indexes:
if check_inside(boxes[i], dict):
rects.append({'texts': "person " + str(round(confidences[i], 2)), 'rects': boxes[i]})
dict.extend(rects)
return dict
def check_inside(person, rects):
for r in rects:
x1, y1, w, h = r['rects']
x2, y2 = x1 + w, y1 + h
X, Y, W, H = person
if (x1 <= X <= x2) and (x1 <= (X + W) <= x2) and (y1 <= Y <= y2) and (y1 <= (Y + H) <= y2):
return False
return True