-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_tabfact.py
599 lines (526 loc) · 26.7 KB
/
run_tabfact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE."""
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import pandas as pd
from typing import List
import numpy as np
from datasets import load_dataset, load_metric
import transformers
from transformers import (
AutoConfig,
# AutoModelForSequenceClassification,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PretrainedConfig,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import is_main_process
from datasets import Features, Sequence, Value, ClassLabel, Array2D
from modeling_auto import AutoModelForSequenceClassification
from node import parse_program, batched_parse_program
from itertools import combinations, permutations
from APIs import APIs
task_to_keys = {
"cola": ("sentence", None),
"mnli": ("premise", "hypothesis"),
"mrpc": ("sentence1", "sentence2"),
"qnli": ("question", "sentence"),
"qqp": ("question1", "question2"),
"rte": ("sentence1", "sentence2"),
"sst2": ("sentence", None),
"stsb": ("sentence1", "sentence2"),
"wnli": ("sentence1", "sentence2"),
"tab_fact":("table_text", "statement")
}
logger = logging.getLogger(__name__)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
task_name: Optional[str] = field(
default=None,
metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
)
max_seq_length: int = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
pad_to_max_length: bool = field(
default=True,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the training data."}
)
validation_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the validation data."}
)
test_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the test data."}
)
simple_test_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the simple_test data."}
)
complex_test_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the complex_test data."}
)
small_test_file: Optional[str] = field(
default=None, metadata={"help": "A csv or a json file containing the small_test data."}
)
train_cache_file: Optional[str] = field(
default=None, metadata={"help": "train dataset cache file."}
)
validation_cache_file: Optional[str] = field(
default=None, metadata={"help": "validation dataset cache file."}
)
test_cache_file: Optional[str] = field(
default=None, metadata={"help": "test dataset cache file."}
)
simple_test_cache_file: Optional[str] = field(
default=None, metadata={"help": "simple_test dataset cache file."}
)
complex_test_cache_file: Optional[str] = field(
default=None, metadata={"help": "complex_test dataset cache file."}
)
small_test_cache_file: Optional[str] = field(
default=None, metadata={"help": "small_test dataset cache file."}
)
test_set: Optional[str] = field(
default="test", metadata={"help": "which test set is chosen, options: test, simple_test, complex_test, small_test"}
)
def __post_init__(self):
if self.task_name is not None:
self.task_name = self.task_name.lower()
if self.task_name not in task_to_keys.keys():
raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
elif self.train_file is None or self.validation_file is None:
raise ValueError("Need either a GLUE task or a training/validation file.")
else:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if is_main_process(training_args.local_rank) else logging.WARN,
)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
if data_args.task_name == 'tab_fact':
datasets = load_dataset('json', data_files={"train": data_args.train_file, "validation": data_args.validation_file, "test": data_args.test_file, "simple_test": data_args.simple_test_file, "complex_test": data_args.complex_test_file, "small_test": data_args.small_test_file})
if training_args.do_predict:
datasets_for_predict = datasets[data_args.test_set] # raw dataset without tokenization for prediction
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
if data_args.task_name == 'tab_fact':
num_labels = 2
is_regression = False
label_list = ['refuted', 'entailed']
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
# Preprocessing the datasets
if data_args.task_name is not None:
sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
else:
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
non_label_column_names = [name for name in datasets["train"].column_names if name != "label"]
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
sentence1_key, sentence2_key = "sentence1", "sentence2"
else:
if len(non_label_column_names) >= 2:
sentence1_key, sentence2_key = non_label_column_names[:2]
else:
sentence1_key, sentence2_key = non_label_column_names[0], None
# Padding strategy
if data_args.pad_to_max_length:
padding = "max_length"
max_length = data_args.max_seq_length
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
padding = False
max_length = None
# Some models have set the order of the labels to use, so let's make sure we do use it.
label_to_id = None
if (
model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
and data_args.task_name is not None
and is_regression
):
# Some have all caps in their config, some don't.
label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
label_to_id = {i: label_name_to_id[label_list[i]] for i in range(num_labels)}
else:
logger.warn(
"Your model seems to have been trained with labels, but they don't match the dataset: ",
f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
"\nIgnoring the model labels as a result.",
)
elif data_args.task_name is None:
label_to_id = {v: i for i, v in enumerate(label_list)}
def parse_table_text(table_text):
return '\n'.join(['#'.join(item) for item in table_text])
def get_map_tokenize(tokenizer, text, tokens):
text_list = text.strip().split()
temp = 0
map_list = []
token_list = []
for item in text_list:
map_list.append(list(range(temp,temp+len(tokenizer.tokenize(item)),1)))
token_list.append(item)
temp += len(tokenizer.tokenize(item))
assert temp == len(tokens)
temp_list = [(item1, item2) for item1, item2 in zip(map_list, token_list) if item2 not in ['{', '}', ';', '[CLS]', '[SEP]', '.']]
map_list = [item[0] for item in temp_list]
token_list = [item[1] for item in temp_list]
return map_list, token_list
def preprocess_function(example):
# Tokenize the texts
func_list = list(APIs.keys()) + ['within', 'not_within', 'uniq', 'hop']
type_map_dict = {'func':0, 'ent':1}
temp = parse_table_text(example[sentence1_key])
args = (
(temp, ) if sentence2_key is None else (temp, example[sentence2_key])
)
result = tokenizer(*args, padding=padding, max_length=max_length, truncation=True)
parsed_program_list = batched_parse_program(example['program_aug'])
program_id_list = []
for idx in range(len(parsed_program_list)):
program_id_list.extend([idx] * len(parsed_program_list[idx].word.split()))
to_tokenize_programs = '[CLS] ' + ' . '.join(example['program_aug']) + ' [SEP]'
to_tokenize_programs = to_tokenize_programs.replace(' ', ' ')
map_list, token_list = get_map_tokenize(tokenizer, to_tokenize_programs, tokenizer.tokenize(to_tokenize_programs))
assert len(program_id_list) == len(map_list) == len(token_list)
map_dict = dict()
for program_id, bert_id, token in zip(program_id_list, map_list, token_list):
if program_id not in map_dict:
map_dict[program_id] = bert_id
else:
map_dict[program_id].extend(bert_id)
assert len(map_dict) == len(parsed_program_list)
assert list(map_dict.keys()) == list(range(len(parsed_program_list)))
for item in parsed_program_list:
item.bert_index = map_dict[item.idx]
item.type = 'func' if item.word in func_list else 'ent'
parsed_program_list = [item for item in parsed_program_list if not item.bert_index[-1] >= max_length - len(tokenizer.tokenize(example[sentence2_key]))] # trun
# construct edges
edge_list = []
edge_list_ent = []
perm_list = list(permutations(range(len(parsed_program_list)), 2))
for i in range(len(perm_list)):
if parsed_program_list[perm_list[i][0]].parent == parsed_program_list[perm_list[i][1]]:
edge_list.append(tuple([item+1 for item in perm_list[i]]))
if parsed_program_list[perm_list[i][0]].word == parsed_program_list[perm_list[i][1]].word != 'all_rows' and parsed_program_list[perm_list[i][0]].type == parsed_program_list[perm_list[i][1]].type == 'ent':
edge_list_ent.append(tuple([item+1 for item in perm_list[i]]))
if len(edge_list) == 0:
to_tokenize_programs = '[CLS] [UNK] [SEP]'
# edge_list.append((0,0))
edge_list.append((1,1))
for i in range(1, edge_list[-1][0]):
if i not in [item[0] for item in edge_list]:
edge_list.append((i,0))
edge_list.sort(key=lambda x:x[0])
if len(edge_list) < 200:
for i in range(1,200):
if i not in [item[0] for item in edge_list]:
edge_list.append((i,i))
else:
edge_list = edge_list[:199]
edge_array = np.array(edge_list)
if len(edge_list_ent) == 0:
edge_list_ent.append((1,1))
if len(edge_list_ent) < 200:
for i in range(1,200):
if i not in [item[0] for item in edge_list_ent]:
edge_list_ent.append((i,i))
edge_list_ent = edge_list_ent[:199]
edge_array_ent = np.array(edge_list_ent)
args = (
(to_tokenize_programs[6:-6], ) if sentence2_key is None else (to_tokenize_programs[6:-6], example[sentence2_key])
)
result_temp = tokenizer(*args, padding=padding, max_length=max_length, truncation=True)
for key in result_temp:
result_temp[key+'_program'] = result_temp.pop(key)
result.update(result_temp)
sep_index_list = [key for key, value in list(enumerate(result['input_ids_program'])) if value == 102]
assert len(sep_index_list) == 2
statement_start_index_list = [sep_index_list[0]+1]
statement_len_list = [sep_index_list[1] - sep_index_list[0]-1]
result['statement_start_index'] = statement_start_index_list # statement start index
result['statement_len_index'] = statement_len_list # statement len
edge_first_index = [item[0] for item in edge_array]
edge_second_index = [item[1] for item in edge_array]
result['edge_first_index'] = edge_first_index # start index of edge
result['edge_second_index'] = edge_second_index # end index of edge
assert list(range(1, 200)) == edge_first_index
edge_first_index_ent = [item[0] for item in edge_array_ent]
edge_second_index_ent = [item[1] for item in edge_array_ent]
result['edge_first_index_ent'] = edge_first_index_ent # start index of edge
result['edge_second_index_ent'] = edge_second_index_ent # end index of edge
assert len(edge_first_index_ent) == 199
node_start_index_list = [0] + [item.bert_index[0] for item in parsed_program_list]
node_len_list = [0] + [len(item.bert_index) for item in parsed_program_list]
type_list = ['ent'] + [item.type for item in parsed_program_list]
if len(node_start_index_list) < 200: # max node num: 200
node_start_index_list.extend([0] * (200 - len(node_start_index_list)))
node_len_list.extend([0] * (200 - len(node_len_list)))
type_list.extend(['ent'] * (200 - len(type_list)))
else:
node_start_index_list = node_start_index_list[:200]
node_len_list = node_len_list[:200]
type_list = type_list[:200]
node_len_mask_list = []
for i in range(200):
if node_len_list[i] < 10: # assert all node token len is <= 10
node_len_mask_list.append(list(range(node_start_index_list[i], node_len_list[i]+node_start_index_list[i])) + [0] * (10 - node_len_list[i]))
else:
node_len_mask_list.append(list(range(node_start_index_list[i], 10+node_start_index_list[i])))
result['node_len_mask'] = node_len_mask_list
result['type_id'] = [type_map_dict[item] for item in type_list]
# Map labels to IDs (not necessary for GLUE tasks)
if label_to_id is not None and "label" in example:
result["label"] = [label_to_id[l] for l in example["label"]]
return result
if 'tapas' in model_args.model_name_or_path and data_args.task_name == 'tab_fact':
def _format_pd_table(table_text: List) -> pd.DataFrame:
df = pd.DataFrame(columns=table_text[0], data=table_text[1:])
df = df.astype(str)
return df
features = Features({
'attention_mask': Sequence(Value(dtype='int64')),
'input_ids': Sequence(feature=Value(dtype='int64')),
'label': ClassLabel(names=['refuted', 'entailed']),
'statement': Value(dtype='string'),
'table_caption': Value(dtype='string'),
'table_id': Value(dtype='string'),
'token_type_ids': Array2D(dtype="int64", shape=(512, 7))
})
datasets = datasets.map(
lambda e: tokenizer(table=_format_pd_table(e['table_text']), queries=e['statement'],
truncation=True,
padding='max_length'),
features=features,
remove_columns=['table_text'],
)
else:
datasets = datasets.map(preprocess_function, batched=False, load_from_cache_file=not data_args.overwrite_cache, cache_file_names={'train':data_args.train_cache_file, 'validation':data_args.validation_cache_file, 'test':data_args.test_cache_file, 'simple_test':data_args.simple_test_cache_file, 'complex_test':data_args.complex_test_cache_file, 'small_test':data_args.small_test_cache_file})
if data_args.task_name is not None and training_args.do_train:
train_dataset = datasets["train"]
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
if data_args.task_name is not None and training_args.do_eval:
eval_dataset = datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
if data_args.task_name is not None and training_args.do_predict:
test_dataset = datasets["test_matched" if data_args.task_name == "mnli" else data_args.test_set]
# Get the metric function
if data_args.task_name is not None:
metric = load_metric("accuracy")
# TODO: When datasets metrics include regular accuracy, make an else here and remove special branch from
# compute_metrics
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
if data_args.task_name is not None:
result = metric.compute(predictions=preds, references=p.label_ids)
if len(result) > 1:
result["combined_score"] = np.mean(list(result.values())).item()
return result
elif is_regression:
return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
else:
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
# train_dataset=train_dataset,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
data_collator=default_data_collator if data_args.pad_to_max_length else None,
)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
trainer.save_model() # Saves the tokenizer too for easy upload
# Evaluation
eval_results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
# Loop to handle MNLI double evaluation (matched, mis-matched)
tasks = [data_args.task_name]
eval_datasets = [eval_dataset]
if data_args.task_name == "mnli":
tasks.append("mnli-mm")
eval_datasets.append(datasets["validation_mismatched"])
for eval_dataset, task in zip(eval_datasets, tasks):
eval_result = trainer.evaluate(eval_dataset=eval_dataset)
output_eval_file = os.path.join(training_args.output_dir, f"eval_results_{task}.txt")
if trainer.is_world_process_zero():
with open(output_eval_file, "w") as writer:
logger.info(f"***** Eval results {task} *****")
for key, value in eval_result.items():
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
eval_results.update(eval_result)
if training_args.do_predict:
logger.info("*** Test ***")
# Loop to handle MNLI double evaluation (matched, mis-matched)
tasks = [data_args.task_name]
test_datasets = [test_dataset]
if data_args.task_name == "mnli":
tasks.append("mnli-mm")
test_datasets.append(datasets["test_mismatched"])
# test_evaluation
for test_dataset, task in zip(test_datasets, tasks):
test_result = trainer.evaluate(eval_dataset=test_dataset)
output_test_file = os.path.join(training_args.output_dir, f"test_eval_results_{task}.txt")
if trainer.is_world_process_zero():
with open(output_test_file, "w") as writer:
logger.info(f"***** Test results {task} *****")
for key, value in test_result.items():
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
eval_results.update(test_result)
for test_dataset, task in zip(test_datasets, tasks):
# Removing the `label` columns because it contains -1 and Trainer won't like that.
test_dataset.remove_columns_("label")
predictions = trainer.predict(test_dataset=test_dataset).predictions
predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
output_test_file = os.path.join(training_args.output_dir, f"test_results_prediction_{task}.txt")
if trainer.is_world_process_zero():
with open(output_test_file, "w") as writer:
logger.info(f"***** Test results {task} *****")
writer.write("table_id\ttable_caption\tstatement\tgold\tprediction\n")
for pred, dat in zip(predictions, datasets_for_predict):
table_id, table_caption, statement, gold_label = dat['table_id'], dat['table_caption'], dat['statement'], dat['label']
if is_regression:
writer.write(f"{table_id}\t{table_caption}\t{statement}\t{gold_label}\t{pred:3.3f}\n")
else:
pred = str(pred)
writer.write(f"{table_id}\t{table_caption}\t{statement}\t{gold_label}\t{pred}\n")
return eval_results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()