-
Notifications
You must be signed in to change notification settings - Fork 1k
/
engine_processor.py
600 lines (528 loc) · 25.3 KB
/
engine_processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
# Copyright 2020 The Cirq Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datetime
from typing import Dict, List, Optional, Sequence, TYPE_CHECKING, Union
from google.protobuf import any_pb2
import cirq
from cirq_google.cloud import quantum
from cirq_google.api import v2
from cirq_google.devices import grid_device
from cirq_google.engine import (
abstract_processor,
calibration,
calibration_layer,
processor_sampler,
util,
)
if TYPE_CHECKING:
import cirq_google as cg
import cirq_google.engine.engine as engine_base
import cirq_google.engine.abstract_job as abstract_job
def _date_to_timestamp(
union_time: Optional[Union[datetime.datetime, datetime.date, int]]
) -> Optional[int]:
if isinstance(union_time, int):
return union_time
elif isinstance(union_time, datetime.datetime):
return int(union_time.timestamp())
elif isinstance(union_time, datetime.date):
return int(datetime.datetime.combine(union_time, datetime.datetime.min.time()).timestamp())
return None
def _fix_deprecated_seconds_kwargs(kwargs):
if 'earliest_timestamp_seconds' in kwargs:
kwargs['earliest_timestamp'] = kwargs['earliest_timestamp_seconds']
del kwargs['earliest_timestamp_seconds']
if 'latest_timestamp_seconds' in kwargs:
kwargs['latest_timestamp'] = kwargs['latest_timestamp_seconds']
del kwargs['latest_timestamp_seconds']
return kwargs
class EngineProcessor(abstract_processor.AbstractProcessor):
"""A processor available via the Quantum Engine API.
Attributes:
project_id: A project_id of the parent Google Cloud Project.
processor_id: Unique ID of the processor.
"""
def __init__(
self,
project_id: str,
processor_id: str,
context: 'engine_base.EngineContext',
_processor: Optional[quantum.QuantumProcessor] = None,
) -> None:
"""A processor available via the engine.
Args:
project_id: A project_id of the parent Google Cloud Project.
processor_id: Unique ID of the processor.
context: Engine configuration and context to use.
_processor: The optional current processor state.
"""
self.project_id = project_id
self.processor_id = processor_id
self.context = context
self._processor = _processor
def __repr__(self) -> str:
return (
f'<EngineProcessor: processor_id={self.processor_id!r}, '
f'project_id={self.project_id!r}>'
)
def engine(self) -> 'engine_base.Engine':
"""Returns the parent Engine object.
Returns:
The program's parent Engine.
"""
import cirq_google.engine.engine as engine_base
return engine_base.Engine(self.project_id, context=self.context)
def get_sampler(self) -> 'cg.engine.ProcessorSampler':
"""Returns a sampler backed by the engine.
Returns:
A `cirq.Sampler` instance (specifically a `engine_sampler.ProcessorSampler`
that will send circuits to the Quantum Computing Service
when sampled.1
"""
return processor_sampler.ProcessorSampler(processor=self)
async def run_batch_async(
self,
programs: Sequence[cirq.AbstractCircuit],
program_id: Optional[str] = None,
job_id: Optional[str] = None,
params_list: Sequence[cirq.Sweepable] = None,
repetitions: int = 1,
program_description: Optional[str] = None,
program_labels: Optional[Dict[str, str]] = None,
job_description: Optional[str] = None,
job_labels: Optional[Dict[str, str]] = None,
) -> 'abstract_job.AbstractJob':
"""Runs the supplied Circuits on this processor.
This will combine each Circuit provided in `programs` into
a BatchProgram. Each circuit will pair with the associated
parameter sweep provided in the `params_list`. The number of
programs is required to match the number of sweeps.
This method does not block until a result is returned. However,
no results will be available until the entire batch is complete.
Args:
programs: The Circuits to execute as a batch.
program_id: A user-provided identifier for the program. This must
be unique within the Google Cloud project being used. If this
parameter is not provided, a random id of the format
'prog-################YYMMDD' will be generated, where # is
alphanumeric and YYMMDD is the current year, month, and day.
job_id: Job identifier to use. If this is not provided, a random id
of the format 'job-################YYMMDD' will be generated,
where # is alphanumeric and YYMMDD is the current year, month,
and day.
params_list: Parameter sweeps to use with the circuits. The number
of sweeps should match the number of circuits and will be
paired in order with the circuits. If this is None, it is
assumed that the circuits are not parameterized and do not
require sweeps.
repetitions: Number of circuit repetitions to run. Each sweep value
of each circuit in the batch will run with the same repetitions.
program_description: An optional description to set on the program.
program_labels: Optional set of labels to set on the program.
job_description: An optional description to set on the job.
job_labels: Optional set of labels to set on the job.
Returns:
An `abstract_job.AbstractJob`. If this is iterated over it returns
a list of `cirq.Result`. All Results for the first circuit are listed
first, then the Results for the second, etc. The Results
for a circuit are listed in the order imposed by the associated
parameter sweep.
"""
return await self.engine().run_batch_async(
programs=programs,
processor_ids=[self.processor_id],
program_id=program_id,
params_list=list(params_list) if params_list is not None else None,
repetitions=repetitions,
program_description=program_description,
program_labels=program_labels,
job_description=job_description,
job_labels=job_labels,
)
async def run_calibration_async(
self,
layers: List[calibration_layer.CalibrationLayer],
program_id: Optional[str] = None,
job_id: Optional[str] = None,
program_description: Optional[str] = None,
program_labels: Optional[Dict[str, str]] = None,
job_description: Optional[str] = None,
job_labels: Optional[Dict[str, str]] = None,
) -> 'abstract_job.AbstractJob':
"""Runs the specified calibrations on the processor.
Each calibration will be specified by a `CalibrationLayer`
that contains the type of the calibrations to run, a `Circuit`
to optimize, and any arguments needed by the calibration routine.
Arguments and circuits needed for each layer will vary based on the
calibration type. However, the typical calibration routine may
require a single moment defining the gates to optimize, for example.
Note: this is an experimental API and is not yet fully supported
for all users.
Args:
layers: The layers of calibration to execute as a batch.
program_id: A user-provided identifier for the program. This must
be unique within the Google Cloud project being used. If this
parameter is not provided, a random id of the format
'calibration-################YYMMDD' will be generated,
where # is alphanumeric and YYMMDD is the current year, month,
and day.
job_id: Job identifier to use. If this is not provided, a random id
of the format 'calibration-################YYMMDD' will be
generated, where # is alphanumeric and YYMMDD is the current
year, month, and day.
program_description: An optional description to set on the program.
program_labels: Optional set of labels to set on the program.
job_description: An optional description to set on the job.
job_labels: Optional set of labels to set on the job. By defauly,
this will add a 'calibration' label to the job.
Returns:
An AbstractJob whose results can be retrieved by calling
calibration_results().
"""
return await self.engine().run_calibration_async(
layers=layers,
processor_id=self.processor_id,
program_id=program_id,
job_id=job_id,
program_description=program_description,
program_labels=program_labels,
job_description=job_description,
job_labels=job_labels,
)
async def run_sweep_async(
self,
program: cirq.AbstractCircuit,
program_id: Optional[str] = None,
job_id: Optional[str] = None,
params: cirq.Sweepable = None,
repetitions: int = 1,
program_description: Optional[str] = None,
program_labels: Optional[Dict[str, str]] = None,
job_description: Optional[str] = None,
job_labels: Optional[Dict[str, str]] = None,
) -> 'abstract_job.AbstractJob':
"""Runs the supplied Circuit on this processor.
In contrast to run, this runs across multiple parameter sweeps, and
does not block until a result is returned.
Args:
program: The Circuit to execute. If a circuit is
provided, a moment by moment schedule will be used.
program_id: A user-provided identifier for the program. This must
be unique within the Google Cloud project being used. If this
parameter is not provided, a random id of the format
'prog-################YYMMDD' will be generated, where # is
alphanumeric and YYMMDD is the current year, month, and day.
job_id: Job identifier to use. If this is not provided, a random id
of the format 'job-################YYMMDD' will be generated,
where # is alphanumeric and YYMMDD is the current year, month,
and day.
params: Parameters to run with the program.
repetitions: The number of circuit repetitions to run.
program_description: An optional description to set on the program.
program_labels: Optional set of labels to set on the program.
job_description: An optional description to set on the job.
job_labels: Optional set of labels to set on the job.
Returns:
An AbstractJob. If this is iterated over it returns a list of
`cirq.Result`, one for each parameter sweep.
"""
return await self.engine().run_sweep_async(
processor_ids=[self.processor_id],
program=program,
program_id=program_id,
job_id=job_id,
params=params,
repetitions=repetitions,
program_description=program_description,
program_labels=program_labels,
job_description=job_description,
job_labels=job_labels,
)
def _inner_processor(self) -> quantum.QuantumProcessor:
if self._processor is None:
self._processor = self.context.client.get_processor(self.project_id, self.processor_id)
return self._processor
def health(self) -> str:
"""Returns the current health of processor."""
self._processor = self.context.client.get_processor(self.project_id, self.processor_id)
return self._processor.health.name
def expected_down_time(self) -> 'Optional[datetime.datetime]':
"""Returns the start of the next expected down time of the processor, if
set."""
return self._inner_processor().expected_down_time
def expected_recovery_time(self) -> 'Optional[datetime.datetime]':
"""Returns the expected the processor should be available, if set."""
return self._inner_processor().expected_recovery_time
def supported_languages(self) -> List[str]:
"""Returns the list of processor supported program languages."""
return self._inner_processor().supported_languages
def get_device_specification(self) -> Optional[v2.device_pb2.DeviceSpecification]:
"""Returns a device specification proto for use in determining
information about the device.
Returns:
Device specification proto if present.
"""
device_spec = self._inner_processor().device_spec
if device_spec and device_spec.type_url:
return util.unpack_any(device_spec, v2.device_pb2.DeviceSpecification())
else:
return None
def get_device(self) -> cirq.Device:
"""Returns a `Device` created from the processor's device specification.
This method queries the processor to retrieve the device specification,
which is then use to create a `cirq_google.GridDevice` that will
validate that operations are supported and use the correct qubits.
"""
spec = self.get_device_specification()
if not spec:
raise ValueError('Processor does not have a device specification')
return grid_device.GridDevice.from_proto(spec)
@cirq._compat.deprecated_parameter(
deadline='v1.0',
fix='Change earliest_timestamp_seconds to earliest_timestamp.',
parameter_desc='earliest_timestamp_seconds',
match=lambda args, kwargs: 'earliest_timestamp_seconds' in kwargs,
rewrite=lambda args, kwargs: (args, _fix_deprecated_seconds_kwargs(kwargs)),
)
@cirq._compat.deprecated_parameter(
deadline='v1.0',
fix='Change latest_timestamp_seconds to latest_timestamp.',
parameter_desc='latest_timestamp_seconds',
match=lambda args, kwargs: 'latest_timestamp_seconds' in kwargs,
rewrite=lambda args, kwargs: (args, _fix_deprecated_seconds_kwargs(kwargs)),
)
def list_calibrations(
self,
earliest_timestamp: Optional[Union[datetime.datetime, datetime.date, int]] = None,
latest_timestamp: Optional[Union[datetime.datetime, datetime.date, int]] = None,
) -> List[calibration.Calibration]:
"""Retrieve metadata about a specific calibration run.
Params:
earliest_timestamp_seconds: The earliest timestamp of a calibration
to return in UTC.
latest_timestamp_seconds: The latest timestamp of a calibration to
return in UTC.
Returns:
The list of calibration data with the most recent first.
"""
earliest_timestamp_seconds = _date_to_timestamp(earliest_timestamp)
latest_timestamp_seconds = _date_to_timestamp(latest_timestamp)
if earliest_timestamp_seconds and latest_timestamp_seconds:
filter_str = 'timestamp >= %d AND timestamp <= %d' % (
earliest_timestamp_seconds,
latest_timestamp_seconds,
)
elif earliest_timestamp_seconds:
filter_str = 'timestamp >= %d' % earliest_timestamp_seconds
elif latest_timestamp_seconds:
filter_str = 'timestamp <= %d' % latest_timestamp_seconds
else:
filter_str = ''
response = self.context.client.list_calibrations(
self.project_id, self.processor_id, filter_str
)
return [_to_calibration(c.data) for c in list(response)]
def get_calibration(self, calibration_timestamp_seconds: int) -> calibration.Calibration:
"""Retrieve metadata about a specific calibration run.
Params:
calibration_timestamp_seconds: The timestamp of the calibration in
seconds since epoch.
Returns:
The calibration data.
"""
response = self.context.client.get_calibration(
self.project_id, self.processor_id, calibration_timestamp_seconds
)
return _to_calibration(response.data)
def get_current_calibration(self) -> Optional[calibration.Calibration]:
"""Returns metadata about the current calibration for a processor.
Returns:
The calibration data or None if there is no current calibration.
"""
response = self.context.client.get_current_calibration(self.project_id, self.processor_id)
if response is not None:
return _to_calibration(response.data)
else:
return None
def create_reservation(
self,
start_time: datetime.datetime,
end_time: datetime.datetime,
whitelisted_users: Optional[List[str]] = None,
):
"""Creates a reservation on this processor.
Args:
start_time: the starting date/time of the reservation.
end_time: the ending date/time of the reservation.
whitelisted_users: a list of emails that are allowed
to send programs during this reservation (in addition to users
with permission "quantum.reservations.use" on the project).
"""
response = self.context.client.create_reservation(
self.project_id, self.processor_id, start_time, end_time, whitelisted_users
)
return response
def _delete_reservation(self, reservation_id: str):
"""Delete a reservation.
This will only work for reservations outside the processor's
schedule freeze window. If you are not sure whether the reservation
falls within this window, use remove_reservation
"""
return self.context.client.delete_reservation(
self.project_id, self.processor_id, reservation_id
)
def _cancel_reservation(self, reservation_id: str):
"""Cancel a reservation.
This will only work for reservations inside the processor's
schedule freeze window. If you are not sure whether the reservation
falls within this window, use remove_reservation
"""
return self.context.client.cancel_reservation(
self.project_id, self.processor_id, reservation_id
)
def remove_reservation(self, reservation_id: str):
reservation = self.get_reservation(reservation_id)
if reservation is None:
raise ValueError(f'Reservation id {reservation_id} not found.')
proc = self._inner_processor()
if proc is not None:
freeze = proc.schedule_frozen_period
else:
freeze = None
if not freeze:
raise ValueError(
'Cannot determine freeze_schedule from processor.'
'Call _cancel_reservation or _delete_reservation.'
)
secs_until = reservation.start_time.timestamp() - datetime.datetime.now().timestamp()
if secs_until > freeze.total_seconds():
return self._delete_reservation(reservation_id)
else:
return self._cancel_reservation(reservation_id)
def get_reservation(self, reservation_id: str) -> Optional[quantum.QuantumReservation]:
"""Retrieve a reservation given its id."""
return self.context.client.get_reservation(
self.project_id, self.processor_id, reservation_id
)
def update_reservation(
self,
reservation_id: str,
start_time: datetime.datetime = None,
end_time: datetime.datetime = None,
whitelisted_users: List[str] = None,
):
"""Updates a reservation with new information.
Updates a reservation with a new start date, end date, or
list of additional users. For each field, it the argument is left as
None, it will not be updated.
"""
return self.context.client.update_reservation(
self.project_id,
self.processor_id,
reservation_id,
start=start_time,
end=end_time,
whitelisted_users=whitelisted_users,
)
def list_reservations(
self,
from_time: Union[None, datetime.datetime, datetime.timedelta] = datetime.timedelta(),
to_time: Union[None, datetime.datetime, datetime.timedelta] = datetime.timedelta(weeks=2),
) -> List[quantum.QuantumTimeSlot]:
"""Retrieves the reservations from a processor.
Only reservations from this processor and project will be
returned. The schedule may be filtered by starting and ending time.
Args:
from_time: Filters the returned reservations to only include entries
that end no earlier than the given value. Specified either as an
absolute time (datetime.datetime) or as a time relative to now
(datetime.timedelta). Defaults to now (a relative time of 0).
Set to None to omit this filter.
to_time: Filters the returned reservations to only include entries
that start no later than the given value. Specified either as an
absolute time (datetime.datetime) or as a time relative to now
(datetime.timedelta). Defaults to two weeks from now (a relative
time of two weeks). Set to None to omit this filter.
Returns:
A list of reservations.
"""
filters = _to_date_time_filters(from_time, to_time)
filter_str = ' AND '.join(filters)
return self.context.client.list_reservations(self.project_id, self.processor_id, filter_str)
def get_schedule(
self,
from_time: Union[None, datetime.datetime, datetime.timedelta] = datetime.timedelta(),
to_time: Union[None, datetime.datetime, datetime.timedelta] = datetime.timedelta(weeks=2),
time_slot_type: Optional[quantum.QuantumTimeSlot.TimeSlotType] = None,
) -> List[quantum.QuantumTimeSlot]:
"""Retrieves the schedule for a processor.
The schedule may be filtered by time.
Time slot type will be supported in the future.
Args:
from_time: Filters the returned schedule to only include entries
that end no earlier than the given value. Specified either as an
absolute time (datetime.datetime) or as a time relative to now
(datetime.timedelta). Defaults to now (a relative time of 0).
Set to None to omit this filter.
to_time: Filters the returned schedule to only include entries
that start no later than the given value. Specified either as an
absolute time (datetime.datetime) or as a time relative to now
(datetime.timedelta). Defaults to two weeks from now (a relative
time of two weeks). Set to None to omit this filter.
time_slot_type: Filters the returned schedule to only include
entries with a given type (e.g. maintenance, open swim).
Defaults to None. Set to None to omit this filter.
Returns:
Schedule time slots.
"""
filters = _to_date_time_filters(from_time, to_time)
if time_slot_type is not None:
filters.append(f'time_slot_type = {time_slot_type.name}')
filter_str = ' AND '.join(filters)
return self.context.client.list_time_slots(self.project_id, self.processor_id, filter_str)
def __str__(self):
return (
f"EngineProcessor(project_id={self.project_id!r}, "
f"processor_id={self.processor_id!r})"
)
def _to_calibration(calibration_any: any_pb2.Any) -> calibration.Calibration:
metrics = v2.metrics_pb2.MetricsSnapshot.FromString(calibration_any.value)
return calibration.Calibration(metrics)
def _to_date_time_filters(
from_time: Union[None, datetime.datetime, datetime.timedelta],
to_time: Union[None, datetime.datetime, datetime.timedelta],
) -> List[str]:
now = datetime.datetime.now()
if from_time is None:
start_time = None
elif isinstance(from_time, datetime.timedelta):
start_time = now + from_time
elif isinstance(from_time, datetime.datetime):
start_time = from_time
else:
raise ValueError(f"Don't understand from_time of type {type(from_time)}.")
if to_time is None:
end_time = None
elif isinstance(to_time, datetime.timedelta):
end_time = now + to_time
elif isinstance(to_time, datetime.datetime):
end_time = to_time
else:
raise ValueError(f"Don't understand to_time of type {type(to_time)}.")
filters = []
if end_time is not None:
filters.append(f'start_time < {int(end_time.timestamp())}')
if start_time is not None:
filters.append(f'end_time > {int(start_time.timestamp())}')
return filters