diff --git a/docs/tutorials/rabi_oscillations.ipynb b/docs/tutorials/rabi_oscillations.ipynb
index a989c0a4eac..6686a3a37a3 100644
--- a/docs/tutorials/rabi_oscillations.ipynb
+++ b/docs/tutorials/rabi_oscillations.ipynb
@@ -72,10 +72,12 @@
"source": [
"try:\n",
" import cirq\n",
+ " import cirq_google\n",
"except ImportError:\n",
" print(\"installing cirq...\")\n",
- " !pip install --quiet cirq\n",
- " print(\"installed cirq.\")"
+ " !pip install --quiet cirq-google\n",
+ " print(\"installed cirq.\")\n",
+ " import cirq\n"
]
},
{
@@ -117,42 +119,7 @@
"metadata": {
"id": "rKoMKEw46XY7"
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- " (0, 5)───(0, 6)\n",
- " │ │\n",
- " │ │\n",
- " (1, 4)───(1, 5)───(1, 6)───(1, 7)\n",
- " │ │ │ │\n",
- " │ │ │ │\n",
- " (2, 3)───(2, 4)───(2, 5)───(2, 6)───(2, 7)───(2, 8)\n",
- " │ │ │ │ │ │\n",
- " │ │ │ │ │ │\n",
- " (3, 2)───(3, 3)───(3, 4)───(3, 5)───(3, 6)───(3, 7)───(3, 8)───(3, 9)\n",
- " │ │ │ │ │ │ │ │\n",
- " │ │ │ │ │ │ │ │\n",
- " (4, 1)───(4, 2)───(4, 3)───(4, 4)───(4, 5)───(4, 6)───(4, 7)───(4, 8)───(4, 9)\n",
- " │ │ │ │ │ │ │ │\n",
- " │ │ │ │ │ │ │ │\n",
- "(5, 0)───(5, 1)───(5, 2)───(5, 3)───(5, 4)───(5, 5)───(5, 6)───(5, 7)───(5, 8)\n",
- " │ │ │ │ │ │ │\n",
- " │ │ │ │ │ │ │\n",
- " (6, 1)───(6, 2)───(6, 3)───(6, 4)───(6, 5)───(6, 6)───(6, 7)\n",
- " │ │ │ │ │\n",
- " │ │ │ │ │\n",
- " (7, 2)───(7, 3)───(7, 4)───(7, 5)───(7, 6)\n",
- " │ │ │\n",
- " │ │ │\n",
- " (8, 3)───(8, 4)───(8, 5)\n",
- " │\n",
- " │\n",
- " (9, 4)\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"import cirq\n",
"import cirq_google\n",
@@ -195,21 +162,7 @@
"metadata": {
"id": "niH8sty--Hu0"
},
- "outputs": [
- {
- "data": {
- "image/svg+xml": "",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 4,
- "metadata": {
- "tags": []
- },
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"from cirq.contrib.svg import SVGCircuit\n",
"\n",
@@ -238,97 +191,7 @@
"metadata": {
"id": "IqUn4uv9_IVo"
},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " out | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 5 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 6 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 7 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 8 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 9 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " out\n",
- "0 1\n",
- "1 0\n",
- "2 0\n",
- "3 1\n",
- "4 1\n",
- "5 0\n",
- "6 1\n",
- "7 1\n",
- "8 0\n",
- "9 1"
- ]
- },
- "execution_count": 5,
- "metadata": {
- "tags": []
- },
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"sim = cirq.Simulator()\n",
"samples = sim.sample(my_circuit, repetitions=10)\n",
@@ -350,26 +213,14 @@
"metadata": {
"id": "83OqpReyHyUK"
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "State before measurement:\n",
- "measurements: (no measurements)\n",
- "output vector: 0.707|0⟩ - 0.707j|1⟩\n",
- "State after measurement:\n",
- "measurements: out=1\n",
- "output vector: -1j|1⟩\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"state_vector_before_measurement = sim.simulate(my_circuit[:-1])\n",
"sampled_state_vector_after_measurement = sim.simulate(my_circuit)\n",
"\n",
"print(f'State before measurement:')\n",
"print(state_vector_before_measurement)\n",
+ "print()\n",
"print(f'State after measurement:')\n",
"print(sampled_state_vector_after_measurement)\n"
]
@@ -390,22 +241,7 @@
"metadata": {
"id": "P7VW97ugWE_h"
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Noisy state after measurement:measurements: out=0\n",
- "final density matrix:\n",
- "[[0.9333334 +0.j 0. +0.j]\n",
- " [0. +0.j 0.06666666+0.j]]\n",
- "Noisy state before measurement:measurements: (no measurements)\n",
- "final density matrix:\n",
- "[[0.50012845+0.j 0. +0.43333334j]\n",
- " [0. -0.43333334j 0.49987155+0.j ]]\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"noisy_sim = cirq.DensityMatrixSimulator(noise=cirq.depolarize(0.1))\n",
"noisy_post_measurement_state = noisy_sim.simulate(my_circuit)\n",
@@ -432,21 +268,7 @@
"metadata": {
"id": "n6h6yuyGM58s"
},
- "outputs": [
- {
- "data": {
- "image/svg+xml": "",
- "text/plain": [
- ""
- ]
- },
- "execution_count": 8,
- "metadata": {
- "tags": []
- },
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"import sympy\n",
"theta = sympy.Symbol('theta')\n",
@@ -475,108 +297,7 @@
"metadata": {
"id": "SMdz-yAZSwrU"
},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " theta | \n",
- " out | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 2 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 2 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 2 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 2 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 2 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 5 | \n",
- " 2 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 6 | \n",
- " 2 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 7 | \n",
- " 2 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 8 | \n",
- " 2 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 9 | \n",
- " 2 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " theta out\n",
- "0 2 1\n",
- "1 2 0\n",
- "2 2 1\n",
- "3 2 1\n",
- "4 2 1\n",
- "5 2 0\n",
- "6 2 1\n",
- "7 2 0\n",
- "8 2 1\n",
- "9 2 0"
- ]
- },
- "execution_count": 9,
- "metadata": {
- "tags": []
- },
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"samples_at_theta_equals_2 = sim.sample(\n",
" parameterized_circuit, \n",
@@ -600,168 +321,7 @@
"metadata": {
"id": "0zjZxGY6hIsu"
},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " theta | \n",
- " out | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 0.500 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 0.500 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 0.500 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 0.500 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 0.500 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 5 | \n",
- " 0.500 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 6 | \n",
- " 0.500 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 7 | \n",
- " 0.500 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 8 | \n",
- " 0.500 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 9 | \n",
- " 0.500 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 0 | \n",
- " 3.141 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 3.141 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 3.141 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 3.141 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 3.141 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 5 | \n",
- " 3.141 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 6 | \n",
- " 3.141 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 7 | \n",
- " 3.141 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 8 | \n",
- " 3.141 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 9 | \n",
- " 3.141 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " theta out\n",
- "0 0.500 0\n",
- "1 0.500 0\n",
- "2 0.500 0\n",
- "3 0.500 0\n",
- "4 0.500 0\n",
- "5 0.500 0\n",
- "6 0.500 0\n",
- "7 0.500 0\n",
- "8 0.500 0\n",
- "9 0.500 0\n",
- "0 3.141 1\n",
- "1 3.141 1\n",
- "2 3.141 1\n",
- "3 3.141 1\n",
- "4 3.141 1\n",
- "5 3.141 1\n",
- "6 3.141 1\n",
- "7 3.141 1\n",
- "8 3.141 1\n",
- "9 3.141 1"
- ]
- },
- "execution_count": 10,
- "metadata": {
- "tags": []
- },
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"samples_at_multiple_theta = sim.sample(\n",
" parameterized_circuit, \n",
@@ -785,198 +345,7 @@
"metadata": {
"id": "8lCb3049hqXn"
},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " theta | \n",
- " out | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 0.000000 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 0.000000 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 0.000000 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 0.000000 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 0.000000 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 0 | \n",
- " 0.785397 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 0.785397 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 0.785397 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 0.785397 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 0.785397 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 0 | \n",
- " 1.570795 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 1.570795 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 1.570795 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 1.570795 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 1.570795 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 0 | \n",
- " 2.356192 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 2.356192 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 2.356192 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 2.356192 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 2.356192 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 0 | \n",
- " 3.141590 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 3.141590 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 3.141590 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 3.141590 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 3.141590 | \n",
- " 1 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " theta out\n",
- "0 0.000000 0\n",
- "1 0.000000 0\n",
- "2 0.000000 0\n",
- "3 0.000000 0\n",
- "4 0.000000 0\n",
- "0 0.785397 0\n",
- "1 0.785397 0\n",
- "2 0.785397 0\n",
- "3 0.785397 0\n",
- "4 0.785397 0\n",
- "0 1.570795 1\n",
- "1 1.570795 0\n",
- "2 1.570795 0\n",
- "3 1.570795 1\n",
- "4 1.570795 0\n",
- "0 2.356192 1\n",
- "1 2.356192 1\n",
- "2 2.356192 1\n",
- "3 2.356192 0\n",
- "4 2.356192 0\n",
- "0 3.141590 1\n",
- "1 3.141590 1\n",
- "2 3.141590 1\n",
- "3 3.141590 1\n",
- "4 3.141590 1"
- ]
- },
- "execution_count": 11,
- "metadata": {
- "tags": []
- },
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"samples_at_swept_theta = sim.sample(\n",
" parameterized_circuit, \n",
@@ -992,7 +361,7 @@
},
"source": [
"The result value being returned by `sim.sample` is a `pandas.DataFrame` object.\n",
- "Pandas is a common library for working with table data in python.\n",
+ "Pandas is a common library for working with table data in Python.\n",
"You can use standard pandas methods to analyze and summarize your results."
]
},
@@ -1002,32 +371,7 @@
"metadata": {
"id": "bLzGV8nFiS9o"
},
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 12,
- "metadata": {
- "tags": []
- },
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEGCAYAAACHGfl5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3dd3hUZdrH8e+dHpJAQggtCYQmCCjF\nELpgoaqAiggiHQFB0XVXV98tlm3u6uqKWABBmjRRARVBxALSQ5dehdASSiAhIfV5/zgHjUpJPzOT\n+3NduTJz2vyGCeeec85znkeMMSillCrbvJwOoJRSynlaDJRSSmkxUEoppcVAKaUUWgyUUkoBPk4H\nKKxKlSqZmJgYp2MopZTb2Lhx42ljTMSV5rltMYiJiSE+Pt7pGEop5TZE5MerzdPTREoppbQYKKWU\n0mKglFIKLQZKKaXQYqCUUop8FAMRmSIiiSLyQ55pFUVkmYjss3+H2dNFRMaJyH4R2SYizfOsM8he\nfp+IDMoz/RYR2W6vM05EpLjfpFJKqWvLz5HBVKDrr6Y9Cyw3xtQDltvPAboB9eyfEcA7YBUP4Hmg\nJRAHPH+5gNjLPJJnvV+/llJKqRJ23fsMjDErRCTmV5N7Ah3tx9OAb4E/2tOnG6tf7LUiEioi1exl\nlxljzgKIyDKgq4h8C5Q3xqy1p08HegFfFOVNXcu45fso5+dNpWB/KgX7ExHiT6VgP8LK+eHlpQcl\nSikXkZsDaWfhYiKknoLUJOu3yYV2Txb7yxX2prMqxpgT9uOTQBX7cSRwNM9yCfa0a01PuML0KxKR\nEVhHHNSoUaPAoY0xTPjuABczc34zz9tLCA/yy1Mg/KkU4keE/Twi2J9K9u/Qcr7o2SylVIEZA2ln\nINXewV9M+tVje6d/MdF6bnJ/u43gKi5VDH5ijDEiUioj5BhjJgITAWJjYwv8miLCDy924cKlbE6n\nZnA6JYMk+/fp1EySUjI4nWpN23cqhdOpmWTm/PbDqBTsR9PoMJrXDOWWGmHcHBVKoJ930d+gUsqz\nXDoPxzZCQjwkbLB+0s/9djlvfwiubP1UiILIZtZOP6jyz9MvP/YPKZGohS0Gp0SkmjHmhH0aKNGe\nfgyIzrNclD3tGD+fVro8/Vt7etQVli8xIkKFQF8qBPpSJyL4mssaY7iQnm0VjNQMklIySEzJYMfx\n82w+ksxXu04B4OMl3FitPM1rhNK8ZhjNa4QRFRaoRw9KlSW5OZC4C45d3vHHQ9IewAACEfWhwV1Q\npbG1ow+u8vOO3r88OLy/KGwxWAQMAl62fy/MM/0xEZmDdbH4vF0wlgL/zHPRuDPwnDHmrIhcEJFW\nwDpgIPBmITMVOxGhQjlfKpTzpW7l3xaOM6kZbD6SzKYj59h05Bzz4hOYtsbq+iMixN8qDjXCaF4z\njJsiKxDgq0cPSnmM1MRffuM/vhkyU615gRUhqgU07g1RsRDZHAIqOJv3Oq5bDERkNta3+koikoDV\nKuhlYJ6IDAN+BPrYiy8GugP7gTRgCIC90/8bsMFe7qXLF5OB0VgtlgKxLhyX2MXj4hYe7M+dDatw\nZ0Prkkl2Ti67T6aw+cg5Nv54jk1Hklm6wzp68PUWGlavQPMaoXRrXI0WMWF65KCUO8nJhl2LYPfn\n1s4/2e7zzcvH+rbfpJ9VAKJioWJtx7/pF5RYDX/cT2xsrHGHXkuTUjLYfMQqDJuOnGNbQjKXsnJp\nElWBR26tTddGVfHx1nv/lHJZGamweSasfQuSj0BwVYiOs3f8LaBaE/Ar53TKfBGRjcaY2CvO02JQ\nutIzc/hoUwKTvz/EodMXiQwNZGi7WjzYIppgf7ftUVwpz5NyEtZNgPjJ1oXgGq2hzeNwQzfwcs8v\ncFoMXFBuruGrXaeYtPIgGw6fIyTAh4da1mBwmxiqVQh0Op5SZVfiblj9JmyfBzlZcOM90GYsRLdw\nOlmRaTFwcVuOJjNp5UG+2H4CLxHuaVKd4e1r0ai6a19wUspjGAOHV1pFYN+X4BMIzR6G1qOt8/8e\nQouBmzh6No0pqw4xd8NR0jJzaFs3nOHta9Pxhgi92KxUScjJhp0LrCJwYguUqwQtR0KL4VCuotPp\nip0WAzdzPj2L2euP8P6qQ5y6kEG9ysEMb1+Lnk0jtXmqUsUhIwU2zYC178D5IxBeD9o8Bjc/CL6e\ne5pWi4GbyszO5bNtx5m08hC7TlygUrA/g1rXZEDrmoSW83M6nlLuJ+UUrHsH4qfYF4Xb2BeFu7rt\nReGC0GLg5owxrNp/hkkrD/Ld3iRC/H0YcWtthrSrpS2QlMqPjBRYNQ7WjIfsS3BjD6sIRF1xv+ix\ntBh4kF0nLvDasr0s23mK8CA/Rt9Wl/4ta+jpI6WuJCcLNk6Fb1+GtNPQ6F64/S8QXsfpZI7QYuCB\nNh85xytL97D6wBmqVwjgiTvrcX/zKL2BTSmwWgftXADLX4KzByGmPXR6ESJvcTqZo7QYeLBV+0/z\nn6V72Ho0mdqVgvhdpxu466ZqOjaDKrsOr4Jlf7U6jIu4ETq9BPU6uV33ECVBi4GHM8awbOcpXv1y\nD3tPpdKwWnme7lKfjvW1SaoqQxJ3wVcvwN4lEFIdbv+T1V+Ql55CvUyLQRmRk2v4dOtxXlu2lyNn\n04itGcbTXerTsna409GUKjkXjsM3/4QtH4BfMLT7HbR61KObiBaWFoMyJjM7l3nxRxm3fB+JKRnc\nekMET3euz01Rekez8iCXzsOqN2DN22ByoMUjcOsfPPJmseKixaCMSs/MYfqaw7zz3QGS07LoflNV\nnup0A3Url8xISUqViuxMq/O47/4D6Wfhpgfg9j9DWIzTyVyeFoMy7sKlLN5beYjJKw+SnpVD/5Y1\n+WO3BnqPgnI/uz6DL/8E5w5DrQ5WC6HqzZxO5Ta0GCjAGpntza/3M23NYapXCOTf999Mu3qVnI6l\n1PWlnYXFT8MP86FyI+j8EtS5Q1sIFdC1ioE2Si9DwoP9eaFHI+aPao2/jxcPT17Hcx9v48KlLKej\nKXV1uz+Ht1rCzoVw259h5HdQ904tBMVMi0EZdEvNiix+oj0jb63N3A1H6fL6Cr7dk+h0LKV+Ke0s\nfPQIzHkIQqrAiG+hw9Pg7et0Mo+kxaCMCvD15rnuN/LRo20I8vdh8PsbePrDrZxP16ME5QJ2L4a3\nW8GOj6Hjc/DIN1C1sdOpPJoWgzKuWY0wPnu8HaM71uHjzcfo/Pp3LN91yulYqqxKPwcfj4Q5/SAo\nwioCHZ/Vo4FSoMVAEeDrzTNdG/DJ6DaEBvoxbFo8T83dQnJaptPRVFmydym83Rq2fwi3PmMVgmo3\nO52qzNBioH5yc1Qoix5vy9jb67Jw63E6vb6CpTtOOh1Lebr0ZFgwGmb1gcAweGS51ZWEj47ZUZq0\nGKhf8Pfx5qnO9Vk4pi2Vgv0ZOWMjY2dv5uxFPUpQJWDfV9bRwNY50P4P1kVivW/AEVoM1BU1jqzA\nwjFtefLOeizefoLOr3/H4u0nnI6lPMWl87DwMfjgfggoD8O/gjv+Aj7+Ticrs7QYqKvy8/HiyTtv\nYNFj7ahSPoDRH2xizAebOJOa4XQ05c72L7eOBrZ8AO2egpErILK506nKPC0G6roaVi/PgjFt+UPn\nG/hy50m6vbGS9YfOOh1LuZusdPjsKZh5H/gFwbCv4M7n9WjARWgxUPni6+3FY7fXY+GYdpTz86bf\npLW8+90BcnPdszsTVcqS9sJ7d1odzLV+DEauhKiyPeqYq9FioAqkYfXyfPp4O7o0qsLLX+xmxIx4\nbYKqrm3LbJjYAVJOQP/50OUf4BvgdCr1K1oMVIGFBPjy1kPNef6ehny3N4m7xn3P1qPJTsdSriYj\nFT55FBaMgurNYdT31vCTyiVpMVCFIiIMaVuLeSNbY4zhgXfXMH3NYdy1F1xVzE7+AJNug62zocOz\nMGgRlK/udCp1DVoMVJE0qxHG52Pb06ZuOH9duIOxc7aQmpHtdCzlFGMgfgq8d4fVfHTgQrjtOR2H\n2A0UqRiIyO9EZIeI/CAis0UkQERqicg6EdkvInNFxM9e1t9+vt+eH5NnO8/Z0/eISJeivSVV2sKC\n/JgyqAVPd6nP59uO02P89+w+ecHpWKq0XToP84fAZ7+Dmm1g1Cqo3cHpVCqfCl0MRCQSGAvEGmMa\nA95AX+DfwOvGmLrAOWCYvcow4Jw9/XV7OUSkob1eI6Ar8LaI6NcIN+PlJYy5rS4zh7fkQno2vd5a\nxfyNCU7HUqXl2CaYcCvsXAR3PA/9P4LgCKdTqQIo6mkiHyBQRHyAcsAJ4HZgvj1/GtDLftzTfo49\n/w4REXv6HGNMhjHmELAfiCtiLuWQNnUqsfiJdjSNDuUPH27lj/O3cSkrx+lYqqQYA2vfgcmdIScb\nhiyG9k+Bl56BdjeF/sSMMceAV4EjWEXgPLARSDbGXD5pnABE2o8jgaP2utn28uF5p19hnV8QkREi\nEi8i8UlJSYWNrkpY5ZAAZg5ryZjb6jA3/ij3vr2aQ6cvOh1LFbe0s9bAM0uetVoJjVoJNVo5nUoV\nUlFOE4VhfauvBVQHgrBO85QYY8xEY0ysMSY2IkIPQV2Zj7cXT3dpwPuDW3DifDr3vPm99m3kSY6s\nhXfbw75l0PVl6DsLylV0OpUqgqIcy90JHDLGJBljsoCPgbZAqH3aCCAKOGY/PgZEA9jzKwBn8k6/\nwjrKzd3WoDKfj21P3crBjP5gEy8s2kFmdq7TsVRh5ebCytfg/e7g7QPDvoRWj+p4xB6gKMXgCNBK\nRMrZ5/7vAHYC3wC97WUGAQvtx4vs59jzvzZWo/RFQF+7tVEtoB6wvgi5lIuJDA1k3sjWDG4Tw9TV\nhxk4ZZ02P3VHOdkwfzAsfxEa9tAO5jxMUa4ZrMO6ELwJ2G5vayLwR+ApEdmPdU1gsr3KZCDcnv4U\n8Ky9nR3APKxCsgQYY4zRK44exs/Hixd6NOL1B5uw4fA5+r+3TruxcCfGwKdPwM6F0Olv0Pt9CKjg\ndCpVjMRd7xiNjY018fHxTsdQhfDljpM8NmsztSOCmDGsJREh2mulSzMGvvwzrBlvDU7f8VmnE6lC\nEpGNxpjYK83T9l+q1HVuVJXJg2P58UwaD05Yw/HkdKcjqWv5/jWrEMSNhA5/dDqNKiFaDJQj2teL\nYPqwOJJSMnjg3TUc1qanril+Cix/CW5+0Go1pBeKPZYWA+WYFjEVmfVIK9Iys+kzYQ17T6U4HUnl\n9cNH1mA0N3SFnm/pjWQeTj9d5aiboiowd2RrAB6csIbtCecdTqQA2P8VfDwSarSGB6aCt6/TiVQJ\n02KgHHdDlRA+HNWacn4+PDRpLRsO65CajjqyDuYOgMoN4KE54BvodCJVCrQYKJdQMzyID0e1JiLE\nnwGT17Fyn3Y34ohTO2DWAxBSFR7+WJuPliFaDJTLqB4ayNyRrYkJD2LY1HiW7jjpdKSy5ewhmHEv\n+AbBgAUQXNnpRKoUaTFQLiUixJ85I1rRsHp5Rn+wiYVbtGeSUpFyEmb0gpxMGPAJhNV0OpEqZVoM\nlMsJLefHzOEtaRETxpNztzBr3RGnI3m29HMw4z5ITbLGIajcwOlEygFaDJRLCvb3YeqQODreEMH/\nfbKdSSsOOh3JM2VehFkPwpl90PcDiLrF6UTKIVoMlMsK8PVmwoBYut9UlX8s3sXry/birt2nuKTs\nTJg3EBI2wP3vQZ3bnE6kHORz/UWUco6fjxfj+jajnN923li+j4sZ2fzprhsRvRO2aHJzYMEo636C\ne8ZBw55OJ1IO02KgXJ6Ptxf/uf9mgvy8ee/7Q2Rk5/JSz0ZaEArLGFj8tHWHcaeX4JZB119HeTwt\nBsoteHkJL/RohL+vNxNXHCQkwIdnuuqFzkL55h8QPxnaPgltn3A6jXIRWgyU2xARnuvWgJRL2bz9\n7QFCAnx5tGMdp2O5l1XjYMUr0HwQ3PmC02mUC9FioNyKiPD3Xo1Jzcjm30t2Uz7Qh/4ttU38dRlj\njVD2/evQ6F64+3XtgVT9ghYD5Xa8vYTX+jThYkY2f17wA8H+PvRsGul0LNeVkw2fPQGbZ8ItQ+Cu\n/4KXt9OplIvRpqXKLfl6e/F2/+a0iKnI7+dt5evdp5yO5Joy02Duw1Yh6PCsdUSghUBdgRYD5bYC\nfL2ZPCiWG6uV59GZm1h78IzTkVxL+jmrr6G9S6D7q3Dbc3pqSF2VFgPl1kICfJk2NI7oiuUYPi2e\nbQnJTkdyDReOw5RucHyTNR5B3CNOJ1IuTouBcnsVg/yYOawloeV8GTRlPfvK+ohpSXthcmc4nwD9\n50OjXk4nUm5Ai4HyCFUrBDBzWEt8vL14ePI6jp5NczqSMxLiYUoXyM6AIZ9D7Q5OJ1JuQouB8hgx\nlYKYMSyOS1m5PDx5HYkXLjkdqXTt+wqm3QMB5WHYUqjWxOlEyo1oMVAepUHV8kwd0oKklAwGTF5P\nclqm05FKx9a5MPtBCK8DQ7+EirWdTqTcjBYD5XGa1Qhj0sBYDp2+yKD3N5Cake10pJK1ejx8MsIa\nvH7wYgip4nQi5Ya0GCiP1LZuJd58qBk/HDvPiOnxXMrKcTpS8TMGvvwLfPknq9fR/vOtU0RKFYIW\nA+WxujSqyiu9b2b1gTM8Pnsz2Tm5TkcqPjlZsGA0rB4HscOg9/vgG+B0KuXGtBgoj3Zf8yhe7NGI\nZTtP8cz8beTmesDgOJkXYc5DsHUWdPw/7V5CFQvtm0h5vEFtYki5lMWrX+4lJMCHF3q48VgIaWdh\nVh+rCeldr0GLYU4nUh5Ci4EqE8bcVpcLl7KZuOIgAb7ePNutgfsVhJSTML0XnD0Afabp6GQOycrK\nIiEhgUuXXLfpckBAAFFRUfj6+uZ7nSIVAxEJBd4DGgMGGArsAeYCMcBhoI8x5pxY//PeALoDacBg\nY8wmezuDgD/bm/27MWZaUXIp9WuXx0JIz8xhwoqDJKVm8O/7b8bX203OlCYfgWk9IDXRulCsN5M5\nJiEhgZCQEGJiYlzyC4UxhjNnzpCQkECtWrXyvV5R/ye8ASwxxjQAmgC7gGeB5caYesBy+zlAN6Ce\n/TMCeAdARCoCzwMtgTjgeREJK2IupX5DRHipZyOe6nQDH286xrBp8e7R7PT0fqufobSzMHCBFgKH\nXbp0ifDwcJcsBGD9nYeHhxf4yKXQxUBEKgC3ApMBjDGZxphkoCdw+Zv9NOByxyg9genGshYIFZFq\nQBdgmTHmrDHmHLAM6FrYXEpdi4gw9o56/Of+m1m1/zR9J64hMcV1D/c5tQPe7wbZ6TD4U4iOczqR\nApctBJcVJl9RjgxqAUnA+yKyWUTeE5EgoIox5oS9zEng8h0wkcDRPOsn2NOuNv03RGSEiMSLSHxS\nUlIRoquyrk+LaN4bGMuBxIvc/85qDialOh3pt45tgql3WS2Fhnyh3UuoElWUYuADNAfeMcY0Ay7y\n8ykhAIwxButaQrEwxkw0xsQaY2IjIiKKa7OqjLqtQWXmjGhFWkYOvd9dw+Yj55yO9LMfV1vXCPxD\nrEIQUd/pRKqUTZ06lePHj5fa6xWlGCQACcaYdfbz+VjF4ZR9+gf7d6I9/xgQnWf9KHva1aYrVeKa\nRIfy0aNtCAnwod+ktSzf5QIjpu1fDjPug5CqMGQJVMz/RUDlOdymGBhjTgJHReTyV5Y7gJ3AImCQ\nPW0QsNB+vAgYKJZWwHn7dNJSoLOIhNkXjjvb05QqFTGVgvjo0TbcUCWER6bHM3v9EefC7PoMZveF\n8LrWEUEFHdvZk7z22ms0btyYxo0b87///Y/Dhw/TuHHjn+a/+uqrvPDCC8yfP5/4+Hj69+9P06ZN\nSU9PL/FsRb3P4HHgAxHxAw4CQ7AKzDwRGQb8CPSxl12M1ax0P1bT0iEAxpizIvI3YIO93EvGmLNF\nzKVUgVQK9mf2I60YM2sTz328nZPnL/HknfVK90Lhtg/hk5FQvRk8PB8CtVGdJ9m4cSPvv/8+69at\nwxhDy5Yt6dDhyi3Devfuzfjx43n11VeJjY0tlXxFKgbGmC3AlZLecYVlDTDmKtuZAkwpShaliirI\n34dJA2P50yfbeWP5Pk6ev8Q/7m2MT2nci7BxKnz6JMS0g36zrWsFyqN8//333HvvvQQFBQFw3333\nsXLlSodT/UzvQFYqD19vL/59/81ULR/AuK/3k5SawfiHmlHOrwT/q6x5C5b+H9TtBA/OAN/Aknst\n5VKSk5PJzf25A0Un72p2k9svlSo9IsJTnevzj3sb8+2eRPpNXMuZ1IzifyFj4Lv/WIXgxh7Qd5YW\nAg/Wvn17FixYQFpaGhcvXuSTTz6hW7duJCYmcubMGTIyMvjss89+Wj4kJISUlNIbz1uPDJS6iv4t\na1I5JIDHZ2/i/ndWM21oHDXDg4pn48bAsr9aXVA36Qc9xoO3/nf0ZM2bN2fw4MHExVk3Dg4fPpwW\nLVrw17/+lbi4OCIjI2nQoMFPyw8ePJhRo0YRGBjImjVrCAws2S8KYp3Kdz+xsbEmPj7e6RiqDNj4\n4zmGT9uAt5cwZXALbo4KLdoGc3Nh8R8gfrI1FkH3V8FLD9Ldxa5du7jxxhudjnFdV8opIhuNMVe8\nIq1/gUpdxy01w5j/aBsCfL3pO3Et3+0twt3vOdmwcLRVCNo+YY9FoP8NlfP0r1CpfKgTEczHo9sQ\nEx7EI9PjWX3gdME3kpsDHz8CW2fDbX+GO18EF+/jRpUdWgyUyqfKIQF8MLwlMeHleGRafMG6r8jN\nhU/Hwo6PodNL0OFpLQTKpWgxUKoAwoL8mDmsJeHB/gx+fwO7T164/krGWC2GNs+EDn+0Tg8p5WK0\nGChVQJXLW0cIgb7ePPzeeg6fvnjtFb79F6x7B1qNho7PlU5IpQpIi4FShRBdsRwzh8eRawz931vH\n8eSr9B2zejx8929o9jB0+aeeGlIuS4uBUoVUt3II04fGcSE9i4ffW8fpX9+YtnEafPknaNgL7hmn\nhUAVqyVLllC/fn3q1q3Lyy+/XOTtaTFQqggaR1ZgypAWHD+fzsDJ6zmfnmXN+OEj+PQJq4uJ+yZZ\nA9QoVUxycnIYM2YMX3zxBTt37mT27Nns3LmzSNvUYqBUEbWIqciEAbHsS0xh6NQNXNq5GD4eATVa\nQ5/p4OPndETlYdavX0/dunWpXbs2fn5+9O3bl4ULF15/xWvQ+9+VKgYdbohgXN9mTJ89E695/yG3\n2k14PTQX/Mo5HU2VoBc/3cHO4/loUVYADauX5/l7Gl1zmWPHjhEd/fOYYFFRUaxbt+4aa1yfHhko\nVUy6hR1neuBrHM6N4Pd+fyHbN9jpSErlmx4ZKFUcTu2EmffhW74yW26axCdfJiHzt/HqA03w8tIL\nx57qet/gS0pkZCRHjx796XlCQgKRkUUbFU+LgVJFdeYAzOhldT89cCF9wmJIZB+vfrmXIH8fXurZ\nqHRHTFMer0WLFuzbt49Dhw4RGRnJnDlzmDVrVpG2qcVAqaI4nwDTe0FuNgxeDGExAIy5rS4pl7KZ\nsOIgIQE+PNO1wbW3o1QB+Pj4MH78eLp06UJOTg5Dhw6lUaOiHaVoMVCqsFKTrEJwKRkGfQqVf97h\niwjPdmtAakY2b397gOAAH0Z3rOtgWOVpunfvTvfu3Ytte1oMlCqM9GSYea91ZDDgE6je9DeLiAh/\n69mY1Ixs/rNkDyH+PgxoHVP6WZXKBy0GShVU5kWY1QcSd8NDc6Bm66su6uUlvPpAEy5m5PCXhTsI\nDvDh3mZRpRhWqfzRpqVKFUR2BszpDwkboPdkqHvndVfx9fZi/EPNaFMnnD98uI0lP5wshaBKFYwW\nA6XyKysd5g2Cg99Az7egYc98rxrg682kgbHcHFWBx2Zt4tOtx0swqFIFp8VAqfxIOwvTesDeJXDX\na9D0oQJvIsjfh+lD42heM4yxczYzb8PR66+kVCnRYqDU9Zz7ESZ3hhNboc80aDGs0JsKCfBl2pA4\n2teL4JmPtvH+qkPFGFSpwtNioNS1nNgGkzvBxUQYuLBAp4auJtDPm0kDb6FLoyq8+OlO3vpmfzEE\nVWXJ0KFDqVy5Mo0bNy62bWoxUOpqDnwD73cHL18Y+uU1Ww0VlL+PN2891JxeTavzytI9/HvJbowx\nxbZ95dkGDx7MkiVLinWb2rRUqSvZNg8WPAqV6sPD86F89WJ/CR9vL17r05RAPx/e+fYAaRnZPH9P\nI+3LSF3XrbfeyuHDh4t1m1oMlMrLGFj1Bnz1PMS0h74fQECFEns5Ly/hn/c2JsjPm/e+P8TFzBz+\nff/NeGtBcA9fPAsntxfvNqveBN2KPnJZQWkxUOqy3BxY8hysnwCN74de74CPf4m/rIjwp7tuJMjf\nhzeW7yM9K4fX+zTFz0fP4qrSo8VAKYCsS/DJCNi5EFo/Bp3+Bl6ltzMWEX7X6QaC/L355+LdXMrM\n4a3+zQnw1eEyXZoD3+BLSpH/2kXEW0Q2i8hn9vNaIrJORPaLyFwR8bOn+9vP99vzY/Js4zl7+h4R\n6VLUTEoVSPo5mHGvVQi6/BO6/KNUC0FeI26tw997NebrPYkMnbqBixnZjuRQZU9x/MU/AezK8/zf\nwOvGmLrAOeByo+xhwDl7+uv2cohIQ6Av0AjoCrwtIvp1SJWO8wkwpSsci4feU6D1GKcT8XCrmvz3\ngSasPXiGAZPXcT49y+lIysX069eP1q1bs2fPHqKiopg8eXKRt1mkYiAiUcBdwHv2cwFuB+bbi0wD\netmPe9rPseffYS/fE5hjjMkwxhwC9gNxRcmlVL6c2gHvdYILx+Hhj6zrBC7ivuZRvN2/OduPnaff\nxLWcSc1wOpJyIbNnz+bEiRNkZWWRkJDAsGGFvxHysqIeGfwPeAbItZ+HA8nGmMvHtgnA5bHYIoGj\nAPb88/byP02/wjq/ICIjRCReROKTkpKKGF2VaYdWWkcEAEOXQK1bnc1zBV0bV2PSwFgOJKXy4MS1\nnDx/yelIyoMVuhiIyN1AojFmYzHmuSZjzERjTKwxJjYiIqK0XlZ5mh8+gpn3WfcODF8GVZwZxzY/\nOtavzLShcZxITqfPhDUcPZvmdCTloYpyZNAW6CEih4E5WKeH3gBCReRyK6Uo4Jj9+BgQDWDPrwCc\nyTv9CusoVbzWTYD5QyEy1lJFzMYAABf/SURBVDoiqOD6Ywu0qh3OzOEtSU7L5IF313AgKdXpSGWe\nq98tXph8hS4GxpjnjDFRxpgYrAvAXxtj+gPfAL3txQYBC+3Hi+zn2PO/NlbiRUBfu7VRLaAesL6w\nuZS6qvj34YtnoMHd1uhkgWFOJ8q3ZjXCmDOiNVk5uTzw7hq2Hk12OlKZFRAQwJkzZ1y2IBhjOHPm\nDAEBAQVaryTuM/gjMEdE/g5sBi5f5p4MzBCR/cBZrAKCMWaHiMwDdgLZwBhjTE4J5FJl2fb58Nnv\noF4XeGAqePs6najAGlYvz4ejWjNg8nr6TVrLhAG30L6eni4tbVFRUSQkJODK1y0DAgKIiirYUa+4\nanW7ntjYWBMfH+90DOUO9i6FOQ9BdEur1ZBvoNOJiuTUhUsMmrKeA0mp/LdPU3o0Kf5+k5RnEpGN\nxpjYK83T+92VZzu8CuYNhCqNod8cty8EAFXKBzB3ZGuaRYcxdvZmHRNBFQstBspzHd8Msx6E0Jrw\n8McQUN7pRMWmQqAv04fF0bmhNSbCK0u1C2xVNFoMlGdK3A0z7oNyYTBwAQSFO52o2AX4evN2/+b0\ni4vmrW8O8OxH28nOyb3+ikpdgXZUpzzPucMwo5d1kXjAghIZi8BV+Hh78c97byIi2J9xX+/nzMVM\nxj/UTDu4UwWmRwbKs6SchOm9ICvdaj4aXsfpRCVORHiqc31e7NGI5btPWf0ZpWl/RqpgtBgoz5F2\n1up9NDUR+s936TuLS8KgNjG82a8ZW44m02fCGk5d0O4rVP5pMVCeISMVPngAzuyHfrMguoXTiRxx\n983VmTokjoRzadz39mq9W1nlmxYD5f6yLln3ERzfDL3fh9odnU7kqLZ1KzF3ZGsysnPo/c5qtujd\nyioftBgo95aTbfU1dOg76PkW3Hi304lcQuPICswf1YbgAB8emrSWFXtd925Z5Rq0GCj3lZsLC8fA\nns+h23+gaT+nE7mUmEpBfDSqDTXDgxg6dQMLt2j/j+rqtBgo92QMLPkjbJsDt/0ZWo50OpFLqlw+\ngLkjW3FLzTCemLOFKd/r3crqyrQYKPf0zT9g/URr8Ppb/+B0GpdWPsCXaUPj6NqoKi99tpP/frnH\n6UjKBWkxUO5n9Zuw4hVoNgA6/x1EnE7k8gJ8vXmrf3P6tojmza/3M+G7A05HUi5G70BW7mXjVPjy\nz9CwF9zzhhaCAvD2Ev55701czMzhX1/spkKgL33jajgdS7kILQbKfayfBIv/AHXvhPsmgZd2uVBQ\nXl7Cfx9owoX0LP7vk+1UCPSl203VnI6lXICeJlLuYeVrViGo3x0e/AB8/JxO5Lb8fLx49+FbaFbD\nuqj8/b7TTkdSLkCLgXJtxsDyl2D5i9C4N/SZDr4FG85P/VagnzdTBrWgdkQQI2bEs/nIOacjKYdp\nMVCuKzcXljwLK/8LzQfBfRPdcrhKV1WhnC/Th8ZRKdifIVM3sPdUitORlIO0GCjXlJsDix6Hde9a\nzUfveUOvEZSAyuUDmDmsJX7eXgyYvI6jZ9OcjqQcosVAuZ7sTKuLiS0zocOz2ny0hNUIL8f0YXGk\nZ+YwYPI6klIynI6kHKDFQLmWrHSY+zDsXACd/ga3PaeFoBQ0qFqe94fEcepCBoOmrOfCJR0PoazR\nYqBcR0aK1Q31vi/h7teh7VinE5Upt9QM490Bt7AvMYXhU+NJz8xxOpIqRVoMlGtIP2cNTPPjarh3\nAsQOdTpRmdThhghe69OUDT+eZcysTWTpmMplhhYD5bzUJJh6D5zYCn2mQZMHnU5Upt3TpDp/79WY\nr3cn8vSHW8nNNU5HUqVA70BWzjp/DKb3hPMJ0G8O1L3D6UQK6N+yJslpWbyydA+h5fx4/p6GiF67\n8WhaDJRzzh60CkHaORjwMdRs43QilcfojnVITstk0spDhJbz5ck7b3A6kipBWgyUMxJ3W4UgJwMG\nLYLI5k4nUr8iIvxf9xtJTsvif1/tIzTQl8FtazkdS5UQLQaq9B3fAjPvAy8fGLwYqjR0OpG6ChHh\nX/fdxPn0LF74dCeh5fzo1SzS6ViqBOgFZFW6jqyFafeAbzkY8oUWAjfg4+3FuH7NaFMnnN9/uJVl\nO085HUmVAC0GqnQYAxveswpBUAQMXQLhdZxOpfIpwNebiQNjaVy9PCNmxPPasr3kaCsjj1LoYiAi\n0SLyjYjsFJEdIvKEPb2iiCwTkX327zB7uojIOBHZLyLbRKR5nm0NspffJyKDiv62lEvJSIWPH4HP\nfw8x7WHYMqgQ5XQqVUDB/j7MeqQV9zWLYtzyfTw0aS0nz19yOpYqJkU5MsgGfm+MaQi0AsaISEPg\nWWC5MaYesNx+DtANqGf/jADeAat4AM8DLYE44PnLBUR5gMRdMOk2+OEja+D6/vMhKNzpVKqQgvx9\n+G+fJrz6QBO2JZyn+7iVfLMn0elYqhgUuhgYY04YYzbZj1OAXUAk0BOYZi82DehlP+4JTDeWtUCo\niFQDugDLjDFnjTHngGVA18LmUi5k6xyYdLt1d/GABdDhafDSM5OeoPctUXz6eDsqh/gz5P0N/OuL\nXXq3spsrlv+ZIhIDNAPWAVWMMSfsWSeBKvbjSOBontUS7GlXm36l1xkhIvEiEp+UlFQc0VVJyLoE\ni8bCJyOhejMYuRJqd3A6lSpmdSsHs2BMW/q3rMGE7w7SZ8IaEs5pF9juqsjFQESCgY+AJ40xF/LO\nM8YYoNiuMhljJhpjYo0xsREREcW1WVWczhyAyXfCpmnQ9kkYuAjK6xi7nirA15t/3HsT4x9qxv5T\nqXR/YyVLd5x0OpYqhCIVAxHxxSoEHxhjPrYnn7JP/2D/vnxC8RgQnWf1KHva1aYrd7NzEUzsCMlH\nod9c6PQieOutLGXB3TdX57Ox7agZHsTIGRt5YdEOMrK111N3UpTWRAJMBnYZY17LM2sRcLlF0CBg\nYZ7pA+1WRa2A8/bppKVAZxEJsy8cd7anKXeRnQlLnoN5AyC8LoxcAfX1sk9ZUzM8iPmPtmZo21pM\nXX2Y+99ZzeHTF52OpfKpKEcGbYEBwO0issX+6Q68DHQSkX3AnfZzgMXAQWA/MAkYDWCMOQv8Ddhg\n/7xkT1Pu4HwCTL0L1r4NcSOs+wfCajqdSjnE38ebv97TkEkDYzl6Np273/yeRVuPOx1L5YNYp/Xd\nT2xsrImPj3c6Rtm27yvr/oGcTOgxDhrf73Qi5UKOJaczdvZmNv54jn5x0fz17kYE+uk41k4SkY3G\nmNgrzdN2fqrgcnPg67/DB70hpBqM+FYLgfqNyNBA5oxoxeiOdZi9/ii93lrFvlMpTsdSV6HFQBVM\naiLM6AUrXoGm/WH4V1CpntOplIvy9fbima4NmDY0jtOpGfQYv4o564/grmckPJkWA5V/OxfCO23g\n6HroMR56vQV+5ZxOpdxAhxsi+OKJ9jSrEcqzH29n6NQN2pWFi9FioK4vNQnmDYJ5A63TQo98Dc0H\nOJ1KuZnK5QOYOawlz9/TkDUHz9Dp9e+YvzFBjxJchBYDdXXGWH0Kvd0Sdn9u9S30yNdQpZHTyZSb\n8vIShrStxZInbqVB1RD+8OFWhk+L59QFPUpwmhYDdWWpidZ9A/OHQmgN696BDk+Dt6/TyZQHiKkU\nxJwRrfnL3Q1ZdeA0nV9fwSeb9SjBSVoM1C8ZA9vmwVtxsHcp3PE8DPtKB6FRxc7bSxjWrhaLx7an\nbuVgfjd3KyNmbCQxRY8SnKDFQP0s5STMeci6d6BiHRj1PbR/SruUUCWqdkQw80a25s933ciKvUl0\nfn0FC7cc06OEUqbFQFlHA1tmW0cDB76GTn+DYV9CRH2nk6kywttLGN6+NoufaE+tSkE8MWcLo2Zu\nJCklw+loZYYWg7LuwnGY1QcWjIKIG2HUKmg7Frz0TlFV+upEBDN/VBue69aAb/Yk0fn17/h063E9\nSigFWgzKKmNg0wx4qxUcWgld/gVDFkOluk4nU2Wct5cwskMdFo9tR43wIB6fvZnRH2zidKoeJZQk\nLQZlUfJRmHk/LHoMqjaGR1dB69F6NKBcSt3KIXw0qjXPdK3P8l2JdH59BZ9vO3H9FVWhaDEoS3Ky\nYP0keLs1HFkL3V6BQZ9BeB2nkyl1RT7eXozuWJfPxrYjKiyQMbM2MXJGvHaNXQK019KyIDcXdnwM\n3/wDzh6EWrdCjzchLMbpZErlW3ZOLhNWHOStb/aTmZ3LQy1rMPaOelQK9nc6mtu4Vq+lWgw8mTGw\nd4nVw+ipH6BKY7j9L3BDFxBxOp1ShZKYcok3vtrHnA1HCfDxYmSHOgxvX4tyftoE+nq0GJRFh1bC\n8pcgYT1UrA23/Qka3QdeemZQeYYDSam8smQPS3acJCLEnyfvrMeDsdH4eOvf+NVoMShLjm2E5X+D\ng99ASHXo+Eerq2ntRkJ5qI0/nuVfi3cT/+M56kQE8UzXBnRuWAXRo9/f0GJQFiTuhm/+Drs+hXLh\n0P73EDsMfAOcTqZUiTPGsGznKV5espuDSReJrRnGc91v5JaaYU5HcylaDDzZucPw7cuwbS74BkGb\nx6HVoxBQ3ulkSpW67Jxc5sUn8PpXe0lKyaBLoyo807UBdSKCnY7mErQYeKKUk9ZoYxunWfcHxD0C\n7Z6CchWdTqaU49Iys3lv5SEmfHeAS9m59G0RzRN31qNySNk+UtZi4EnSzsKqN2DdBMjNguYD4dan\noXx1p5Mp5XJOp2bw5vJ9fLDuCH4+XgxvX5sRt9Ym2L9stjzSYuAJzv0I696FTdMh8yLc9AB0fFZv\nGFMqHw6fvsgrS/fw+fYThJbzZUCrmgxsHUNESNm6R0GLgTs7thFWj4edC0C8rOah7Z7U0caUKoQt\nR5N5+5v9LNt1Cl9vL+5vHsmwdrWpW7lsXFPQYuBucnOtm8VWvwlHVoN/ebhlMLQcCRWinE6nlNs7\nmJTKe98f4qONCWRk53LnjZUZcWsdWsSEeXSTVC0G7iIzDbbOhrVvw5n9UCHaahnUbIC2DlKqBJxO\nzWDGmh+ZvuYw59KyaBIdyoj2tenauCreXp5XFLQYuLrUJNgwyepELv0sVG8GrR+Dhr10lDGlSkF6\nZg7zNyUweeVBDp9JI7piIMPb1eaB2CiP6uZCi4GrStoLa8bD1jmQkwE3dLPuE6jZRvsOUsoBObnW\nzWsTVxxg05FkKgRaF5sHtfGMi81aDFyJMXD4e+t6wL6l4BMATfpB6zFQqZ7T6ZRSto0/nmXiioN8\nudO62Hxfs0iGt69F3cohTkcrNC0GTjLGOv9/dL3VadyPq+H0XihXybpRrMVwCKrkdEql1FUcOn2R\nyd8f5MN462Jzq9oVaRFTkabRoTSNDiXcjbrQ1mJQmjJSreagl3f+CRsg/Zw1z78CRMVCwx5w84Pg\nG+hsVqVUvp1JzWDG2h9ZtvMUu0+mkJNr7TtrhpejWXQozWqE0axGKA2qlsfPxzV7TtViUFKMsQaL\nubzjP7oBEneAybXmV6oP0S0gKg6i46zn2oW0Um4vLTOb7Qnn2Xw0mc1HzrHpSDJJKdYYzf4+XtwU\nWYFmNX4uENUquMYXP7coBiLSFXgD8AbeM8a8fK3lS7UY5ObAxdNwMRFSTsHJrdaOP2E9pJ2xlvEL\ngahbft7xR8VCoPaYqFRZYIzh+PlLbD5yjs1HktlyNJntx86TmW19MaxaPoCm0aE0qxHKjdXKExHi\nT0SIP2Hl/Eq1Ceu1ioFLtJkSEW/gLaATkABsEJFFxpidJfaiuTlWPz+pp6ydfGpSnsf2z0V7WtqZ\nn7/tXxZeF+p1sXb80XEQ0UAHlFeqjBIRIkMDiQwN5O6brX7CMrNz2XXiglUgjiaz+UgyS3ac/MV6\nXgLhwf5UCvanUrCfVSTs5xEheX/7EVbOD68SLBwuUQyAOGC/MeYggIjMAXoCxVsMjIGJHawePy8m\n/XYHD1brnuDKEFQZQmtY3/CDKlvTLk+PqK+9gyqlrsnPx4sm0aE0iQ5lsD3tdGoGB5Mucjo1g6SU\nDE6nZvz0OCk1k4NJF0lKzfjpiCIvby8hPMiPmPAg5o1qXex5XaUYRAJH8zxPAFr+eiERGQGMAKhR\no0bBX0XEOm9frenPO/bLO/ngKhAUAf4h2sZfKVUiKtnf+q/FGENKRrZVLFIyOJ2aSVLKJft3Ront\nnlylGOSLMWYiMBGsawaF2sj9k4ozklJKFSsRoXyAL+UDfEt1UB5XadpyDIjO8zzKnqaUUqoUuEox\n2ADUE5FaIuIH9AUWOZxJKaXKDJc4TWSMyRaRx4ClWE1LpxhjdjgcSymlygyXKAYAxpjFwGKncyil\nVFnkKqeJlFJKOUiLgVJKKS0GSimltBgopZTChTqqKygRSQJ+LOTqlYDTxRintLl7fnD/9+Du+cH9\n34PmL7iaxpiIK81w22JQFCISf7We+9yBu+cH938P7p4f3P89aP7ipaeJlFJKaTFQSilVdovBRKcD\nFJG75wf3fw/unh/c/z1o/mJUJq8ZKKWU+qWyemSglFIqDy0GSimlPLsYiEhXEdkjIvtF5NkrzPcX\nkbn2/HUiElP6Ka8uH/kHi0iSiGyxf4Y7kfNqRGSKiCSKyA9XmS8iMs5+f9tEpHlpZ7yWfOTvKCLn\n8/z7/7W0M16LiESLyDcislNEdojIE1dYxtU/g/y8B5f9HEQkQETWi8hWO/+LV1jGNfZDxhiP/MHq\nCvsAUBvwA7YCDX+1zGjgXftxX2Cu07kLmH8wMN7prNd4D7cCzYEfrjK/O/AFIEArYJ3TmQuYvyPw\nmdM5r5G/GtDcfhwC7L3C35Crfwb5eQ8u+znY/67B9mNfYB3Q6lfLuMR+yJOPDOKA/caYg8aYTGAO\n0PNXy/QEptmP5wN3iLjMAMj5ye/SjDErgLPXWKQnMN1Y1gKhIlKtdNJdXz7yuzRjzAljzCb7cQqw\nC2u88bxc/TPIz3twWfa/a6r91Nf++XWrHZfYD3lyMYgEjuZ5nsBv/4h+WsYYkw2cB8JLJd315Sc/\nwP324f18EYm+wnxXlt/36Mpa26cAvhCRRk6HuRr71EMzrG+mebnNZ3CN9wAu/DmIiLeIbAESgWXG\nmKt+Bk7uhzy5GJQFnwIxxpibgWX8/O1ClY5NWH29NAHeBBY4nOeKRCQY+Ah40hhzwek8hXGd9+DS\nn4MxJscY0xRrbPc4EWnsdKYr8eRicAzI+005yp52xWVExAeoAJwplXTXd938xpgzxpgM++l7wC2l\nlK245OczclnGmAuXTwEYa6Q+XxGp5HCsXxARX6yd6AfGmI+vsIjLfwbXew/u8DkAGGOSgW+Arr+a\n5RL7IU8uBhuAeiJSS0T8sC7MLPrVMouAQfbj3sDXxr6K4wKum/9X53Z7YJ1PdSeLgIF2i5ZWwHlj\nzAmnQ+WXiFS9fG5XROKw/j+5ypcJ7GyTgV3GmNeusphLfwb5eQ+u/DmISISIhNqPA4FOwO5fLeYS\n+yGXGQO5uBljskXkMWApVsucKcaYHSLyEhBvjFmE9Uc2Q0T2Y10o7Otc4l/KZ/6xItIDyMbKP9ix\nwFcgIrOxWnpUEpEE4HmsC2gYY97FGvO6O7AfSAOGOJP0yvKRvzfwqIhkA+lAXxf6MgHQFhgAbLfP\nWQP8H1AD3OMzIH/vwZU/h2rANBHxxipS84wxn7nifki7o1BKKeXRp4mUUkrlkxYDpZRSWgyUUkpp\nMVBKKYUWA6WUUmgxUOqaRCRUREbbjzuKyGcFXH+wiFQvmXRKFR8tBkpdWyhWr5KFNRjQYqBcnt5n\noNQ1iMjl3mL3AFnAReA00BjYCDxsjDEicgvwGhBszx+MdcPUVKzuBtKB1sDTwD1AILAaGOlCN0ip\nMkyLgVLXYPeU+ZkxprGIdAQWAo2A48AqrJ37OuA7oKcxJklEHgS6GGOGisi3wB+MMfH29ioaY87a\nj2dg3ZH6aem+K6V+y2O7o1CqhKw3xiQA2N0jxADJWEcKy+wucryBq/Xvc5uIPAOUAyoCO7B6n1XK\nUVoMlCqYjDyPc7D+DwmwwxjT+lorikgA8DYQa4w5KiIvAAElFVSpgtALyEpdWwrWcIvXsgeIEJHW\nYHW5nGeAlbzrX97xn7b75+9d3GGVKiw9MlDqGowxZ0RklYj8gHUR+NQVlskUkd7AOBGpgPX/6n9Y\np4CmAu+KyOULyJOAH4CTWN2UK+US9AKyUkopPU2klFJKi4FSSim0GCillEKLgVJKKbQYKKWUQouB\nUkoptBgopZQC/h/Urshh+UI9CAAAAABJRU5ErkJggg==\n",
- "text/plain": [
- "