-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdriver.py
91 lines (80 loc) · 2.82 KB
/
driver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import cv2
import numpy as np
import face_recognition
import os
from datetime import datetime
from PIL import Image
import urllib.request
import requests
import internet_ping
import attendance
import mysql.connector
import Database.datafetch
import Database.datawirte
ping = internet_ping.is_connected()
if ping == True:
pass
else:
print("Internet connection not found! Please connect to internet")
exit()
jsondata = Database.datafetch.fetch_json()
mylist = jsondata
path = "ImageAttendance"
attendance.download(mylist)
images = []
classNames = []
mylist = os.listdir(path)
print(mylist)
for cl in mylist:
currImg = cv2.imread(f"{path}/{cl}")
images.append(currImg)
classNames.append(os.path.splitext(cl)[0])
# print(currImg)
# print(images)
# print(classNames)
# exit()
print(classNames)
print("Encoding Please Wait...")
encodeListKnown = attendance.findEncodings(images)
print("Encoding complete!")
cap = cv2.VideoCapture(0)
while True:
success, img = cap.read()
imgS = cv2.resize(img, (0, 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurrFrame = face_recognition.face_locations(imgS)
encodeCurrFrame = face_recognition.face_encodings(imgS, facesCurrFrame)
for encodeFace, faceLoc in zip(encodeCurrFrame, facesCurrFrame):
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
# print(faceDis)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = classNames[matchIndex].upper()
# print(name)
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 35), 2)
cv2.rectangle(img, (x1, y2 - 35), (x2, y2), (0, 255, 35), cv2.FILLED)
cv2.putText(
img,
name,
(x1 + 16, y2 - 6),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(255, 255, 255),
2,
)
attendance.markAttendance(name)
cv2.imshow("Webcam", img)
cv2.waitKey(1)
# faceLoc = face_recognition.face_locations(imgElon)[0]
# encodeElon = face_recognition.face_encodings(imgElon)[0]
# cv2.rectangle(imgElon,(faceLoc[3],faceLoc[0]),(faceLoc[1],faceLoc[2]),(255,0,255),2)
#
# faceLocTest = face_recognition.face_locations(imgTest)[0]
# encodeElonTest = face_recognition.face_encodings(imgTest)[0]
# cv2.rectangle(imgTest,(faceLocTest[3],faceLocTest[0]),(faceLocTest[1],faceLocTest[2]),(255,0,255),2)
#
# results = face_recognition.compare_faces([encodeElon],encodeElonTest)
# faceDis = face_recognition.face_distance([encodeElon],encodeElonTest)