-
Notifications
You must be signed in to change notification settings - Fork 4
/
md5.c
263 lines (232 loc) · 8.29 KB
/
md5.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/*
* md5.c MD5 message-digest algorithm
*
* Version: $Id$
*
* This file is licensed under the LGPL, but is largely derived
* from public domain source code.
*/
#include "ident.h"
#include "libradius.h"
#include "md5.h"
/*
* FORCE MD5 TO USE OUR MD5 HEADER FILE!
* If we don't do this, it might pick up the systems broken MD5.
*/
void fr_md5_calc(uint8_t *output, const uint8_t *input,
unsigned int inlen)
{
FR_MD5_CTX context;
fr_MD5Init(&context);
fr_MD5Update(&context, input, inlen);
fr_MD5Final(output, &context);
}
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to fr_MD5Init, call fr_MD5Update as
* needed on buffers full of bytes, and then call fr_MD5Final, which
* will fill a supplied 16-byte array with the digest.
*/
#define PUT_64BIT_LE(cp, value) do { \
(cp)[7] = (value)[1] >> 24; \
(cp)[6] = (value)[1] >> 16; \
(cp)[5] = (value)[1] >> 8; \
(cp)[4] = (value)[1]; \
(cp)[3] = (value)[0] >> 24; \
(cp)[2] = (value)[0] >> 16; \
(cp)[1] = (value)[0] >> 8; \
(cp)[0] = (value)[0]; } while (0)
#define PUT_32BIT_LE(cp, value) do { \
(cp)[3] = (value) >> 24; \
(cp)[2] = (value) >> 16; \
(cp)[1] = (value) >> 8; \
(cp)[0] = (value); } while (0)
static const uint8_t PADDING[MD5_BLOCK_LENGTH] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/*
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*/
void
fr_MD5Init(FR_MD5_CTX *ctx)
{
ctx->count[0] = 0;
ctx->count[1] = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xefcdab89;
ctx->state[2] = 0x98badcfe;
ctx->state[3] = 0x10325476;
}
/*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
void
fr_MD5Update(FR_MD5_CTX *ctx, const unsigned char *input, size_t len)
{
size_t have, need;
/* Check how many bytes we already have and how many more we need. */
have = (size_t)((ctx->count[0] >> 3) & (MD5_BLOCK_LENGTH - 1));
need = MD5_BLOCK_LENGTH - have;
/* Update bitcount */
/* ctx->count += (uint64_t)len << 3;*/
if ((ctx->count[0] += ((uint32_t)len << 3)) < (uint32_t)len) {
/* Overflowed ctx->count[0] */
ctx->count[1]++;
}
ctx->count[1] += ((uint32_t)len >> 29);
if (len >= need) {
if (have != 0) {
memcpy(ctx->buffer + have, input, need);
fr_MD5Transform(ctx->state, ctx->buffer);
input += need;
len -= need;
have = 0;
}
/* Process data in MD5_BLOCK_LENGTH-byte chunks. */
while (len >= MD5_BLOCK_LENGTH) {
fr_MD5Transform(ctx->state, input);
input += MD5_BLOCK_LENGTH;
len -= MD5_BLOCK_LENGTH;
}
}
/* Handle any remaining bytes of data. */
if (len != 0)
memcpy(ctx->buffer + have, input, len);
}
/*
* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
void
fr_MD5Final(uint8_t digest[MD5_DIGEST_LENGTH], FR_MD5_CTX *ctx)
{
uint8_t count[8];
size_t padlen;
int i;
/* Convert count to 8 bytes in little endian order. */
PUT_64BIT_LE(count, ctx->count);
/* Pad out to 56 mod 64. */
padlen = MD5_BLOCK_LENGTH -
((ctx->count[0] >> 3) & (MD5_BLOCK_LENGTH - 1));
if (padlen < 1 + 8)
padlen += MD5_BLOCK_LENGTH;
fr_MD5Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
fr_MD5Update(ctx, count, 8);
if (digest != NULL) {
for (i = 0; i < 4; i++)
PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
}
memset(ctx, 0, sizeof(*ctx)); /* in case it's sensitive */
}
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. fr_MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
void
fr_MD5Transform(uint32_t state[4], const uint8_t block[MD5_BLOCK_LENGTH])
{
uint32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4];
for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) {
in[a] = (uint32_t)(
(uint32_t)(block[a * 4 + 0]) |
(uint32_t)(block[a * 4 + 1]) << 8 |
(uint32_t)(block[a * 4 + 2]) << 16 |
(uint32_t)(block[a * 4 + 3]) << 24);
}
a = state[0];
b = state[1];
c = state[2];
d = state[3];
MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21);
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
}