-
Notifications
You must be signed in to change notification settings - Fork 8
/
randomized_benchmarking.py
259 lines (215 loc) · 10.3 KB
/
randomized_benchmarking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# =============================================================================
# filter_functions
# Copyright (C) 2019 Quantum Technology Group, RWTH Aachen University
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Contact email: tobias.hangleiter@rwth-aachen.de
# =============================================================================
"""
This example implements a basic Randomized Benchmarking simulation with two
different types of noise - white and correlated - to highlight correlations
between gates captured in the filter functions.
"""
import pathlib
import time
from typing import Dict, Sequence
import filter_functions as ff
import matplotlib.pyplot as plt
import numpy as np
import qutip as qt
from numpy import ndarray
from numpy.random import permutation
from scipy import io, optimize, integrate
# %%
def fitfun(m, A):
return 1 - A*m
def state_infidelity(pulse: ff.PulseSequence, S: ndarray, omega: ndarray,
ind: int = 3) -> float:
"""Compute state infidelity for input state eigenstate of pauli *ind*"""
R = pulse.get_control_matrix(omega)
F = np.einsum('jko->jo', ff.util.abs2(R[:, np.delete([0, 1, 2, 3], ind)]))
return integrate.trapezoid(F*S, omega)/(2*np.pi*pulse.d)
def find_inverse(U: ndarray, cliffords: Sequence[ff.PulseSequence]) -> ndarray:
"""
Function to find the inverting gate to take the input state back to itself.
"""
eye = np.identity(U.shape[0])
if ff.util.oper_equiv(U, eye, eps=1e-8)[0]:
return cliffords[0]
for i, gate in enumerate(permutation(cliffords)):
if ff.util.oper_equiv(gate.total_propagator @ U, eye, eps=1e-8)[0]:
return gate
# Shouldn't reach this point because the major axis pi and pi/2 rotations
# are in the Clifford group, the state is always an eigenstate of a Pauli
# operator during the pulse sequence.
raise Exception
def run_randomized_benchmarking(N_G: int, N_l: int, min_l: int, max_l: int, alpha: Sequence[float],
spectra: Dict[float, Sequence[float]], omega: Sequence[float],
cliffords: Sequence[ff.PulseSequence]):
infidelities = {a: np.empty((N_l, N_G), dtype=float) for a in alpha}
lengths = np.round(np.linspace(min_l, max_l, N_l)).astype(int)
delta_t = []
t_now = [time.perf_counter()]
print(f'Start simulation with {len(lengths)} sequence lengths')
print('---------------------------------------------')
for l, length in enumerate(lengths):
t_now.append(time.perf_counter())
delta_t.append(t_now[-1] - t_now[-2])
print('Sequence length', length, f'Elapsed time: {t_now[-1] - t_now[0]:.2f} s', sep='\t')
for j in range(N_G):
randints = np.random.randint(0, len(cliffords), lengths[l])
U = ff.concatenate(cliffords[randints])
U_inv = find_inverse(U.total_propagator, cliffords)
pulse_sequence = U @ U_inv
for k, a in enumerate(alpha):
infidelities[a][l, j] = state_infidelity(pulse_sequence, spectra[a], omega).sum()
return infidelities, delta_t
# %% Set up Hamiltonians
T = 20
pulse_types = ('naive', 'optimized')
gates = ('X2', 'Y2')
H_n = {pt: {} for pt in pulse_types}
H_c = {pt: {} for pt in pulse_types}
dt = {pt: {} for pt in pulse_types}
# %%% naive gates (assume noise just on X)
H_c['naive']['Id'] = [[qt.sigmax().full()/2, [0], 'X']]
H_n['naive']['Id'] = [[qt.sigmax().full()/2, [1], 'X']]
dt['naive']['Id'] = [T]
H_c['naive']['X2'] = [[qt.sigmax().full()/2, [np.pi/2/T], 'X']]
H_n['naive']['X2'] = [[qt.sigmax().full()/2, [1], 'X']]
dt['naive']['X2'] = [T]
H_c['naive']['Y2'] = [[qt.sigmay().full()/2, [np.pi/2/T], 'Y']]
H_n['naive']['Y2'] = [[qt.sigmax().full()/2, [1], 'X']]
dt['naive']['Y2'] = [T]
# %%% optimized gates
fpath = pathlib.Path(ff.__file__).parent.parent / 'examples/data'
# Set up Hamiltonian for X2, Y2 gate
struct = {gate: io.loadmat(fpath / f'{gate}ID.mat') for gate in gates}
eps = {gate: np.asarray(struct[gate]['eps'], order='C') for gate in gates}
B = {gate: np.asarray(struct[gate]['B'].ravel(), order='C') for gate in gates}
dt['optimized'] = {gate: np.asarray(struct[gate]['t'].ravel(), order='C') for gate in gates}
J = {gate: np.exp(eps[gate]) for gate in gates}
n_dt = {gate: len(dt['optimized'][gate]) for gate in gates}
c_coeffs = {gate: [J[gate][0], B[gate][0]*np.ones(n_dt[gate])] for gate in gates}
n_coeffs = {gate: np.ones((3, n_dt[gate])) for gate in gates}
# Add identity gate, choosing the X/2 operation on the right qubit
for gate in gates:
H_c['optimized'][gate] = list(zip(ff.util.paulis[[1, 3]]/2, c_coeffs[gate], ('X', 'Z')))
H_n['optimized'][gate] = list(zip(ff.util.paulis[1:2]/2, n_coeffs[gate], ('X',)))
# %% Set up PulseSequences
pulses = {p: {g: ff.PulseSequence(H_c[p][g], H_n[p][g], dt[p][g]) for g in gates}
for p in pulse_types}
# %% Define some parameters
m_min = 1
m_max = 151
# sequence lengths
N_l = 21
lengths = np.round(np.linspace(m_min, m_max, N_l)).astype(int)
# no. of random sequences per length
N_G = 50
omega = np.geomspace(1e-2/(7*m_max*T), 1e2/T, 301)*2*np.pi
# %% Cache filter functions for primitive gates
for p in pulse_types:
for g in gates:
pulses[p][g].cache_control_matrix(omega)
# %% Construct Clifford group
cliffords = {}
tic = time.perf_counter()
for p in pulse_types:
X2, Y2 = pulses[p].values()
cliffords[p] = np.array([
Y2 @ Y2 @ Y2 @ Y2, # Id
X2 @ X2, # X
Y2 @ Y2, # Y
Y2 @ Y2 @ X2 @ X2, # Z
X2 @ Y2, # Y/2 ○ X/2
X2 @ Y2 @ Y2 @ Y2, # -Y/2 ○ X/2
X2 @ X2 @ X2 @ Y2, # Y/2 ○ -X/2
X2 @ X2 @ X2 @ Y2 @ Y2 @ Y2, # -Y/2 ○ -X/2
Y2 @ X2, # X/2 ○ Y/2
Y2 @ X2 @ X2 @ X2, # -X/2 ○ Y/2
Y2 @ Y2 @ Y2 @ X2, # X/2 ○ -Y/2
Y2 @ Y2 @ Y2 @ X2 @ X2 @ X2, # -X/2 ○ -Y/2
X2, # X/2
X2 @ X2 @ X2, # -X/2
Y2, # Y/2
Y2 @ Y2 @ Y2, # -Y/2
X2 @ Y2 @ Y2 @ Y2 @ X2 @ X2 @ X2, # Z/2
X2 @ X2 @ X2 @ Y2 @ Y2 @ Y2 @ X2, # -Z/2
X2 @ X2 @ Y2, # Y/2 ○ X
X2 @ X2 @ Y2 @ Y2 @ Y2, # -Y/2 ○ X
Y2 @ Y2 @ X2, # X/2 ○ Y
Y2 @ Y2 @ X2 @ X2 @ X2, # -X/2 ○ Y
X2 @ Y2 @ X2, # X/2 ○ Y/2 ○ X/2
X2 @ Y2 @ Y2 @ Y2 @ X2 # X/2 ○ -Y/2 ○ X/2
], dtype=object)
toc = time.perf_counter()
print(f'Construction of Clifford group: {toc - tic:.2f} s\n')
# %% Run simulation
# We use the 1/f^0.7 spectrum from Dial et al (2013) and a white spectrum
# leading to the same average clifford infidelity
def spectrum(omega, alpha):
eps0 = 2.7241e-4
return 4e-11*(2*np.pi*1e-3/omega)**alpha/eps0**2
alpha = (0.0, 0.7)
# Scale noise such that average clifford infidelity is the same for all pulse types and alpha
clifford_infids = {p: {a: np.array([
ff.infidelity(c, spectrum(omega, a), omega) for c in cliffords[p]
]) for a in alpha} for p in pulse_types}
noise_scaling_factor = {p: {
a: clifford_infids['optimized'][0.7].sum(1).mean(0) / clifford_infids[p][a].sum(1).mean(0)
for a in alpha
} for p in pulse_types}
state_infidelities = {}
clifford_infidelities = {}
spectra = {}
for p in pulse_types:
spectra[p] = {}
clifford_infidelities[p] = {}
for a in alpha:
spectra[p][a] = noise_scaling_factor[p][a] * spectrum(omega, a)
clifford_infidelities[p][a] = np.array([ff.infidelity(c, spectra[p][a], omega).sum()
for c in cliffords[p]])
print(f'\nRunning RB simulation for {p} gates')
state_infidelities[p], exec_times = run_randomized_benchmarking(N_G, N_l, m_min, m_max,
alpha, spectra[p], omega,
cliffords[p])
# %% Plot results
fig, ax = plt.subplots(2, 2, sharex=True, sharey=True, figsize=(8, 5))
fidelities = {p: {a: 1 - infid for a, infid in state_infidelities[p].items()} for p in pulse_types}
for i, p in enumerate(pulse_types):
for j, a in enumerate(alpha):
means = np.mean(fidelities[p][a], axis=1)
stds = np.std(fidelities[p][a], axis=1)
popt, pcov = optimize.curve_fit(fitfun, lengths, means, [0], stds, absolute_sigma=True)
for k in range(N_G):
fid = ax[i, j].plot(lengths, fidelities[p][a][:, k], 'k.', alpha=0.1, zorder=2)
mean = ax[i, j].errorbar(lengths, means, yerr=stds, fmt='+', zorder=3, color='tab:red')
fit = ax[i, j].plot(lengths, fitfun(lengths, *popt), '--', zorder=4, color='tab:red')
# The expectation for uncorrelated pulses is F = 1 - r*m with m the
# sequence length and r = 1 - F_avg = d/(d + 1)*(1 - F_ent) the average
# error per gate
exp = ax[i, j].plot(lengths, 1 - np.mean(clifford_infidelities[p][a])*lengths*2/3,
'--', zorder=4, color='tab:blue')
ax[i, j].set_title(rf'{p} pulses, $\alpha = {a}$')
if i == 1:
ax[i, j].set_xlabel(r'Sequence length $m$')
if j == 0:
ax[i, j].set_ylabel(r'Surival Probability')
handles = [fid[0], mean, fit[0], exp[0]]
labels = ['State Fidelity', 'Fidelity mean+std', 'Fit', 'RB theory w/o pulse correlations']
ax[i, j].legend(frameon=False, handles=handles, labels=labels)
ax[i, j].set_xlim(0, max(lengths))
fig.tight_layout()