-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathshy.R
187 lines (161 loc) · 6.28 KB
/
shy.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# The SHY (SHarpe Yield) strategy for long term investment
require(ggplot2)
if (!exists('UTIL_R')) {
source('util.R')
}
pass_criteria <- function(data)
{
if (is.null(data)) { return (FALSE) }
REQUIRED_DAY_COUNT = 750 # 250 days * 3 => 1 year * 3
if (nrow(data) < REQUIRED_DAY_COUNT) {
dprint("個股連續有正殖利率期間未滿三年,不予考慮")
return (FALSE)
}
REQUIRED_VOLUME_MEAN = -1 # Note: the volume unit of csv raw data is 1,000,000 NTD
if (-1 != REQUIRED_VOLUME_MEAN & mean(data$volume) < REQUIRED_VOLUME_MEAN) {
dprint(paste("個股平均成交量未達標準,不予考慮:", mean(data$volume)))
return (FALSE)
}
return (TRUE)
}
# prune the input data to only keep values with date from 1st positive yield
get_pruned_data_by_yield <- function(data)
{
if (class(data) != 'data.frame') {
stopifnot(is.na(data))
return (NULL)
}
yields = data[, YIELD]
if (0 == length(yields) | is.na(yields[1])) {
dprint("個股無最近日期殖利率資料")
return (NULL)
}
last_zero_yield_idx = -1
for (i in 1:length(yields))
{
stopifnot(yields[i] >= 0)
if (0 == yields[i]) {
if (0 == i) {
dprint("個股最近日期殖利率為0")
return (NULL)
}
last_zero_yield_idx = i
dprint(paste("只考慮從上一次正殖利率開始的日期", data[, DATE][last_zero_yield_idx - 1]))
return (data[1:last_zero_yield_idx - 1,]) # rows: last_zero_yield_idx - 1, columns: keep all
}
}
return (data)
}
get_yields <- function(csv_file, cared_date=NA, data=data.frame())
{
stopifnot(class(data) == 'data.frame')
csv_data = if (0 == length(data)) get_csv_data(csv_file, cared_date) else data
pruned_data = get_pruned_data_by_yield(csv_data)
if (FALSE == pass_criteria(pruned_data)) {
return (NA)
}
return (pruned_data[, YIELD])
}
get_shy_adjust_factor <- function(yields)
{
return (sqrt(length(yields)))
}
get_shy_values <- function(csv_file, cared_date=NA, data=data.frame())
{
yields = get_yields(csv_file, cared_date, data)
if ('logical' == class(yields)) {
stopifnot(is.na(yields))
return (data.frame(shy=NA, adjust_factor=NA))
}
# we don't expect a higher shy value caused by a yield-sd lower than 1
adopted_sd = if (sd(yields) > 1) sd(yields) else 1
shy = mean(yields) / adopted_sd
return (data.frame(shy=shy, adjust_factor=get_shy_adjust_factor(yields)))
}
get_shy <- function(csv_file, cared_date=NA, data=data.frame())
{
shy_values = get_shy_values(csv_file, cared_date, data)
return (shy_values$shy)
}
dump <- function(row_values, more_info)
{
idx = row_values[1]
id = row_values[2]
dump_str = c("(", idx, ") 個股:", id, ", SHY:", row_values[3])
if (more_info) {
more_dump_str = c(", 調整值:", row_values[4])
dump_str = c(dump_str, more_dump_str)
}
print(paste(dump_str, collapse=''))
}
get_shy_suggestion <- function(cared_date=NA, more_info=FALSE, silence=FALSE, in_csv_files=NA)
{
COMPUTE_LIMIT = -1 # -1 means no limit
csv_root = paste0(getwd(), '/', CSV_HOME) # paste(..., sep='')
csv_files = if (class(in_csv_files) == 'logical' && is.na(in_csv_files))
Sys.glob(paste0(csv_root, "*.csv")) else in_csv_files
csv_cnt = if (-1 != COMPUTE_LIMIT & length(csv_files) > COMPUTE_LIMIT) COMPUTE_LIMIT else length(csv_files)
shy_values = data.frame(matrix(nrow=csv_cnt, ncol=2)) # 2 for 'shy', 'adjust_factor'
colnames(shy_values) = c('shy', 'adjust_factor')
for (i in 1:csv_cnt) {
ret_values = get_shy_values(csv_files[i], cared_date)
shy_values$shy[i] = ret_values$shy
shy_values$adjust_factor[i] = ret_values$adjust_factor
}
id_list = gsub(".csv", "", gsub(csv_root, "", csv_files))[1:csv_cnt]
shy_frame = data.frame(id=id_list, shy=shy_values$shy, adjust_factor=shy_values$adjust_factor)
ordered_frame = shy_frame[order(shy_frame$shy * shy_frame$adjust_factor, decreasing=TRUE),]
indexed_frame = cbind(idx=1:csv_cnt, ordered_frame) # add index column
if (FALSE == silence)
{
#print("推薦個股(依評比由高至低)如下:")
suggest_cnt = if (csv_cnt > SUGGEST_CNT) SUGGEST_CNT else csv_cnt
apply(indexed_frame[1:suggest_cnt,], 1, dump, more_info=more_info) # '1' indicates rows
}
return (ordered_frame)
}
library(ggplot2)
show_yield_points <- function()
{
COMPUTE_LIMIT = -1 # -1 means no limit
csv_root = paste0(getwd(), '/', CSV_HOME) # paste(..., sep='')
csv_files = Sys.glob(paste0(csv_root, "*.csv"))
csv_cnt = if (-1 != COMPUTE_LIMIT & length(csv_files) > COMPUTE_LIMIT) COMPUTE_LIMIT else length(csv_files)
mean_values = double(csv_cnt)
sd_values = double(csv_cnt)
for (i in 1:csv_cnt) {
yields = get_yields(csv_files[i])
mean_values[i] = mean(yields)
sd_values[i] = sd(yields)
}
id_list = gsub(".csv", "", gsub(csv_root, "", csv_files))[1:csv_cnt]
yield_frame = data.frame(id=id_list, mean=mean_values, sd=sd_values)
sd_values[sd_values < 1] <- 1 # Note: in-place modification, for we do not expect a larger shy value by a less than 1 sd-yield
shy_values = mean_values / sd_values
max_shy = max(shy_values, na.rm=TRUE)
min_shy = min(shy_values, na.rm=TRUE)
# for shy distribution may be 'normal', and thus to have a more even 'red-green' proportion,
# we intend to larger the 'red range' by sqrt operation
red_values = sqrt((shy_values - min_shy) / (max_shy - min_shy))
green_values = 1 - (red_values)
colors = character(csv_cnt)
for (i in 1:csv_cnt)
{
is_na = is.na(red_values[i])
colors[i] = rgb(red=if (is_na) 1 else red_values[i],
green=if (is_na) 1 else green_values[i],
blue=if (is_na) 1 else 0)
}
p = ggplot(yield_frame, aes(x=mean, y=sd, label=id)) +
ggtitle(if (ENG == LANG) 'Concept of SHY' else 'SHY概念示意圖') +
xlab(if (ENG == LANG) 'Yield (AVG)' else '殖利率(平均值)') +
ylab(if (ENG == LANG) 'Yield (STDEV)' else '殖利率(標準差)') +
theme(text=element_text(family='STKaiti')) + # to support Chinese characters
geom_text(size=3, hjust=0, nudge_x=0.02, color=colors, na.rm=TRUE) +
scale_x_continuous(trans='sqrt') +
scale_y_continuous(trans='log2') +
#scale_y_reverse() + # sd (y-axis) is shown reversed
geom_point(color=colors, na.rm=TRUE, size=0.5)
print(p)
return (yield_frame)
}