-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathclinical_ner.py
454 lines (354 loc) · 17.2 KB
/
clinical_ner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
#!/usr/bin/env python
# coding: utf-8
import warnings
from tqdm import tqdm
from prefetch_generator import BackgroundGenerator
from utils import *
from torch.utils.data import Dataset, DataLoader, RandomSampler, TensorDataset
from transformers import *
import argparse
import random
import math
from model import *
warnings.filterwarnings("ignore")
device = torch.device('cuda') if torch.cuda.is_available() else torch.device("cpu")
print('device', device)
juman = Juman()
torch.cuda.manual_seed_all(1234)
def pulse_freeze_bert(model, pulse_delta, bert_name='bert', freeze_embed=False):
for n, p in list(model.named_parameters()):
for i in list(range(0, 12)):
if freeze_embed:
if n.startswith("%s.embeddings" % bert_name):
p.requires_grad = False
else:
if n.startswith("%s.embeddings" % bert_name):
p.requires_grad = True
if n.startswith("%s.encoder.layer.%i." % (bert_name, i)):
if random.random() < pulse_delta:
p.requires_grad = False
else:
p.requires_grad = True
"""
python input arguments
"""
parser = argparse.ArgumentParser(description='PRISM tag recognizer')
parser.add_argument("-m", "--model", dest="MODEL_DIR", default='checkpoints/Dokuei2019', type=str,
help="save/load model dir")
parser.add_argument("--train_file", dest="TRAIN_FILE", type=str,
help="train file, BIO format.")
parser.add_argument("--test_file", dest="TEST_FILE", type=str,
help="test file, BIO format.")
parser.add_argument("--dev_file", dest="DEV_FILE", type=str,
help="dev file, BIO format.")
parser.add_argument("-p", "--pre", dest="PRE_MODEL",
default='/home/feicheng/Tools/Japanese_L-12_H-768_A-12_E-30_BPE_WWM_transformers',
type=str,
help="pre-trained model dir")
parser.add_argument("-b", "--batch", dest="BATCH_SIZE", default=16, type=int,
help="BATCH SIZE")
parser.add_argument("-e", "--epoch", dest="NUM_EPOCHS", default=3, type=int,
help="epoch number")
parser.add_argument("--freeze", dest="EPOCH_FREEZE", default=6, type=int,
help="freeze the BERT encoder after N epoches")
parser.add_argument("--bottomup_freeze",
action='store_true',
help="freeze the BERT layers from bottom to top")
parser.add_argument("--pulse_freeze",
action='store_true',
help="pulsely freeze all BERT layers")
parser.add_argument("--pulse_bottomup_freeze",
action='store_true',
help="pulse freeze the BERT layers from bottom to top")
parser.add_argument("--freeze_embed",
action='store_true',
help="whether freeze the embedding layer")
parser.add_argument("--fine_epoch", dest="NUM_FINE_EPOCHS", default=2, type=int,
help="fine-tuning epoch number")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_crf",
action='store_true',
help="Whether to use CRF.")
parser.add_argument("--test_output", default='outputs/temp_test.ner', type=str,
help="test output filename")
parser.add_argument("--dev_output", default='outputs/temp_dev.ner', type=str,
help="dev output filename")
parser.add_argument("--later_eval",
action='store_true',
help="Whether eval model every epoch.")
parser.add_argument("--save_best", action='store', type=str, default='f1',
help="save the best model, given dev scores (f1 or loss)")
parser.add_argument("--save_step_interval", default=80, type=int,
help="save best model given a step interval")
parser.add_argument("--fp16",
action='store_true',
help="fp16")
parser.add_argument("--fp16_opt_level", type=str, default="O2",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--scheduled_lr",
action='store_true',
help="learning rate schedule")
parser.add_argument("--joint",
action='store_true',
help="merge ner and modality jointly")
args = parser.parse_args()
tokenizer = BertTokenizer.from_pretrained(args.PRE_MODEL, do_lower_case=False, do_basic_tokenize=False)
TRAIN_FILE = args.TRAIN_FILE
TEST_FILE = args.TEST_FILE
DEV_FILE = args.DEV_FILE
""" Read conll file for counting statistics, such as: [UNK] token ratio, label2ix, etc. """
train_deunks, train_toks, train_labs, train_cert_labs, train_ttype_labs, train_state_labs = read_conll(
TRAIN_FILE,
is_merged=args.joint
)
test_deunks, test_toks, test_labs, test_cert_labs, test_ttype_labs, test_state_labs = read_conll(
TEST_FILE,
is_merged=args.joint
)
dev_deunks, dev_toks, dev_labs, dev_cert_labs, dev_ttype_labs, dev_state_labs = read_conll(
DEV_FILE,
is_merged=args.joint
)
whole_toks = train_toks + dev_toks + test_toks
max_len = max([len(x) for x in whole_toks])
unk_count = sum([x.count('[UNK]') for x in whole_toks])
total_count = sum([len(x) for x in whole_toks])
lab2ix = get_label2ix(train_labs + dev_labs + test_labs)
cert_lab2ix = get_label2ix(train_cert_labs + dev_cert_labs + test_cert_labs)
ttype_lab2ix = get_label2ix(train_ttype_labs + dev_ttype_labs + test_ttype_labs)
state_lab2ix = get_label2ix(train_state_labs + dev_state_labs + test_state_labs)
print('max sequence length:', max_len)
print('[UNK] token: %s, total: %s, oov rate: %.2f%%' % (unk_count, total_count, unk_count * 100 / total_count))
print('[Example:]', whole_toks[0])
print(lab2ix)
print(cert_lab2ix)
print(ttype_lab2ix)
print(state_lab2ix)
"""
- Generate train/test tensors including (token_ids, mask_ids, label_ids)
- wrap them into dataloader for mini-batch cutting
"""
train_tensors, train_deunk = extract_ner_from_conll(TRAIN_FILE, tokenizer, lab2ix, device, is_merged=args.joint)
train_sampler = RandomSampler(train_tensors)
train_dataloader = DataLoader(train_tensors, sampler=train_sampler, batch_size=args.BATCH_SIZE)
print('train size: %i' % len(train_tensors))
dev_tensors, dev_deunk = extract_ner_from_conll(DEV_FILE, tokenizer, lab2ix, device, is_merged=args.joint)
dev_dataloader = DataLoader(dev_tensors, batch_size=args.BATCH_SIZE, shuffle=False)
dev_deunk_loader = [dev_deunk[i: i + args.BATCH_SIZE] for i in range(0, len(dev_deunk), args.BATCH_SIZE)]
print('dev size: %i' % len(dev_tensors))
test_tensors, test_deunk = extract_ner_from_conll(TEST_FILE, tokenizer, lab2ix, device, is_merged=args.joint)
test_dataloader = DataLoader(test_tensors, batch_size=args.BATCH_SIZE, shuffle=False)
test_deunk_loader = [test_deunk[i: i + args.BATCH_SIZE] for i in range(0, len(test_deunk), args.BATCH_SIZE)]
print('test size: %i' % len(test_tensors))
if args.do_crf:
model_dir = "%s/crf" % args.MODEL_DIR
else:
model_dir = "%s/seq" % args.MODEL_DIR
if args.do_train:
""" Disease Tags recognition """
if args.do_crf:
model = BertCRF.from_pretrained(args.PRE_MODEL, num_labels=len(lab2ix))
# specify different lr
param_optimizer = list(model.named_parameters())
crf_name_list = ['crf_layer']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if any(nd in n for nd in crf_name_list)], 'lr': 1e-2},
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in crf_name_list)], 'lr': 5e-5}
]
# To reproduce BertAdam specific behavior set correct_bias=False
optimizer = AdamW(
optimizer_grouped_parameters,
eps=1e-8,
correct_bias=False,
# weight_decay=1e-2,
)
else:
model = BertForTokenClassification.from_pretrained(args.PRE_MODEL, num_labels=len(lab2ix))
# To reproduce BertAdam specific behavior set correct_bias=False
optimizer = AdamW(
model.parameters(),
lr=5e-5,
eps=1e-8,
correct_bias=False
)
model.to(device)
# PyTorch scheduler
num_epoch_steps = len(train_dataloader)
num_finetuning_steps = args.NUM_FINE_EPOCHS * num_epoch_steps
num_training_steps = args.NUM_EPOCHS * num_epoch_steps
warmup_ratio = 0.1
if args.scheduled_lr:
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=num_finetuning_steps,
num_training_steps=num_training_steps
)
# support fp16
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
pulse_delta = 1.0 / args.NUM_EPOCHS
best_dev_score = float('-inf') if args.save_best == 'f1' else float('inf')
save_step_interval = math.ceil(num_epoch_steps / 4)
for param_group in optimizer.param_groups:
print(param_group['lr'])
print(len(param_group['params']))
print()
print("freeze embedding:", args.freeze_embed)
for epoch in range(1, args.NUM_EPOCHS + 1):
if args.bottomup_freeze:
freeze_bert_layers(model, bert_name='bert', freeze_embed=args.freeze_embed, layer_list=list(range(0, epoch - 1)))
if args.EPOCH_FREEZE != 0 and epoch > args.EPOCH_FREEZE:
freeze_bert_layers(model, bert_name='bert', freeze_embed=args.freeze_embed, layer_list=list(range(0, 11)))
epoch_loss = 0.0
pbar = tqdm(enumerate(BackgroundGenerator(train_dataloader)), total=len(train_dataloader))
for step, (batch_feat, batch_mask, batch_lab) in pbar:
# for step, (batch_feat, batch_mask, batch_lab) in enumerate(tqdm(train_dataloader, desc='Training'), start=1):
model.train()
# BERT loss, logits: (batch_size, seq_len, tag_num)
if args.pulse_freeze:
pulse_freeze_bert(model, pulse_delta, freeze_embed=args.freeze_embed)
if args.do_crf:
# transformers return tuple
loss = model(batch_feat, attention_mask=batch_mask, labels=batch_lab)
else:
loss = model(batch_feat, attention_mask=batch_mask, labels=batch_lab)[0]
# print(loss)
epoch_loss += loss.item()
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
if args.scheduled_lr:
scheduler.step()
model.zero_grad()
pbar.set_description("Epoch: {}/{} | Training Loss: {:.6f}".format(
epoch, args.NUM_EPOCHS, loss.item()
))
if ((step + 1) % save_step_interval == 0) or ((step + 1) == num_epoch_steps):
if args.save_best == 'loss':
dev_loss = 0.0
model.eval()
with torch.no_grad():
for dev_feat, dev_mask, dev_lab in dev_dataloader:
if args.do_crf:
dev_loss += model(dev_feat, attention_mask=dev_mask, labels=dev_lab)
else:
dev_loss += model(dev_feat, attention_mask=dev_mask, labels=dev_lab)[0]
if best_dev_score > (dev_loss / len(dev_dataloader)):
print("-> best dev loss %.4f; current loss %.4f; best model saved '%s'" % (
best_dev_score,
dev_loss / len(dev_dataloader),
model_dir
))
best_dev_score = dev_loss / len(dev_dataloader)
""" save the best model """
if not os.path.exists(model_dir):
os.makedirs(model_dir)
model.save_pretrained(model_dir)
tokenizer.save_pretrained(model_dir)
elif args.save_best == 'f1':
if args.do_crf:
eval_crf(model, tokenizer, dev_dataloader, dev_deunk_loader, lab2ix, args.dev_output, args.joint)
eval_crf(model, tokenizer, test_dataloader, test_deunk_loader, lab2ix, args.test_output,
args.joint)
else:
eval_seq(model, tokenizer, dev_dataloader, dev_deunk_loader, lab2ix, args.dev_output, args.joint)
import subprocess
eval_out = subprocess.check_output(
['./ner_eval.sh', args.dev_output]
).decode("utf-8").split('\n')[2]
dev_f1 = float(eval_out.split()[-1])
print("current dev f1: {:2f}".format(dev_f1))
test_out = subprocess.check_output(
['./ner_eval.sh', args.test_output]
).decode("utf-8").split('\n')[2]
test_f1 = float(test_out.split()[-1])
print("current test f1: {:2f}".format(test_f1))
if best_dev_score < dev_f1:
print("-> best dev f1 %.4f; current f1 %.4f; best model saved '%s'" % (
best_dev_score,
dev_f1,
model_dir
))
best_dev_score = dev_f1
""" save the best model """
save_bert(model, tokenizer, model_dir)
if not args.save_best:
save_bert(model, tokenizer, model_dir)
if args.later_eval:
if args.do_crf:
model = BertCRF.from_pretrained(model_dir)
model.to(device)
eval_crf(model, tokenizer, test_dataloader, test_deunk_loader, lab2ix, args.test_output, args.joint)
else:
model = BertForTokenClassification.from_pretrained(model_dir)
model.to(device)
eval_seq(model, tokenizer, test_dataloader, test_deunk_loader, lab2ix, args.test_output, args.joint)
import subprocess
eval_out = subprocess.check_output(
['./ner_eval.sh', args.test_output]
).decode("utf-8")
print("epoch loss: %.6f; " % (epoch_loss/len(train_dataloader)))
# print(eval_out.split('\n')[2])
print(eval_out)
eval_modality(args.test_output)
else:
""" load the new tokenizer"""
print("test_mode:", model_dir)
tokenizer = BertTokenizer.from_pretrained(model_dir, do_lower_case=False, do_basic_tokenize=False)
# test_tensors, test_deunk = extract_ner_from_conll(TEST_FILE, tokenizer, lab2ix, device)
# test_dataloader = DataLoader(test_tensors, batch_size=args.BATCH_SIZE, shuffle=False)
# test_deunk_loader = [test_deunk[i: i + args.BATCH_SIZE] for i in range(0, len(test_deunk), args.BATCH_SIZE)]
# print('test size: %i' % len(test_tensors))
#
# dev_tensors, dev_deunk = extract_ner_from_conll(DEV_FILE, tokenizer, lab2ix, device, is_merged=args.joint)
# dev_dataloader = DataLoader(dev_tensors, batch_size=args.BATCH_SIZE, shuffle=False)
# dev_deunk_loader = [dev_deunk[i: i + args.BATCH_SIZE] for i in range(0, len(dev_deunk), args.BATCH_SIZE)]
# print('dev size: %i' % len(dev_tensors))
""" load the new model"""
if args.do_crf:
model = BertCRF.from_pretrained(model_dir)
else:
model = BertForTokenClassification.from_pretrained(model_dir)
model.to(device)
""" predict test out """
# if not args.do_crf:
# eval_seq(model, tokenizer, dev_dataloader, dev_deunk_loader, lab2ix, args.dev_output, args.joint)
# else:
# eval_crf(model, tokenizer, dev_dataloader, dev_deunk_loader, lab2ix, args.dev_output, args.joint)
if not args.do_crf:
eval_seq(model, tokenizer, test_dataloader, test_deunk_loader, lab2ix, args.test_output, args.joint)
else:
eval_crf(model, tokenizer, test_dataloader, test_deunk_loader, lab2ix, args.test_output, args.joint)
# import subprocess
#
# dev_score = subprocess.check_output(
# ['./ner_eval.sh', args.dev_output]
# ).decode("utf-8")
# # print(eval_out.split('\n')[2])
# print(dev_score)
# eval_modality(args.dev_output)
#
# import subprocess
#
# test_score = subprocess.check_output(
# ['./ner_eval.sh', args.test_output]
# ).decode("utf-8")
# # print(eval_out.split('\n')[2])
# print(test_score)
# eval_modality(args.test_output)