-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvelocity.py
executable file
·218 lines (185 loc) · 7.9 KB
/
velocity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python
__all__ = ['leastsquares', 'foaw', 'fast_foaw', 'median_filter', 'levant']
from pylab import *
from scipy.signal import lfilter, butter
from scipy.linalg import inv
import os, subprocess, threading, ctypes
def leastsquares(N=1,M=15):
"""Least squares estimator, Brown et al., "Analysis of Algorithms
for Velocity Estimation from Discrete Position Versus Time Data." IEEE
Trans. on Industrial Electronics, 39(1), Feb. 1992.
N: Degree of polynomial to approximate. (1 or 2 is usually sufficient.)
M: Number of points of history to consider, affects the time
response and noise rejection.
"""
A = (array([range(1,M+1)]*(N+1)).T) ** array([arange(N+1)]*M)
Aplus = dot(inv(dot(A.T,A)),A.T)
qdot = arange(N+1)*concatenate(([0],M**arange(N)))
hdot = dot(qdot,Aplus)
return squeeze(hdot)[::-1]
# First-Order Adaptive Windowing (FOAW)
def foaw(pos, sr, noise_max, n=16, best=False):
T = 1/sr
result = zeros(len(pos))
for k in range(len(pos)):
velocity = 0
for i in range(1,min(n,k)):
# Calculate slope over interval
if (best):
# least squared method (best-fit-FOAW)
b = ( ( i*sum([pos[k-j] for j in range(i+1)])
- 2*sum([pos[k-j]*j for j in range(i+1)]) )
/ (T*i*(i+1)*(i+2)/6) )
else:
# direct method (end-fit-FOAW)
b = (pos[k]-pos[k-i]) / (i*T)
# Check the linear estimate of each middle point
outside = False
for j in range(1,i):
ykj = pos[k]-(b*j*T)
# Compare to the measured value within the noise margin
# If it's outside noise margin, return last estimate
if ykj < (pos[k-j]-noise_max) or ykj > (pos[k-j]+noise_max):
outside = True
break
if outside: break
velocity = b
result[k] = velocity
return result
def fast_foaw(pos, sr, noise_max, n=16, best=False):
"""Run a faster version of FOAW by calling to C compiled code."""
result = ascontiguousarray(zeros(pos.shape[0], dtype='f8'))
path = '.'.join(__file__.split('.')[:-1]+['py'])
lib = os.path.join(os.path.dirname(os.path.realpath(path)),'cvelocity.so')
cv = ctypes.cdll.LoadLibrary(lib)
array_1d_double = ctypeslib.ndpointer(dtype=double,
ndim=1, flags='CONTIGUOUS')
if best:
cv.foaw_best_fit.argtypes = [ctypes.c_double, ctypes.c_int,
ctypes.c_double,
array_1d_double, array_1d_double,
ctypes.c_int]
cv.foaw_best_fit.restype = None
cv.foaw_best_fit(sr, n, noise_max, pos, result, pos.shape[0])
else:
cv.foaw_end_fit.argtypes = [ctypes.c_double, ctypes.c_int,
ctypes.c_double,
array_1d_double, array_1d_double,
ctypes.c_int]
cv.foaw_end_fit.restype = None
cv.foaw_end_fit(sr, n, noise_max, pos, result, pos.shape[0])
return result
def median_filter(pos, n=5):
result = zeros(len(pos))
for k in range(1,len(pos)):
result[k] = median(pos[max(k-n,0):k])
return result
def fast_median_filter(pos, n=5):
"""Run a faster median filter by calling to C compiled code."""
result = ascontiguousarray(zeros(pos.shape[0], dtype='f8'))
path = '.'.join(__file__.split('.')[:-1]+['py'])
lib = os.path.join(os.path.dirname(os.path.realpath(path)),'cvelocity.so')
cv = ctypes.cdll.LoadLibrary(lib)
array_1d_double = ctypeslib.ndpointer(dtype=double,
ndim=1, flags='CONTIGUOUS')
cv.median_filter.argtypes = [ctypes.c_int, array_1d_double,
array_1d_double, ctypes.c_int]
cv.median_filter.restype = None
cv.median_filter(n, pos, result, pos.shape[0])
return result
# Levant's differentiator, from Levant A. (1998). "Robust exact
# differentiation via sliding mode technique." Automatica, 34(3),
# 379-384. Suggested for use with force-feedback devices in Chawda et
# al., "Application of Levant's Differentiator for Velocity Estimation
# and Increased Z-Width in Haptic Interfaces", WHC 2011.
# Note that it's not very well-suited to the test data in this file
# because it is sensitive to an estimate of maximum acceleration,
# which in the case of this highly discontinuous velocity is very
# large. On sinusoidal test data it fairs much better, and gets
# better as sampling rate increases (as opposed to the other
# techniques here).
# Moreover, the papers suggest that Lambda and alpha variables can be
# better-tuned.
# Lipschitz's constant 'C' = maximum absolute acceleration, must be
# provided.
def f(alpha,Lambda,p,u1,x):
e = x-p
return array([ -alpha * sign(e),
u1-Lambda * sqrt(abs(e)) * sign(e) ])
def levant(pos, sr, C, alpha=None, Lambda=None, rk=1):
T = 1/sr
result = zeros(len(pos))
# Coefficients derived from C
if alpha == None:
alpha = 1.1 * C
if Lambda == None:
Lambda = sqrt(C)
x = 0
u1 = 0
if rk==4:
for k in range(len(pos)):
k1du1, k1dx = f(alpha,Lambda,pos[k], u1, x)
k2du1, k2dx = f(alpha,Lambda,pos[k], u1+(T/2)*k1du1, x+(T/2)*k1dx)
k3du1, k3dx = f(alpha,Lambda,pos[k], u1+(T/2)*k2du1, x+(T/2)*k2dx)
k4du1, k4dx = f(alpha,Lambda,pos[k], u1+T*k3du1, x+T*k3dx)
u1 = u1 + (T/6)*(k1du1 + 2*k2du1 + 2*k3du1 + k4du1)
u = (1.0/6)*(k1dx + 2*k2dx + 2*k3dx + k4dx)
x = x + u*T
result[k] = u
elif rk==2:
for k in range(len(pos)):
k1du1, k1dx = f(alpha,Lambda,pos[k],u1,x)
tu1 = u1 + k1du1*(T/2)
tx = x + k1dx*(T/2)
k2du1, k2dx = f(alpha,Lambda,pos[k],tu1,tx)
u1 = u1 + k2du1*T
x = x + k2dx*T
result[k] = k2dx
elif rk==1:
for k in range(len(pos)):
k1du1, k1dx = f(alpha,Lambda,pos[k],u1,x)
u1 = u1 + k1du1*T
x = x + k1dx*T
result[k] = k1dx
return result
def fast_levant(pos, sr, C, rk):
"""Run a faster version of Levant's differentiator by calling to C compiled code."""
result = ascontiguousarray(zeros(pos.shape[0], dtype='f8'))
path = '.'.join(__file__.split('.')[:-1]+['py'])
lib = os.path.join(os.path.dirname(os.path.realpath(path)),'cvelocity.so')
cv = ctypes.cdll.LoadLibrary(lib)
array_1d_double = ctypeslib.ndpointer(dtype=double,
ndim=1, flags='CONTIGUOUS')
cv.levant.argtypes = [ctypes.c_double, ctypes.c_double, ctypes.c_int,
array_1d_double, array_1d_double, ctypes.c_int]
cv.levant.restype = None
cv.levant(sr, C, rk, pos, result, pos.shape[0])
return result
def maxmin(x, n=3):
r = []
for i in range(n):
r.append((max(x[max(0,i-n):i+1])+min(x[max(0,i-n):i+1]))/2)
for y in zip(*[x[n-j:-j or None] for j in range(n)]):
r.append((max(y)+min(y))/2)
return r
def avgfilt(x, n=3):
r = []
for i in range(n):
r.append(average(x[max(0,i-n):i+1]))
for y in zip(*[x[n-j:-j or None] for j in range(n)]):
r.append(average(y))
return r
# Plotting, velocity curves and derivatives
def plotcurves(curves, titles, vel_yrange=None, dif_yrange=None):
for n, v in enumerate(curves):
acc = v-vel
subplot(len(curves),2,n*2+1)
plot(time, v)
if (vel_yrange!=None):
axis([time[0],time[-1],vel_yrange[0],vel_yrange[1]])
title(titles[n]+': velocity')
subplot(len(curves),2,n*2+2)
plot(time, acc)
if (dif_yrange!=None):
axis([time[0],time[-1],dif_yrange[0],dif_yrange[1]])
title(titles[n]+': ideal difference')