-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQ3.cpp
391 lines (325 loc) · 9.5 KB
/
Q3.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <omp.h>
#include <math.h>
#define RUN_COUNT 10
typedef struct {
float **A, **L, **U;
int n, blocks = 16;
} Dataset;
float **allocateMatrix(int n);
void fillDataset(Dataset *dataset);
// void printDataset(Dataset dataset);
void printMatrix(int n, float **mat);
void closeDataset(Dataset dataset);
void subtract(Dataset dataset, float **subtrahend, int row, int column);
void luDecomposition(Dataset dataset, int row, int column);
float **upperInverse(Dataset dataset, int row, int column);
float **lowerInverse(Dataset dataset, int row, int column);
void multiplicationFU(Dataset dataset, int row, int column, float **U);
void multiplicationLF(float **L, Dataset dataset, int row, int column);
float **multiplicationLU(Dataset dataset, int L_row, int L_column, int U_row, int U_column);
float determinant(Dataset dataset);
float detSerial(Dataset dataset);
int main(int argc, char* argv[]) {
Dataset dataset;
if (argc < 2) {
printf("[-] Invalid No. of arguments.\n");
printf("[-] Try -> <n> \n");
printf(">>> ");
scanf("%d", &(dataset.n));
}
else {
dataset.n = atoi(argv[1]);
}
printf("[-] dim size is: %d, and dataset size is: %lu bytes\n\n", dataset.n, (unsigned int)pow(dataset.n, 2) * sizeof(float));
#ifndef _OPENMP
printf("OpenMP is not supported.\n");
return 0;
#endif
omp_set_num_threads(8);
double starttime, elapsedtime;
double times_sum = 0;
for (int i = 0; i < RUN_COUNT; i++)
{
fillDataset(&dataset);
// get starting time
starttime = omp_get_wtime();
// printMatrix(dataset.n, dataset.A);
float det = determinant(dataset);
// printf("\n");
// printMatrix(dataset.n, dataset.L);
// printf("\n");
// printMatrix(dataset.n, dataset.U);
// printf("\ndeterminant: %f\n", det);
// get ending time and use it to determine elapsed time
elapsedtime = omp_get_wtime() - starttime;
// printDataset(dataset);
closeDataset(dataset);
// report elapsed time
printf("[-] Time Elapsed: %f Secs\n", elapsedtime);
times_sum += elapsedtime;
}
printf("\n[-] The average running time was: %lf secs.\n", times_sum / RUN_COUNT);
return 0;
}
float **allocateMatrix(int n) {
float **mat = (float**)malloc(sizeof(float*) * n);
for (int i = 0; i < n; i++)
{
mat[i] = (float*)malloc(sizeof(float) * n);
}
return mat;
}
void fillDataset(Dataset* dataset) {
int n = dataset->n;
dataset->A = allocateMatrix(n);
dataset->L = allocateMatrix(n);
dataset->U = allocateMatrix(n);
srand(time(NULL));
#pragma omp parallel for num_threads(8)
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
dataset->A[i][j] = rand() % 30 + 1;
dataset->L[i][j] = 0;
dataset->U[i][j] = 0;
}
}
}
void closeDataset(Dataset dataset) {
for (int i = 0; i < dataset.n; i++)
{
free(dataset.A[i]);
free(dataset.L[i]);
free(dataset.U[i]);
}
free(dataset.A);
free(dataset.L);
free(dataset.U);
}
void printMatrix(int n, float **mat) {
printf("[");
for (int i = 0; i < n; i++) {
printf("[");
for (int j = 0; j < n; j++) {
printf("%.2f, ", mat[i][j]);
// printf("%7.2f ", mat[i][j]);
}
printf("], \n");
// printf("\n");
}
printf("]\n");
}
void subtract(Dataset dataset, float **subtrahend, int row, int column) {
int n = dataset.n;
int blocks = dataset.blocks;
float **A = dataset.A;
int blocksize = n / blocks;
int row_start = row * blocksize;
int column_start = column * blocksize;
for (int i = 0; i < blocksize; i++) {
for (int j = 0; j < blocksize; j++) {
A[i + row_start][j + column_start] -= subtrahend[i][j];
}
}
}
void luDecomposition(Dataset dataset, int row, int column) {
int n = dataset.n;
int blocks = dataset.blocks;
float **A = dataset.A, **L = dataset.L, **U = dataset.U;
int blocksize = n / blocks;
int row_start = row * blocksize;
int column_start = column * blocksize;
float *temp = (float *)malloc(sizeof(float) * blocksize);
for (int k = 0; k < blocksize; k++) {
for (int j = k; j < blocksize; j++) {
temp[j] = A[k + row_start][j + column_start] / A[k + row_start][k + column_start]; // temp[j] == A[k][j]
}
for (int i = k + 1; i < blocksize; i++) {
for (int j = k + 1; j < blocksize; j++) {
A[i + row_start][j + column_start] -= A[i + row_start][k + column_start] * temp[j];
}
A[i + row_start][k + column_start] /= A[k + row_start][k + column_start];
}
}
for (int i = 0; i < blocksize; i++) {
L[i + row_start][i + column_start] = 1;
for (int j = 0; j < blocksize; j++) {
if (j >= i) {
U[i + row_start][j + column_start] = A[i + row_start][j + column_start];
} else {
L[i + row_start][j + column_start] = A[i + row_start][j + column_start];
}
}
}
}
float** upperInverse(Dataset dataset, int row, int column) {
int n = dataset.n;
int blocks = dataset.blocks;
float **A = dataset.A;
int blocksize = n / blocks;
int row_start = row * blocksize;
int column_start = column * blocksize;
float **inv = allocateMatrix(blocksize);
for (int i = 0; i < blocksize; i++) {
for (int j = 0; j < blocksize; j++) {
inv[i][j] = 0;
}
inv[i][i] = 1;
}
for (int i = blocksize - 1; i >= 0; i--) {
for (int k = i; k < blocksize; k++) {
inv[i][k] /= A[i + row_start][i + column_start];
}
for (int j = i - 1; j >= 0; j--) {
for (int k = i; k < blocksize; k++) {
inv[j][k] -= A[j + row_start][i + column_start] * inv[i][k];
}
}
}
return inv;
}
float** lowerInverse(Dataset dataset, int row, int column) {
int n = dataset.n;
int blocks = dataset.blocks;
float **A = dataset.A;
int blocksize = n / blocks;
int row_start = row * blocksize;
int column_start = column * blocksize;
float **inv = allocateMatrix(blocksize);
for (int i = 0; i < blocksize; i++) {
for (int j = 0; j < blocksize; j++) {
inv[i][j] = 0;
}
inv[i][i] = 1;
}
for (int i = 0; i < blocksize; i++) {
for (int j = i + 1; j < blocksize; j++) {
for (int k = 0; k <= i; k++) {
inv[j][k] -= A[j + row_start][i + column_start] * inv[i][k];
}
}
}
return inv;
}
void multiplicationFU(Dataset dataset, int row, int column, float **U) {
int n = dataset.n;
int blocks = dataset.blocks;
float **A = dataset.A, **L = dataset.L;
int blocksize = n / blocks;
int row_start = row * blocksize;
int column_start = column * blocksize;
for (int i = 0; i < blocksize; i++) {
for (int j = 0; j < blocksize; j++) {
L[i + row_start][j + column_start] = 0;
for (int k = 0; k <= j; k++) {
L[i + row_start][j + column_start] += A[i + row_start][k + column_start] * U[k][j];
}
}
}
}
void multiplicationLF(float **L, Dataset dataset, int row, int column) {
int n = dataset.n;
int blocks = dataset.blocks;
float **A = dataset.A, **U = dataset.U;
int blocksize = n / blocks;
int row_start = row * blocksize;
int column_start = column * blocksize;
for (int i = 0; i < blocksize; i++) {
for (int j = 0; j < blocksize; j++) {
U[i + row_start][j + column_start] = 0;
for (int k = 0; k <= i; k++) {
U[i + row_start][j + column_start] += L[i][k] * A[k + row_start][j + column_start];
}
}
}
}
float **multiplicationLU(Dataset dataset, int L_row, int L_column, int U_row, int U_column) {
int n = dataset.n;
int blocks = dataset.blocks;
float **L = dataset.L, **U = dataset.U;
int blocksize = n / blocks;
int L_row_start = L_row * blocksize;
int L_column_start = L_column * blocksize;
int U_row_start = U_row * blocksize;
int U_column_start = U_column * blocksize;
float **mul = allocateMatrix(blocksize);
for (int i = 0; i < blocksize; i++) {
for (int j = 0; j < blocksize; j++) {
mul[i][j] = 0;
for (int k = 0; k < blocksize; k++) {
mul[i][j] += L[i + L_row_start][k + L_column_start] * U[k + U_row_start][j + U_column_start];
}
}
}
return mul;
}
float determinant(Dataset dataset) {
int n = dataset.n;
int blocks = dataset.blocks;
#pragma omp parallel
{
#pragma omp single
{
for (int k = 0; k < blocks; k++) {
luDecomposition(dataset, k, k);
float **U_inv, **L_inv;
#pragma omp task shared(U_inv) firstprivate(dataset, k)
U_inv = upperInverse(dataset, k, k);
#pragma omp task shared(L_inv) firstprivate(dataset, k)
L_inv = lowerInverse(dataset, k, k);
#pragma omp taskwait
for (int i = k + 1; i < blocks; i++) {
#pragma omp task firstprivate(dataset, i, k, U_inv)
multiplicationFU(dataset, i, k, U_inv);
#pragma omp task firstprivate(dataset, i, k, L_inv)
multiplicationLF(L_inv, dataset, k, i);
}
#pragma omp taskwait
float **LU_mul;
for (int i = k + 1; i < blocks; i++) {
for (int j = k + 1; j < blocks; j++) {
#pragma omp task private(LU_mul) firstprivate(dataset, i, k, j)
{
LU_mul = multiplicationLU(dataset, i, k, k, j);
subtract(dataset, LU_mul, i, j);
}
}
}
#pragma omp taskwait
}
}
}
float det = 1;
for (int i = 0; i < n; i++){
det *= dataset.U[i][i];
}
return det;
}
float detSerial(Dataset dataset) {
int n = dataset.n;
int blocks = dataset.blocks;
for (int k = 0; k < blocks; k++) {
luDecomposition(dataset, k, k);
float **U_inv, **L_inv;
U_inv = upperInverse(dataset, k, k);
L_inv = lowerInverse(dataset, k, k);
for (int i = k + 1; i < blocks; i++) {
multiplicationFU(dataset, i, k, U_inv);
multiplicationLF(L_inv, dataset, k, i);
}
float **LU_mul;
for (int i = k + 1; i < blocks; i++) {
for (int j = k + 1; j < blocks; j++) {
LU_mul = multiplicationLU(dataset, i, k, k, j);
subtract(dataset, LU_mul, i, j);
}
}
}
float det = 1;
for (int i = 0; i < n; i++){
det *= dataset.U[i][i];
}
return det;
}