-
Notifications
You must be signed in to change notification settings - Fork 0
/
neural_network.go
218 lines (181 loc) · 5.71 KB
/
neural_network.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
package main
import (
"fmt"
"log"
"strings"
"gorgonia.org/gorgonia"
"gorgonia.org/tensor"
)
var (
model *gorgonia.VM
g *gorgonia.ExprGraph
x *gorgonia.Node
y *gorgonia.Node
)
func setupAndTrainNetwork(data []string) error {
// Check if we have any data
if len(data) == 0 {
return fmt.Errorf("no data provided for training")
}
// For simplicity, let's assume each piece of data is a fixed size of 100 words
// In a real scenario, you'd need to implement proper tokenization and padding
inputSize := 100
batchSize := len(data)
// Create a simple feedforward network
g = gorgonia.NewGraph()
// Input layer
x = gorgonia.NewMatrix(g,
tensor.Float64,
gorgonia.WithShape(batchSize, inputSize),
gorgonia.WithName("x"),
)
// Hidden layer
hiddenSize := 50
w1 := gorgonia.NewMatrix(g,
tensor.Float64,
gorgonia.WithShape(inputSize, hiddenSize),
gorgonia.WithName("w1"),
gorgonia.WithInit(gorgonia.GlorotU(1.0)),
)
b1 := gorgonia.NewMatrix(g,
tensor.Float64,
gorgonia.WithShape(1, hiddenSize),
gorgonia.WithName("b1"),
gorgonia.WithInit(gorgonia.Zeroes()),
)
// Output layer
outputSize := 10 // Assuming 10 possible output classes
w2 := gorgonia.NewMatrix(g,
tensor.Float64,
gorgonia.WithShape(hiddenSize, outputSize),
gorgonia.WithName("w2"),
gorgonia.WithInit(gorgonia.GlorotU(1.0)),
)
b2 := gorgonia.NewMatrix(g,
tensor.Float64,
gorgonia.WithShape(1, outputSize),
gorgonia.WithName("b2"),
gorgonia.WithInit(gorgonia.Zeroes()),
)
// Define the computation
var err error
var hidden, output *gorgonia.Node
// Forward pass
if hidden, err = gorgonia.Mul(x, w1); err != nil {
return fmt.Errorf("hidden = x*w1 error: %v", err)
}
if hidden, err = gorgonia.Add(hidden, b1); err != nil {
return fmt.Errorf("hidden = hidden+b1 error: %v", err)
}
if hidden, err = gorgonia.Rectify(hidden); err != nil {
return fmt.Errorf("hidden = rectify(hidden) error: %v", err)
}
if output, err = gorgonia.Mul(hidden, w2); err != nil {
return fmt.Errorf("output = hidden*w2 error: %v", err)
}
if output, err = gorgonia.Add(output, b2); err != nil {
return fmt.Errorf("output = output+b2 error: %v", err)
}
// Define symbolic y
y = gorgonia.NewMatrix(g,
tensor.Float64,
gorgonia.WithShape(batchSize, outputSize),
gorgonia.WithName("y"),
)
// Define loss function
losses, err := gorgonia.Sub(output, y)
if err != nil {
return fmt.Errorf("losses = output-y error: %v", err)
}
square, err := gorgonia.Square(losses)
if err != nil {
return fmt.Errorf("square error: %v", err)
}
cost, err := gorgonia.Mean(square)
if err != nil {
return fmt.Errorf("cost = mean(square) error: %v", err)
}
// Create VM and Solver
model = gorgonia.NewTapeMachine(g, gorgonia.BindDualValues(w1, w2))
solver := gorgonia.NewRMSPropSolver(gorgonia.WithLearnRate(0.01))
inputData := tensor.New(tensor.WithShape(batchSize, inputSize), tensor.WithBacking(convertToFloat64Slice(data, inputSize)))
// Training loop
for i := 0; i < 100; i++ { // Reduced number of iterations for testing
if err := model.RunAll(); err != nil {
log.Printf("Failed at iteration %d: %v", i, err)
return err
}
// Create a new tensor node with the input data
inputNode := gorgonia.NodeFromAny(g, inputData, gorgonia.WithName("input"))
// Set the value of x to the input node
if err := gorgonia.Let(x, inputNode); err != nil {
return fmt.Errorf("failed to set x: %v", err)
}
if err := model.RunAll(); err != nil {
return fmt.Errorf("failed to run: %v", err)
}
if err := solver.Step(gorgonia.NodesToValueGrads(gorgonia.Nodes{w1, w2})); err != nil {
return fmt.Errorf("failed to solve: %v", err)
}
model.Reset() // Reset is required for CUDA-based graphs
}
fmt.Println("Neural network training completed")
return nil
}
// Helper function to convert string data to float64 slice
func convertToFloat64Slice(data []string, inputSize int) []float64 {
result := make([]float64, len(data)*inputSize)
for i, text := range data {
// Simple conversion: use ASCII values of characters
// In a real scenario, you'd use proper text vectorization
for j, char := range text {
if j < inputSize {
result[i*inputSize+j] = float64(char)
} else {
break
}
}
}
return result
}
func generateResponseFromNetwork(input string) string {
// Convert input to float64 slice
inputData := convertToFloat64Slice([]string{input}, 100) // Assuming input size of 100
// Create a new tensor with the input data
inputTensor := tensor.New(tensor.WithShape(1, 100), tensor.WithBacking(inputData))
// Create a new node with the input tensor
inputNode := gorgonia.NodeFromAny(g, inputTensor, gorgonia.WithName("input"))
// Set the value of x to the input node
if err := gorgonia.Let(x, inputNode); err != nil {
log.Printf("Error setting input: %v", err)
return "Error generating response"
}
// Run the model
if err := model.RunAll(); err != nil {
log.Printf("Error running model: %v", err)
return "Error generating response"
}
// Get the output
output, err := y.Value().Data().([]float64)
if err {
log.Printf("Error getting output: %v", err)
return "Error generating response"
}
// Convert output to a response string (this is a simplistic approach)
response := convertOutputToString(output)
model.Reset()
return response
}
func convertOutputToString(output []float64) string {
// This is a very simplistic conversion. In a real scenario, you'd use a more sophisticated method.
words := []string{"The", "quick", "brown", "fox", "jumps", "over", "the", "lazy", "dog"}
var response []string
for _, val := range output {
index := int(val * float64(len(words)))
if index >= len(words) {
index = len(words) - 1
}
response = append(response, words[index])
}
return strings.Join(response, " ")
}