-
Notifications
You must be signed in to change notification settings - Fork 0
/
Model Trainer.py
37 lines (25 loc) · 960 Bytes
/
Model Trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import cv2
import numpy as np
from PIL import Image
import os
path = 'samples'
recognizer = cv2.face.LBPHFaceRecognizer_create()
detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
def Images_And_Labels(path):
imagePaths = [os.path.join(path,f) for f in os.listdir(path)]
faceSamples = []
ids = []
for imagePath in imagePaths:
gray_img = Image.open(imagePath).convert('L')
img_arr = np.array(gray_img,'uint8')
id = int(os.path.split(imagePath)[-1].split(".")[1])
faces = detector.detectMultiScale(img_arr)
for (x,y,w,h) in faces:
faceSamples.append(img_arr[y:y+h,x:x+w])
ids.append(id)
return faceSamples,ids
print("Training Faces. It will take a few seconds. Wait...")
faces,ids = Images_And_Labels(path)
recognizer.train(faces, np.array(ids))
recognizer.write('trainer/trainer.yml')
print("Model trained, Now we can recognize your face")