Skip to content

NPBG++: Accelerating Neural Point-Based Graphics

License

Notifications You must be signed in to change notification settings

rakhimovv/npbgpp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics

This repository contains the official Python implementation of the paper.

The repository also contains faithful implementation of NPBG.

We introduce the pipelines working with following datasets: ScanNet, NeRF-Synthetic, H3DS, DTU.

We follow the PyTorch3D convention for coordinate systems and cameras.

Changelog

  • [April 27, 2022] Added more example data and point clouds
  • [April 5, 2022] Initial code release

Dependencies

python -m venv ~/.venv/npbgplusplus
source ~/.venv/npbgplusplus/bin/activate
pip install -r requirements.txt

# install pytorch3d
curl -LO https://github.com/NVIDIA/cub/archive/1.10.0.tar.gz
tar xzf 1.10.0.tar.gz
export CUB_HOME=$PWD/cub-1.10.0
pip install "git+https://github.com/facebookresearch/pytorch3d.git@d0ca3b9e0cf6b1cfba46a367a98b8738cc5acad5" --no-cache-dir --verbose

# install torch_scatter
pip install torch-scatter==2.0.8 -f https://pytorch-geometric.com/whl/torch-1.9.1+${CUDA}.html
# where ${CUDA} should be replaced by either cpu, cu101, cu102, or cu111 depending on your PyTorch installation.
# {CUDA} must match with torch.version.cuda (not with runtime or driver version)
# using 1.7.1 instead of 1.7.0 produces "incompatible cuda version" error

python setup.py build develop

Below you can see the examples on how to run the particular stages of different models on different datasets.

How to run NPBG++

Checkpoints and example data are available here.

Run training
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbgpp_scannet datasets=scannet_pretrain datasets.n_point=6e6 system=npbgpp_sphere system.visibility_scale=0.5 trainer.max_epochs=39 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbgpp_nerf datasets=nerf_blender_pretrain system=npbgpp_sphere system.visibility_scale=1.0 trainer.max_epochs=24 dataloader.train_data_mode=each weights_path=experiments/npbgpp_scannet/checkpoints/epoch38.ckpt
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbgpp_h3ds datasets=h3ds_pretrain system=npbgpp_sphere system.visibility_scale=1.0 trainer.max_epochs=24 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1 weights_path=experiments/npbgpp_scannet/checkpoints/epoch38.ckpt
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbgpp_dtu datasets=dtu_pretrain system=npbgpp_sphere system.visibility_scale=1.0 trainer.max_epochs=36 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1  weights_path=experiments/npbgpp_scannet/checkpoints/epoch38.ckpt
Run testing
python train_net.py trainer.gpus=1 hydra.run.dir=experiments/npbgpp_eval_scan118 datasets=dtu_one_scene datasets.data_root=$\{hydra:runtime.cwd\}/example/DTU_masked datasets.scene_name=scan118 system=npbgpp_sphere system.visibility_scale=1.0 weights_path=./checkpoints/npbgpp_dtu_nm_mvs_ft_epoch35.ckpt eval_only=true dataloader=small
Run finetuning of coefficients
python train_net.py trainer.gpus=1 hydra.run.dir=experiments/npbgpp_5ae021f2805c0854_ft datasets=h3ds_one_scene datasets.data_root=$\{hydra:runtime.cwd\}/example/H3DS datasets.selection_count=0 datasets.train_num_samples=2000 datasets.train_image_size=null datasets.train_random_shift=false datasets.train_random_zoom=[0.5,2.0] datasets.scene_name=5ae021f2805c0854 system=coefficients_ft system.max_points=1e6 system.descriptors_save_dir=$\{hydra:run.dir\}/descriptors trainer.max_epochs=20 system.descriptors_pretrained_dir=experiments/npbgpp_eval_5ae021f2805c0854/descriptors weights_path=$\{hydra:runtime.cwd\}/checkpoints/npbgpp_h3ds.ckpt dataloader=small
Run testing with finetuned coefficients
python train_net.py trainer.gpus=1 hydra.run.dir=experiments/npbgpp_5ae021f2805c0854_test datasets=h3ds_one_scene datasets.data_root=$\{hydra:runtime.cwd\}/example/H3DS datasets.selection_count=0 datasets.scene_name=5ae021f2805c0854 system=coefficients_ft system.max_points=1e6 system.descriptors_save_dir=$\{hydra:run.dir\}/descriptors system.descriptors_pretrained_dir=experiments/npbgpp_5ae021f2805c0854_ft/descriptors weights_path=experiments/npbgpp_5ae021f2805c0854_ft/checkpoints/last.ckpt dataloader=small eval_only=true

How to run NPBG

Run pretraining
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_scannet datasets=scannet_pretrain datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_scannet/result/descriptors trainer.max_epochs=39 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1 trainer.limit_val_batches=0 system.max_points=11e6
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_nerf datasets=nerf_blender_pretrain datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_nerf/result/descriptors trainer.max_epochs=24 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1 trainer.limit_val_batches=0 system.max_points=4e6
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_h3ds datasets=h3ds_pretrain datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=null datasets.train_random_shift=false datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_h3ds/result/descriptors trainer.max_epochs=24 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1 trainer.limit_val_batches=0 system.max_points=3e6  # Submitted batch job 1175175
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_dtu_nm datasets=dtu_pretrain datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_dtu_nm/result/descriptors trainer.max_epochs=36 dataloader.train_data_mode=each trainer.reload_dataloaders_every_n_epochs=1 trainer.limit_val_batches=0 system.max_points=3e6
Run fine-tuning on 1 scene
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_scannet_0045 datasets=scannet_one_scene datasets.scene_name=scene0045_00 datasets.n_point=6e6 datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_scannet_0045/result/descriptors system.max_scenes_per_train_epoch=1 trainer.max_epochs=20 weights_path=experiments/npbg_scannet/result/checkpoints/epoch38.ckpt system.max_points=6e6
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_nerf_hotdog datasets=nerf_blender_one_scene datasets.scene_name=hotdog datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=npbgplusplus/experiments/npbg_nerf_hotdog/result/descriptors system.max_scenes_per_train_epoch=1 trainer.max_epochs=20 weights_path=experiments/npbg_nerf/result/checkpoints/epoch23.ckpt system.max_points=4e6
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_h3ds_5ae021f2805c0854 datasets=h3ds_one_scene datasets.scene_name=5ae021f2805c0854 datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=null datasets.train_random_shift=false datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_h3ds_5ae021f2805c0854/result/descriptors system.max_scenes_per_train_epoch=1 trainer.max_epochs=20 weights_path=experiments/npbg_h3ds/result/checkpoints/epoch23.ckpt system.max_points=3e6
python train_net.py trainer.gpus=4 hydra.run.dir=experiments/npbg_dtu_nm_scan110 datasets=dtu_one_scene datasets.scene_name=scan110 datasets.train_random_zoom=[0.5,2.0] datasets.train_image_size=512 datasets.selection_count=0 system=npbg system.descriptors_save_dir=experiments/npbg_dtu_nm_scan110/result/descriptors system.max_scenes_per_train_epoch=1 trainer.max_epochs=20 weights_path=experiments/npbg_dtu_nm/result/checkpoints/epoch35.ckpt system.max_points=3e6

Citation

If you find our work useful in your research, please consider citing:

@InProceedings{Rakhimov_2022_CVPR,
    author={Rakhimov, Ruslan and Ardelean, Andrei-Timotei and Lempitsky, Victor and Burnaev, Evgeny},
    title={NPBG++: Accelerating Neural Point-Based Graphics},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month={June},
    year={2022},
    pages={15969-15979}
}

License

See the LICENSE for more details.

About

NPBG++: Accelerating Neural Point-Based Graphics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages