diff --git a/tests/prices.py b/tests/prices.py index cb61bcde6..68eb952f6 100644 --- a/tests/prices.py +++ b/tests/prices.py @@ -399,71 +399,23 @@ def test_dst_fix(self): raise def test_prune_post_intraday_us(self): - # Half-day before USA Thanksgiving. Yahoo normally + # Half-day at USA Thanksgiving. Yahoo normally # returns an interval starting when regular trading closes, # even if prepost=False. # Setup tkr = "AMZN" - interval = "1h" interval_td = _dt.timedelta(hours=1) time_open = _dt.time(9, 30) time_close = _dt.time(16) - special_day = _dt.date(2022, 11, 25) + special_day = _dt.date(2023, 11, 24) time_early_close = _dt.time(13) dat = yf.Ticker(tkr, session=self.session) # Run start_d = special_day - _dt.timedelta(days=7) end_d = special_day + _dt.timedelta(days=7) - df = dat.history(start=start_d, end=end_d, interval=interval, prepost=False, keepna=True) - tg_last_dt = df.loc[str(special_day)].index[-1] - self.assertTrue(tg_last_dt.time() < time_early_close) - - # Test no other afternoons (or mornings) were pruned - start_d = _dt.date(special_day.year, 1, 1) - end_d = _dt.date(special_day.year+1, 1, 1) df = dat.history(start=start_d, end=end_d, interval="1h", prepost=False, keepna=True) - last_dts = _pd.Series(df.index).groupby(df.index.date).last() - f_early_close = (last_dts+interval_td).dt.time < time_close - early_close_dates = last_dts.index[f_early_close].values - self.assertEqual(len(early_close_dates), 1) - self.assertEqual(early_close_dates[0], special_day) - - first_dts = _pd.Series(df.index).groupby(df.index.date).first() - f_late_open = first_dts.dt.time > time_open - late_open_dates = first_dts.index[f_late_open] - self.assertEqual(len(late_open_dates), 0) - - def test_prune_post_intraday_omx(self): - # Half-day before Sweden Christmas. Yahoo normally - # returns an interval starting when regular trading closes, - # even if prepost=False. - # If prepost=False, test that yfinance is removing prepost intervals. - - # Setup - tkr = "AEC.ST" - interval = "1h" - interval_td = _dt.timedelta(hours=1) - time_open = _dt.time(9) - time_close = _dt.time(17, 30) - special_day = _dt.date(2022, 12, 23) - time_early_close = _dt.time(13, 2) - dat = yf.Ticker(tkr, session=self.session) - - # Half trading day Jan 5, Apr 14, May 25, Jun 23, Nov 4, Dec 23, Dec 30 - half_days = [_dt.date(special_day.year, x[0], x[1]) for x in [(1, 5), (4, 14), (5, 25), (6, 23), (11, 4), (12, 23), (12, 30)]] - - # Yahoo has incorrectly classified afternoon of 2022-04-13 as post-market. - # Nothing yfinance can do because Yahoo doesn't return data with prepost=False. - # But need to handle in this test. - expected_incorrect_half_days = [_dt.date(2022, 4, 13)] - half_days = sorted(half_days+expected_incorrect_half_days) - - # Run - start_d = special_day - _dt.timedelta(days=7) - end_d = special_day + _dt.timedelta(days=7) - df = dat.history(start=start_d, end=end_d, interval=interval, prepost=False, keepna=True) tg_last_dt = df.loc[str(special_day)].index[-1] self.assertTrue(tg_last_dt.time() < time_early_close) @@ -472,17 +424,8 @@ def test_prune_post_intraday_omx(self): end_d = _dt.date(special_day.year+1, 1, 1) df = dat.history(start=start_d, end=end_d, interval="1h", prepost=False, keepna=True) last_dts = _pd.Series(df.index).groupby(df.index.date).last() - f_early_close = (last_dts+interval_td).dt.time < time_close - early_close_dates = last_dts.index[f_early_close].values - unexpected_early_close_dates = [d for d in early_close_dates if d not in half_days] - self.assertEqual(len(unexpected_early_close_dates), 0) - self.assertEqual(len(early_close_dates), len(half_days)) - self.assertTrue(_np.equal(early_close_dates, half_days).all()) - - first_dts = _pd.Series(df.index).groupby(df.index.date).first() - f_late_open = first_dts.dt.time > time_open - late_open_dates = first_dts.index[f_late_open] - self.assertEqual(len(late_open_dates), 0) + dfd = dat.history(start=start_d, end=end_d, interval='1d', prepost=False, keepna=True) + self.assertTrue(_np.equal(dfd.index.date, _pd.to_datetime(last_dts.index).date).all()) def test_prune_post_intraday_asx(self): # Setup @@ -490,22 +433,16 @@ def test_prune_post_intraday_asx(self): interval_td = _dt.timedelta(hours=1) time_open = _dt.time(10) time_close = _dt.time(16, 12) - # No early closes in 2022 + # No early closes in 2023 dat = yf.Ticker(tkr, session=self.session) - # Test no afternoons (or mornings) were pruned - start_d = _dt.date(2022, 1, 1) - end_d = _dt.date(2022+1, 1, 1) + # Test no other afternoons (or mornings) were pruned + start_d = _dt.date(2023, 1, 1) + end_d = _dt.date(2023+1, 1, 1) df = dat.history(start=start_d, end=end_d, interval="1h", prepost=False, keepna=True) last_dts = _pd.Series(df.index).groupby(df.index.date).last() - f_early_close = (last_dts+interval_td).dt.time < time_close - early_close_dates = last_dts.index[f_early_close].values - self.assertEqual(len(early_close_dates), 0) - - first_dts = _pd.Series(df.index).groupby(df.index.date).first() - f_late_open = first_dts.dt.time > time_open - late_open_dates = first_dts.index[f_late_open] - self.assertEqual(len(late_open_dates), 0) + dfd = dat.history(start=start_d, end=end_d, interval='1d', prepost=False, keepna=True) + self.assertTrue(_np.equal(dfd.index.date, _pd.to_datetime(last_dts.index).date).all()) def test_weekly_2rows_fix(self): tkr = "AMZN"