Skip to content

Latest commit

 

History

History
140 lines (111 loc) · 3.49 KB

README.md

File metadata and controls

140 lines (111 loc) · 3.49 KB

AnimeGAN: A Novel Lightweight GAN for Photo Animation

Unofficial pytorch-lightning implementation of a paper, "AnimeGAN: A Novel Lightweight GAN for Photo Animation"

  • original tensorflow official implementation is here v1 and v2
  • pytorch implementation is here

Requirements

need for training

  • torch==1.10.1
  • torchvision==0.11.2
  • pytorch-lightning==1.5.7
  • tqdm==4.62.3
  • wandb==0.12.10
  • opencv-python-headless==4.5.5.62
  • albumentations==1.1.1
  • easydict==1.9

need for test and inference

  • onnxruntime==1.10.0
  • moviepy==1.0.3
  • pytest==7.0.0
  • pytest-watch==4.2.0
  • pytest-testmon==1.2.3
  • pytest-cov==3.0.0

Install requirements by pip

pip install -r requirements.txt

Install requirements by docker

docker build .

Pretrained weights / models download

1. Shinkai style training

DATASET

  • dataset download from original AnimeGAN repo "download"

  • download and unzip dataset

wget -O anime-gan.zip https://github.com/ptran1203/pytorch-animeGAN/releases/download/v1.0/dataset_v1.zip
unzip anime-gan.zip
project root
├── anime-gan.zip
├── dataset
│   ├── Hayao       # --style_image_root
│   │   ├── smooth
│   │   └── style
│   ├── Kimetsu     # --style_image_root
│   │   ├── smooth
│   │   └── style
│   ├── Paprika     # --style_image_root
│   │   ├── smooth
│   │   └── style
│   ├── Shinkai     # --style_image_root
│   │   ├── smooth
│   │   └── style
│   ├── SummerWar
│   ├── test
│   └── train_photo # --real_image_root
├── main.py
...

Training

  1. prepare dataset

  2. start training

python main.py \
--seed 2022 \
--real_image_root "./dataset/train_photo" \
--style_image_root "./dataset/Shinkai" \
--device "cuda:0" \
--image_channels 3 \
--image_size 256 \
--batch_size 16 \
--num_workers 8 \
--g_dim 32 \
--d_dim 32 \
--d_layers 3 \
--sn "True" \
--epochs 300 \
--init_epochs 10 \
--init_lr 0.0002 \
--g_lr 0.00002 \
--d_lr 0.00004 \
--beta_1 0.5 \
--beta_2 0.999 \
--ctlw 1.5 \
--stlw 3.0 \
--colw 30.0 \
--advgw 10.0 \
--advdw 10.0 \
--show_image_count 8

Training result

Shinkai

Input
Output
A
Input Output
A
A
A
A
A

References