-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathbonus_bigbird-after.py
194 lines (148 loc) · 6.42 KB
/
bonus_bigbird-after.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import os.path as op
import time
from functools import partial
from datasets import load_dataset
from lightning import Fabric
from lightning.fabric.strategies import FSDPStrategy
import torch
from torch.utils.data import DataLoader
import torchmetrics
from transformers import AutoTokenizer
from transformers import AutoModelForSequenceClassification
from watermark import watermark
from local_utilities import download_dataset, load_dataset_into_to_dataframe, partition_dataset
from local_utilities import IMDBDataset
def tokenize_text(batch):
return tokenizer(batch["text"], truncation=True, padding=True)
def train(num_epochs, model, optimizer, train_loader, val_loader, fabric, accumulation_steps):
for epoch in range(num_epochs):
train_acc = torchmetrics.Accuracy(task="multiclass", num_classes=2).to(fabric.device)
model.train()
for batch_idx, batch in enumerate(train_loader):
model.train()
### FORWARD AND BACK PROP
outputs = model(batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["label"])
outputs["loss"] /= accumulation_steps
fabric.backward(outputs["loss"])
### UPDATE MODEL PARAMETERS
if batch_idx % accumulation_steps == 0: # NEW
optimizer.step()
optimizer.zero_grad()
### LOGGING
if not batch_idx % 300:
fabric.print(f"Epoch: {epoch+1:04d}/{num_epochs:04d} | Batch {batch_idx:04d}/{len(train_loader):04d} | Loss: {outputs['loss']:.4f}")
model.eval()
with torch.no_grad():
predicted_labels = torch.argmax(outputs["logits"], 1)
train_acc.update(predicted_labels, batch["label"])
### MORE LOGGING
model.eval()
with torch.no_grad():
val_acc = torchmetrics.Accuracy(task="multiclass", num_classes=2).to(fabric.device)
for batch in val_loader:
outputs = model(batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["label"])
predicted_labels = torch.argmax(outputs["logits"], 1)
val_acc.update(predicted_labels, batch["label"])
fabric.print(f"Epoch: {epoch+1:04d}/{num_epochs:04d} | Train acc.: {train_acc.compute()*100:.2f}% | Val acc.: {val_acc.compute()*100:.2f}%")
train_acc.reset(), val_acc.reset()
if __name__ == "__main__":
print(watermark(packages="torch,lightning,transformers", python=True))
print("Torch CUDA available?", torch.cuda.is_available())
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.manual_seed(123)
##########################
### 1 Loading the Dataset
##########################
download_dataset()
df = load_dataset_into_to_dataframe()
if not (op.exists("train.csv") and op.exists("val.csv") and op.exists("test.csv")):
partition_dataset(df)
imdb_dataset = load_dataset(
"csv",
data_files={
"train": "train.csv",
"validation": "val.csv",
"test": "test.csv",
},
)
#########################################
### 2 Tokenization and Numericalization
#########################################
tokenizer = AutoTokenizer.from_pretrained("google/bigbird-roberta-base")
print("Tokenizer input max length:", tokenizer.model_max_length, flush=True)
print("Tokenizer vocabulary size:", tokenizer.vocab_size, flush=True)
print("Tokenizing ...", flush=True)
imdb_tokenized = imdb_dataset.map(tokenize_text, batched=True, batch_size=None)
del imdb_dataset
imdb_tokenized.set_format("torch", columns=["input_ids", "attention_mask", "label"])
os.environ["TOKENIZERS_PARALLELISM"] = "false"
#########################################
### 3 Set Up DataLoaders
#########################################
BATCHSIZE = 12
ACCUMULATION_STEPS = 12
MICROBATCHSIZE = int(BATCHSIZE / ACCUMULATION_STEPS)
train_dataset = IMDBDataset(imdb_tokenized, partition_key="train")
val_dataset = IMDBDataset(imdb_tokenized, partition_key="validation")
test_dataset = IMDBDataset(imdb_tokenized, partition_key="test")
train_loader = DataLoader(
dataset=train_dataset,
batch_size=MICROBATCHSIZE,
shuffle=True,
num_workers=1,
drop_last=True,
)
val_loader = DataLoader(
dataset=val_dataset,
batch_size=MICROBATCHSIZE,
num_workers=1,
drop_last=True,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=MICROBATCHSIZE,
num_workers=1,
drop_last=True,
)
#########################################
### 4 Initializing the Model
#########################################
torch.set_float32_matmul_precision('medium')
strategy = FSDPStrategy(
cpu_offload=True
)
fabric = Fabric(accelerator="cuda", devices=4, strategy=strategy, precision="bf16-true")
fabric.launch()
with fabric.init_module(empty_init=False):
model = AutoModelForSequenceClassification.from_pretrained(
"google/bigbird-roberta-base", num_labels=2)
optimizer = torch.optim.Adam(model.parameters(), lr=5e-5)
model, optimizer = fabric.setup(model, optimizer, move_to_device=False)
train_loader, val_loader, test_loader = fabric.setup_dataloaders(train_loader, val_loader, test_loader)
fabric.barrier()
#########################################
### 5 Finetuning
#########################################
start = time.time()
train(
num_epochs=1,
model=model,
optimizer=optimizer,
train_loader=train_loader,
val_loader=val_loader,
fabric=fabric,
accumulation_steps=ACCUMULATION_STEPS
)
end = time.time()
elapsed = end-start
with torch.no_grad():
model.eval()
test_acc = torchmetrics.Accuracy(task="multiclass", num_classes=2).to(fabric.device)
for batch in test_loader:
outputs = model(batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["label"])
predicted_labels = torch.argmax(outputs["logits"], 1)
test_acc.update(predicted_labels, batch["label"])
fabric.print(f"Test accuracy: {test_acc.compute()*100:.2f}%")
fabric.print(f"Total training time: {elapsed/60:.2f} min")
fabric.print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB")