-
Notifications
You must be signed in to change notification settings - Fork 4
/
binary-search.py
55 lines (48 loc) · 1.61 KB
/
binary-search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Binary Search
# 🟢 Easy
#
# https://www.algoexpert.io/questions/binary-search
#
# Tags: Search - Binary Search - Array
import timeit
# Implement a binary search algorithm, conceptually easy but the details
# are tricky, the best is to memorize details of one way that works and
# start with that, then modify if the particulars of the problem require
# it, to fit.
#
# Time complexity: O(log(n)) - Each iteration removes half the remaining
# search space.
# Space complexity: O(1) - Constant extra memory used.
class Solution:
def binarySearch(self, array, target):
l, r = 0, len(array) - 1
while l < r:
mid = (l + r) // 2
if array[mid] < target:
l = mid + 1
else:
r = mid
return l if array[l] == target else -1
def test():
executors = [Solution]
tests = [
[[1, 5, 23, 111], 35, -1],
[[0, 1, 21, 33, 45, 45, 61, 71, 72, 73], 33, 3],
]
for executor in executors:
start = timeit.default_timer()
for _ in range(1):
for col, t in enumerate(tests):
sol = executor()
result = sol.binarySearch(t[0], t[1])
exp = t[2]
assert result == exp, (
f"\033[93m» {result} <> {exp}\033[91m for"
+ f" test {col} using \033[1m{executor.__name__}"
)
stop = timeit.default_timer()
used = str(round(stop - start, 5))
cols = "{0:20}{1:10}{2:10}"
res = cols.format(executor.__name__, used, "seconds")
print(f"\033[92m» {res}\033[0m")
test()