-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.py
152 lines (131 loc) · 5.1 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import math
import time
import argparse
import random
import os
from PIL import Image
import numpy as np
import torch
import torchvision
from models import MNISTModel, ConvMNISTModel, LSTMMNISTModel
from data_utils import KShotLoader, KShotData, split_array
from model_wrapper import MetaTrainWrapper
import tasks
from tasks import ClassifierTask
# from optim import SGD
import keras
from keras.datasets import mnist
import numpy as np
NUM_TEST_POINTS = 600
VALIDATION_SPLIT = [.8, .1, .1]
LINEAR = 0
CONV = 1
LSTM = 2
MODEL_TYPES = {'LINEAR': LINEAR, 'CONV': CONV, 'LSTM': LSTM}
def load_and_process_data(validation_split, n=5, k=1, metabatch_size=32, model_type=LINEAR):
data = MNISTData(model_type)
data.split(validation_split)
loader = KShotLoader(data, n, k, metabatch_size)
return loader
class MNISTData(KShotData):
def __init__(self, model_type):
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if model_type == CONV:
X = np.concatenate((x_train, x_test), axis=0).reshape(-1,1,28,28).astype('float32')
else:
X = np.concatenate((x_train, x_test), axis=0).reshape(-1,784).astype('float32')
#normalize MNIST images
X /= 255
y = np.concatenate((y_train, y_test), axis=0)
super(MNISTData, self).__init__(self.load_classes(X,y))
def load_classes(self, x, y):
self.input_size = x.shape[-1]
n_classes = np.max(y)+1
self.num_classes = n_classes
classes_data = []
for c in range(n_classes):
classes_data.append(x[y==c])
return classes_data
def split(self, splits=[.8, .1, .1]):
random.seed(1)
random.shuffle(self.classes_data)
self.train = []
self.val = []
self.test = []
for c in self.classes_data:
tr, va, te = split_array(c, splits)
self.train.append(tr)
self.val.append(va)
self.test.append(te)
print len(self.test[0])
self.train = KShotData([torch.from_numpy(c).float().cuda() for c in self.train])
self.val = KShotData([torch.from_numpy(c).float().cuda() for c in self.val])
self.test = KShotData([torch.from_numpy(c).float().cuda() for c in self.test])
del self.classes_data
del self.class_idx
def wrap_model(model_type=LINEAR, n=5, lr=1e-4, finetune=1, inner_lr=.01, distributed=False, second_order=False):
if model_type == CONV:
model = ConvMNISTModel(n)
elif model_type == LSTM:
model = LSTMMNISTModel(n)
else:
model = MNISTModel(n)
model.cuda()
task = ClassifierTask()
#TODO: Implement Task Map
task_map = lambda x: task
master_optim = torch.optim.Adam(model.parameters(), lr=lr)
model = MetaTrainWrapper(model, task_map, finetune, inner_lr, master_optim, second_order=second_order, distributed=distributed)
return model
def main(model_type=LINEAR, lr=1e-4, n=5, k=1, finetune=1, inner_lr=.4, second_order=False, metabatch_size=32, niters=40000, print_interval=100, eval_interval=500):
assert model_type in MODEL_TYPES.values()
validation_split = VALIDATION_SPLIT
loader = load_and_process_data(validation_split, n, k, metabatch_size, model_type)
module = wrap_model(model_type, n, lr=lr, finetune=finetune, inner_lr=inner_lr, second_order=second_order)
module.train()
train_loader = loader.train
for i in range(niters):
batch = next(train_loader)
loss, metrics = module(batch)
if (i+1) % print_interval == 0:
module.log_history_point(i+1)
if (i+1) % eval_interval == 0:
module.eval()
batch = next(loader.val)
val_loss, val_metrics = module(batch)
module.log_history_point(i+1)
module.train()
module.eval()
for t, batch in enumerate(loader.test):
module(batch)
if t == NUM_TEST_POINTS-1:
module.get_test_point()
break
module.plot()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='OmniGlot n-way k-shot Classifier')
parser.add_argument('--model-type', default='LINEAR',
help='one of [LINEAR, CONV, LSTM]')
parser.add_argument('--niters', default=40000, type=int,
help='Number of epochs to train. Default: 20000')
parser.add_argument('--lr', default=1e-3, type=float,
help='Learning rate to use. (used for meta optimizer in MAML). Default: 1e-3')
parser.add_argument('--n', default=5, type=int,
help='n-way. Default: 5')
parser.add_argument('--k', default=1, type=int,
help='k-shot. Default: 1')
parser.add_argument('--ntasks', default=32, type=int,
help='number of tasks to sample for MAML(metabatch_size). Default: 8')
parser.add_argument('--nfinetune', default=1, type=int,
help='number of finetuning steps in MAML. Default: 1')
parser.add_argument('--inner-lr', default=.4, type=float,
help='Learning rate for fine tune optimizer in MAML. Default: 1e-2')
parser.add_argument('--second-order', action='store_true',
help='use second order estimation for supervised MAML (instead of first order)')
parser.add_argument('--print-interval', type=int, default=100,
help='number of iterations between printing progress')
parser.add_argument('--eval-interval', type=int, default=500,
help='number of iterations between printing progress')
args = parser.parse_args()
main(MODEL_TYPES[args.model_type], args.lr, args.n, args.k, args.nfinetune, args.inner_lr,
args.second_order, args.ntasks, args.niters, args.print_interval, args.eval_interval)