-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathevaluate6.hs
244 lines (212 loc) · 6.08 KB
/
evaluate6.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import Data.Char
import qualified Data.Map as M
import Control.Applicative
import Control.Monad (liftM, ap)
data Operator = Plus | Minus | Times | Div
deriving (Show, Eq)
data Token = TokOp Operator
| TokAssign
| TokLParen
| TokRParen
| TokIdent String
| TokNum Double
| TokEnd
deriving (Show, Eq)
operator :: Char -> Operator
operator c | c == '+' = Plus
| c == '-' = Minus
| c == '*' = Times
| c == '/' = Div
tokenize [] = []
tokenize (c : cs)
| elem c "+-*/" = TokOp (operator c) : tokenize cs
| c == '=' = TokAssign : tokenize cs
| c == '(' = TokLParen : tokenize cs
| c == ')' = TokRParen : tokenize cs
| isDigit c = number c cs
| isAlpha c = identifier c cs
| isSpace c = tokenize cs
| otherwise = error $ "Cannot tokenize " ++ [c]
identifier :: Char -> String -> [Token]
identifier c cs = let (name, cs') = span isAlphaNum cs in
TokIdent (c:name) : tokenize cs'
number :: Char -> String -> [Token]
number c cs =
let (digs, cs') = span isDigit cs in
TokNum (read (c : digs)) : tokenize cs'
---- parser ----
-- show
data Tree = SumNode Operator Tree Tree
| ProdNode Operator Tree Tree
| AssignNode String Tree
| UnaryNode Operator Tree
| NumNode Double
| VarNode String
deriving Show
newtype Parser a = P ([Token] -> Either String (a, [Token]))
instance Functor Parser where
fmap = liftM
instance Applicative Parser where
pure = return
(<*>) = ap
instance Monad Parser where
(P act) >>= k = P $
\toks ->
case act toks of
Left str -> Left str
Right (x, toks') ->
let P act' = k x
in act' toks'
return x = P (\toks -> Right (x, toks))
fail str = P (\_ -> Left str)
lookAhead :: Parser Token
lookAhead = P $ \toks ->
case toks of
[] -> Right (TokEnd, [])
(t:ts) -> Right (t, t:ts)
accept :: Parser ()
accept = P $ \toks ->
case toks of
[] -> Left "Nothing to accept"
(t:ts) -> Right ((), ts)
expression :: Parser Tree
expression = do
termTree <- term
tok <- lookAhead
case tok of
(TokOp op) | elem op [Plus, Minus] -> do
accept
exTree <- expression
return $ SumNode op termTree exTree
TokAssign ->
case termTree of
VarNode str -> do
accept
exTree <- expression
return $ AssignNode str exTree
_ -> fail "Only variables can be assigned to"
_ -> return termTree
term :: Parser Tree
term = do
facTree <- factor
tok <- lookAhead
case tok of
(TokOp op) | elem op [Times, Div] -> do
accept
termTree <- term
return $ ProdNode op facTree termTree
_ -> return facTree
factor :: Parser Tree
factor = do
tok <- lookAhead
case tok of
(TokNum x) -> do
accept
return $ NumNode x
(TokIdent str) -> do
accept
return $ VarNode str
(TokOp op) | elem op [Plus, Minus] -> do
accept
facTree <- factor
return $ UnaryNode op facTree
TokLParen -> do
accept
expTree <- expression
tok' <- lookAhead
if tok' /= TokRParen
then fail "Missing right parenthesis"
else do
accept
return expTree
_ -> fail $ "Token: " ++ show tok
parse :: [Token] -> Either String Tree
parse toks =
let P act = expression
result = act toks
in
case result of
Left msg -> Left msg
Right (tree, toks') ->
if null toks'
then Right tree
else Left $ "Leftover tokens: " ++ show toks'
-- /show
---- evaluator ----
type SymTab = M.Map String Double
newtype Evaluator a = Ev (SymTab -> Either String (a, SymTab))
instance Functor Evaluator where
fmap = liftM
instance Applicative Evaluator where
pure = return
(<*>) = ap
-- k : a -> Ev (SymTab -> Either String (b, SymTab))
instance Monad Evaluator where
(Ev act) >>= k = Ev $
\symTab ->
case act symTab of
Left str -> Left str
Right (x, symTab') ->
let Ev act' = k x
in act' symTab'
return x = Ev (\symTab -> Right (x, symTab))
fail str = Ev (\_ -> Left str)
lookUp :: String -> Evaluator Double
lookUp str = Ev $ \symTab ->
case M.lookup str symTab of
Just v -> Right (v, symTab)
Nothing -> Left $ "Undefined variable: " ++ str
addSymbol :: String -> Double -> Evaluator Double
addSymbol str val = Ev $ \symTab ->
let symTab' = M.insert str val symTab
in Right (val, symTab')
evaluate :: Tree -> Evaluator Double
evaluate (SumNode op left right) = do
lft <- evaluate left
rgt <- evaluate right
case op of
Plus -> return $ lft + rgt
Minus -> return $ lft - rgt
evaluate (ProdNode op left right) = do
lft <- evaluate left
rgt <- evaluate right
case op of
Times -> return $ lft * rgt
Div -> return $ lft / rgt
evaluate (UnaryNode op tree) = do
x <- evaluate tree
case op of
Plus -> return x
Minus -> return (-x)
evaluate (NumNode x) = return x
evaluate (VarNode str) = lookUp str
evaluate (AssignNode str tree) = do
v <- evaluate tree
addSymbol str v
-- show
main = do
loop (M.fromList [("pi", pi)])
-- /show
loop symTab = do
str <- getLine
if null str
then
return ()
else
let toks = tokenize str
eTree = parse toks
in
case eTree of
Left msg -> do
print $ "Parse error: " ++ msg
loop symTab
Right tree ->
let Ev act = evaluate tree
in
case act symTab of
Left str -> do
putStrLn $ "Error: " ++ str
loop symTab
Right (val, symTab') -> do
print val
loop symTab'