-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_imagenet.py
270 lines (238 loc) · 10.6 KB
/
train_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import os
import sys
import numpy as np
import time
import torch
import utils
import glob
import random
import logging
import argparse
import torch.nn as nn
import genotypes
import torch.utils
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
from model import NetworkImageNet as Network
parser = argparse.ArgumentParser("training imagenet")
parser.add_argument('--workers', type=int, default=32, help='number of workers to load dataset')
parser.add_argument('--batch_size', type=int, default=256, help='batch size')
parser.add_argument('--learning_rate', type=float, default=0.1, help='init learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--weight_decay', type=float, default=3e-5, help='weight decay')
parser.add_argument('--report_freq', type=float, default=100, help='report frequency')
parser.add_argument('--epochs', type=int, default=250, help='num of training epochs')
parser.add_argument('--init_channels', type=int, default=48, help='num of init channels')
parser.add_argument('--layers', type=int, default=14, help='total number of layers')
parser.add_argument('--auxiliary', action='store_true', default=False, help='use auxiliary tower')
parser.add_argument('--auxiliary_weight', type=float, default=0.4, help='weight for auxiliary loss')
parser.add_argument('--drop_path_prob', type=float, default=0, help='drop path probability')
parser.add_argument('--save', type=str, default='/tmp/checkpoints/', help='experiment name')
parser.add_argument('--seed', type=int, default=0, help='random seed')
parser.add_argument('--arch', type=str, default='PCDARTS', help='which architecture to use')
parser.add_argument('--grad_clip', type=float, default=5., help='gradient clipping')
parser.add_argument('--label_smooth', type=float, default=0.1, help='label smoothing')
parser.add_argument('--lr_scheduler', type=str, default='linear', help='lr scheduler, linear or cosine')
parser.add_argument('--tmp_data_dir', type=str, default='/tmp/cache/', help='temp data dir')
parser.add_argument('--note', type=str, default='try', help='note for this run')
args, unparsed = parser.parse_known_args()
args.save = '{}eval-{}-{}'.format(args.save, args.note, time.strftime("%Y%m%d-%H%M%S"))
utils.create_exp_dir(args.save, scripts_to_save=glob.glob('*.py'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
CLASSES = 1000
class CrossEntropyLabelSmooth(nn.Module):
def __init__(self, num_classes, epsilon):
super(CrossEntropyLabelSmooth, self).__init__()
self.num_classes = num_classes
self.epsilon = epsilon
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, inputs, targets):
log_probs = self.logsoftmax(inputs)
targets = torch.zeros_like(log_probs).scatter_(1, targets.unsqueeze(1), 1)
targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
loss = (-targets * log_probs).mean(0).sum()
return loss
def main():
if not torch.cuda.is_available():
logging.info('No GPU device available')
sys.exit(1)
np.random.seed(args.seed)
cudnn.benchmark = True
torch.manual_seed(args.seed)
cudnn.enabled=True
torch.cuda.manual_seed(args.seed)
logging.info("args = %s", args)
logging.info("unparsed_args = %s", unparsed)
num_gpus = torch.cuda.device_count()
genotype = eval("genotypes.%s" % args.arch)
print('---------Genotype---------')
logging.info(genotype)
print('--------------------------')
model = Network(args.init_channels, CLASSES, args.layers, args.auxiliary, genotype)
if num_gpus > 1:
model = nn.DataParallel(model)
model = model.cuda()
else:
model = model.cuda()
logging.info("param size = %fMB", utils.count_parameters_in_MB(model))
criterion = nn.CrossEntropyLoss()
criterion = criterion.cuda()
criterion_smooth = CrossEntropyLabelSmooth(CLASSES, args.label_smooth)
criterion_smooth = criterion_smooth.cuda()
optimizer = torch.optim.SGD(
model.parameters(),
args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay
)
data_dir = os.path.join(args.tmp_data_dir, 'imagenet')
traindir = os.path.join(data_dir, 'train')
validdir = os.path.join(data_dir, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_data = dset.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(
brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.2),
transforms.ToTensor(),
normalize,
]))
valid_data = dset.ImageFolder(
validdir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
train_queue = torch.utils.data.DataLoader(
train_data, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=args.workers)
valid_queue = torch.utils.data.DataLoader(
valid_data, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=args.workers)
# scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.decay_period, gamma=args.gamma)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(args.epochs))
best_acc_top1 = 0
best_acc_top5 = 0
for epoch in range(args.epochs):
if args.lr_scheduler == 'cosine':
scheduler.step()
current_lr = scheduler.get_lr()[0]
elif args.lr_scheduler == 'linear':
current_lr = adjust_lr(optimizer, epoch)
else:
print('Wrong lr type, exit')
sys.exit(1)
logging.info('Epoch: %d lr %e', epoch, current_lr)
if epoch < 5 and args.batch_size > 256:
for param_group in optimizer.param_groups:
param_group['lr'] = current_lr * (epoch + 1) / 5.0
logging.info('Warming-up Epoch: %d, LR: %e', epoch, current_lr * (epoch + 1) / 5.0)
if num_gpus > 1:
model.module.drop_path_prob = args.drop_path_prob * epoch / args.epochs
else:
model.drop_path_prob = args.drop_path_prob * epoch / args.epochs
epoch_start = time.time()
train_acc, train_obj = train(train_queue, model, criterion_smooth, optimizer)
logging.info('Train_acc: %f', train_acc)
valid_acc_top1, valid_acc_top5, valid_obj = infer(valid_queue, model, criterion)
logging.info('Valid_acc_top1: %f', valid_acc_top1)
logging.info('Valid_acc_top5: %f', valid_acc_top5)
epoch_duration = time.time() - epoch_start
logging.info('Epoch time: %ds.', epoch_duration)
is_best = False
if valid_acc_top5 > best_acc_top5:
best_acc_top5 = valid_acc_top5
if valid_acc_top1 > best_acc_top1:
best_acc_top1 = valid_acc_top1
is_best = True
utils.save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_acc_top1': best_acc_top1,
'optimizer' : optimizer.state_dict(),
}, is_best, args.save)
def adjust_lr(optimizer, epoch):
# Smaller slope for the last 5 epochs because lr * 1/250 is relatively large
if args.epochs - epoch > 5:
lr = args.learning_rate * (args.epochs - 5 - epoch) / (args.epochs - 5)
else:
lr = args.learning_rate * (args.epochs - epoch) / ((args.epochs - 5) * 5)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def train(train_queue, model, criterion, optimizer):
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
batch_time = utils.AvgrageMeter()
model.train()
for step, (input, target) in enumerate(train_queue):
target = target.cuda(non_blocking=True)
input = input.cuda(non_blocking=True)
b_start = time.time()
optimizer.zero_grad()
logits, logits_aux = model(input)
loss = criterion(logits, target)
if args.auxiliary:
loss_aux = criterion(logits_aux, target)
loss += args.auxiliary_weight*loss_aux
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
optimizer.step()
batch_time.update(time.time() - b_start)
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
n = input.size(0)
objs.update(loss.data.item(), n)
top1.update(prec1.data.item(), n)
top5.update(prec5.data.item(), n)
if step % args.report_freq == 0:
end_time = time.time()
if step == 0:
duration = 0
start_time = time.time()
else:
duration = end_time - start_time
start_time = time.time()
logging.info('TRAIN Step: %03d Objs: %e R1: %f R5: %f Duration: %ds BTime: %.3fs',
step, objs.avg, top1.avg, top5.avg, duration, batch_time.avg)
return top1.avg, objs.avg
def infer(valid_queue, model, criterion):
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
top5 = utils.AvgrageMeter()
model.eval()
for step, (input, target) in enumerate(valid_queue):
input = input.cuda()
target = target.cuda(non_blocking=True)
with torch.no_grad():
logits, _ = model(input)
loss = criterion(logits, target)
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
n = input.size(0)
objs.update(loss.data.item(), n)
top1.update(prec1.data.item(), n)
top5.update(prec5.data.item(), n)
if step % args.report_freq == 0:
end_time = time.time()
if step == 0:
duration = 0
start_time = time.time()
else:
duration = end_time - start_time
start_time = time.time()
logging.info('VALID Step: %03d Objs: %e R1: %f R5: %f Duration: %ds', step, objs.avg, top1.avg, top5.avg, duration)
return top1.avg, top5.avg, objs.avg
if __name__ == '__main__':
main()