-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradcam_random_visualization.py
62 lines (51 loc) · 2.17 KB
/
gradcam_random_visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import pickle
import matplotlib.patches as patches
import cv2
import numpy as np
import random
"""
This is a script to visualize 10 random images and their ground truth + predicted bounding boxes
"""
if __name__ == '__main__':
# Avaiable thresholds data
thresholds = [0.01, 0.02, 0.06]
threshold = thresholds[2]
# Loading data
with open('results/all_gt_dogs.pickle', 'rb') as handle:
all_gt_dogs = pickle.load(handle)
with open('results/all_detected_dogs'+str(threshold)+'.pickle', 'rb') as handle:
all_detected_dogs = pickle.load(handle)
# Get 10 random images
for i in range(10):
key = random.choice(list(all_detected_dogs.keys()))
fig,ax = plt.subplots(1)
img = cv2.imread(key, 1)
img = np.float32(img) / 255
img = img[:, :, ::-1]
ax.imshow(img)
gt = all_gt_dogs[key]
predicted = all_detected_dogs[key]
# Loop in objects of ground truth
for obj in gt:
xmingt, ymingt, xmaxgt, ymaxgt = int(obj[0]), int(obj[1]), int(obj[2]), int(obj[3])
widthgt = xmaxgt-xmingt
heightgt = ymaxgt-ymingt
rect0 = patches.Rectangle((xmingt,ymingt),widthgt,heightgt,linewidth=3,edgecolor='r',facecolor='none', label="predicted")
centerxgt = xmingt + widthgt/2
centerygt = ymingt + heightgt/2
# Add the patch to the Axes
ax.add_patch(rect0)
plt.text(centerxgt, centerygt,'Ground Truth', bbox=dict(facecolor='red', alpha=0.5))
# Loop in objects predicted
for obj in predicted:
xmin, ymin, xmax, ymax = int(obj[0]), int(obj[1]), int(obj[2]), int(obj[3])
width = xmax - xmin
height = ymax - ymin
rect = patches.Rectangle((xmin,ymin),width,height,linewidth=3,edgecolor='b',facecolor='none', label="ground truth")
centerx = xmin + width/2
centery = ymin + height/2
ax.add_patch(rect)
plt.text(centerx, centery,'Predicted', bbox=dict(facecolor='blue', alpha=0.5))
plt.show()