-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathContents.swift
55 lines (49 loc) · 1.63 KB
/
Contents.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/**
Given an integer array nums where the elements are sorted in ascending order, convert it to a height-balanced binary search tree.
A height-balanced binary tree is a binary tree in which the depth of the two subtrees of every node never differs by more than one.
Example 1:
Input: nums = [-10,-3,0,5,9]
Output: [0,-3,9,-10,null,5]
Explanation: [0,-10,5,null,-3,null,9] is also accepted:
Example 2:
Input: nums = [1,3]
Output: [3,1]
Explanation: [1,null,3] and [3,1] are both height-balanced BSTs.
Constraints:
- 1 <= nums.length <= 104
- -104 <= nums[i] <= 104
- nums is sorted in a strictly increasing order.
*/
/**
* Definition for a binary tree node.
*/
public class TreeNode {
public var val: Int
public var left: TreeNode?
public var right: TreeNode?
public init() { self.val = 0; self.left = nil; self.right = nil; }
public init(_ val: Int) { self.val = val; self.left = nil; self.right = nil; }
public init(_ val: Int, _ left: TreeNode?, _ right: TreeNode?) {
self.val = val
self.left = left
self.right = right
}
}
class Solution {
func sortedArrayToBST(_ nums: [Int]) -> TreeNode? {
guard !nums.isEmpty else { return nil }
let midIndex = (0 + nums.count) / 2
let middleElement = nums[midIndex]
let root = TreeNode(middleElement)
let leftHalf = Array(nums.prefix(midIndex))
let righthalf = Array(nums.suffix(from: midIndex + 1))
root.left = sortedArrayToBST(leftHalf)
root.right = sortedArrayToBST(righthalf)
return root
}
}
let s = Solution()
let n = s.sortedArrayToBST([1, 2, 3, 4, 5, 6])
print(n)