-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathContents.swift
68 lines (61 loc) · 1.49 KB
/
Contents.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
/**
Given an integer `n`, return an array `ans` of length `n + 1` such that for each `i` `(0 <= i <= n)`, `ans[i]` is the number of `1`'s in the binary representation of `i`.
Example 1:
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10
Example 2:
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
Constraints:
- 0 <= n <= 105
Follow up:
It is very easy to come up with a solution with a runtime of O(n log n). Can you do it in linear time O(n) and possibly in a single pass?
Can you do it without using any built-in function (i.e., like __builtin_popcount in C++)?
*/
class Solution {
func countBits(_ n: Int) -> [Int] {
var result = [Int]()
for var i in 0...n {
if i <= 1 {
result.append(i)
} else {
var arr = [Int]()
while i != 0 {
var x = 0
while pow(2, power: x) <= i {
x += 1
}
arr.append(x - 1)
i -= pow(2, power: x - 1)
}
result.append(arr.count)
}
}
return result
}
private func pow(_ base: Int, power: Int) -> Int {
if base == 0 { return 0 }
var result = 1
for _ in 0..<power {
result *= base
}
return result
}
}
let s = Solution()
let r = s.countBits(7)
print(r)